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Abstract: Malware is becoming more and more sophisticated these days. Currently, the aim of
some special specimens of malware is not to infect the largest number of devices as possible, but
to reach a set of concrete devices (target devices). This type of malware is usually employed in
association with advanced persistent threat (APT) campaigns. Although the great majority of
scientific studies are devoted to the design of efficient algorithms to detect this kind of threat, the
knowledge about its propagation is also interesting. In this article, a new stochastic computational
model to simulate its propagation is proposed based on Bayesian networks. This model considers two
characteristics of the devices: having efficient countermeasures, and the number of infectious devices
in the neighborhood. Moreover, it takes into account four states: susceptible devices, damaged
devices, infectious devices and recovered devices. In this way, the dynamic of the model is SIDR
(susceptible–infectious–damaged–recovered). Contrary to what happens with global models, the
proposed model takes into account both the individual characteristics of devices and the contact
topology. Furthermore, the dynamics is governed by means of a (practically) unexplored technique
in this field: Bayesian networks.

Keywords: malware propagation; epidemic model; Bayesian network; advanced persistent threat;
stochastic model

1. Introduction

Nowadays, security threats to computer systems pose a huge risk to our society.
Especially dangerous are those sophisticated cyber attacks called advanced persistent
threats since their basic targets are critical infrastructures and other systems that control
essential services, such as transport, communications, etc. [1,2].

The National Institute of Standards and Technology (NIST) of the United States
defines an APT as follows [3]: “an adversary with sophisticated levels of expertise and
significant resources, allowing it through the use of multiple different attack vectors
(e.g., cyber, physical, and deception), to generate opportunities to achieve its objectives
which are typically to establish and extend its presence within the information technology
infrastructure of organizations for purposes of continually exfiltrating information and/or
to undermine or impede critical aspects of a mission, program, or organization, or place
itself in a position to do so in the future; moreover, the advanced persistent threat pursues
its objectives repeatedly over an extended period of time, adapting to a defender’s efforts
to resist it, and with determination to maintain the level of interaction needed to execute
its objectives”. As a consequence, an APT has an specific target as private organizations or
governments and/or public agencies. Advanced and sophisticated techniques and highly
organized methods are employed to achieve its goals. Moreover, an APT forms a long-term
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attack campaign for months or years, and consequently, it has a high ability to remain
undetected.

One of the most important techniques used in an APT is constituted by advanced
malware that exploits zero-day vulnerabilities. These specimens of malware are highly
sophisticated and exhibit the main characteristics of a proper APT. In Table 1, it is summa-
rized the differences between a usual type of malware and zero-day malware used in an
APT attack (see [4–7]).

Table 1. Differences between usual malware and malware used in an APT attack.

Typical Attacks Attacks Used in APT

Cybercriminals Mainly one person A group of qualified people

Victim Any device Specific institutions and
governmental organizations

Aim Obtaining money or Gain an advantage

being known over their competitors

Characteristics Fast propagation, Slow propagation, several
and one attempt. attempts and adaptation

against countermeasures

The number of APT attacks has increased in recent years [4]. Although the great
majority of studies in the scientific literature are devoted to the design of an implementation
of efficient algorithms to detect this type of malware [8–10], it is also very important to
design and analyze computational models that simulate the propagation of this type of
malware, and this is precisely the main goal of this work.

As is well known, there are two types of models that study malware propagation:
deterministic and stochastic models. Deterministic models are usually global (that is,
they suppose that all devices have the same characteristics and the contact topology is
homogeneous) and, consequently, they are based on—deterministic—ordinary differen-
tial equations [11]). On the other hand, stochastic models can be also global (and based
on stochastic differential equations), although the great majority follows the individual
paradigm [12,13] and, consequently, takes into account particular characteristics of devices.
All of them are compartmental models where the total population of devices is classified
into different classes or compartments (depending on the epidemiological state). In this
sense, several different compartments can be considered in a specific model: susceptible
devices S, weak susceptible devices W, infectious devices I, carrier devices C, recovered
devices R, vaccinated devices V, attacked devices A, damaged devices D, etc. In this way,
considering the involved compartments and the dynamics between them, the epidemi-
ological models are classified according to their dynamic: SCIRAS model [14], SCIRS
model [15], SIRA model [16], SEIRS− V model [17], WSIS model [18], etc. The model
introduced in this work is a SIDR model (susceptible–infectious–damaged–recovered).
This considers that susceptible devices can be infected when the advanced malware reaches
them, infectious devices can be damaged if they are considered targets by malware, and
finally, both infectious devices and damaged devices can be recovered.

Very few models have been proposed in the scientific literature to simulate the prop-
agation of the advanced malware used in APTs. In [14], the authors propose a SCIRAS
global and deterministic model based on ordinary differential equations. This is a theo-
retical proposal where the proposed model can simulate the general evolution of its five
compartments (susceptible devices, carrier devices, infectious devices, attacked devices
and recovered devices). Moreover, the article analyzed the basic reproductive number
considering several parameters, and a qualitative study of the system (computing the equi-
librium points and analyzing the stability) is also introduced. In [19], a stochastic model
is introduced that simulates advanced malware as well. This model considers different
Erdös–Rényi networks as contact topologies in order to study the evolution of infectious
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and attacked devices. The centrality measures of the first infected node are also considered
to show its impact in the propagation. Other different models to simulate the behavior
of advanced malware also appear in some works that study the detection of this type of
malware [20].

Our work is focused on article [21]. According to this, the malware used in an APT
attack has a set of target devices and its propagation is stealthy and slow. The following
three characteristics are considered:

1. The malware has a set of target devices. Then, the main objective of the malware is to
infect (and attack) these devices.

2. The propagation of this malware has to be stealthy. Then, the number of infectious
devices is smaller. Moreover, this type of malware can obtain information of the
security of the system and knows whether a device has efficient countermeasures. This
way, the malware tries not to be detected by this type of software. As a consequence,
the probability to infect devices with efficient countermeasures is smaller.

3. The propagation of this type of malware is slow. This means that the increase in
infectious devices is smaller during the infection period.

In our work, we considered that the dynamics of advanced malware propagation is
governed by a dynamic Bayesian network. Consequently, this is a stochastic model that
considers both individual characteristics (having efficient countermeasures) and topology
features (the particular contact structure of each node/device of the network). The epi-
demiological coefficients involved can be calculated through different methods, such as
parameter learning or structural learning. Then, if we know the propagation of the malware
and the individual characteristics of the devices, we can obtain the characteristics of the
model (the parameters). This permits to compare the properties of different types of ad-
vanced malware. The great majority of proposed models to simulate malware propagation
are based on (deterministic) ordinary differential equations and, consequently, they cannot
consider in an efficient way neither the individual characteristics of the nodes/devices nor
the contact topology. In addition, they cannot differentiate between a target device and a
non-target device. Usually, individual-based models are based on (probabilistic) cellular
automata or Markov processes. Nevertheless, a small number of models that consider
Bayesian networks to simulate malware propagation have appeared in the scientific litera-
ture. The aim of this work is to analyze the use of this latter mentioned technique (Bayesian
networks) since this notion is clear, well known, and its parameters can be organized easily
if we want to consider several characteristics.

A Bayesian network is a probabilistic graphical model so that the nodes depict the
random variables and the links represent their conditional dependencies. Moreover, the
associated graph is directed and acyclic [22]. Other authors used dynamic Bayesian
networks in different applications: to identify faults [23], to predict information diffusion
probabilities in social networks [24], etc. Additionally, in epidemiology, Bayesian networks
have been used in several applications: to represent a virus infection model [25], to show the
structure of cloud components [26], to study possible disease progression mechanisms [27],
to predict an epidemic curve [28], etc.

The rest of the paper has the following structure: In Section 2, an introduction of
Bayesian networks is presented. In Section 3, the structure of the model is shown. In
Section 4, an illustrative example of the model is shown. Finally, in Section 5, the conclu-
sions and future work are exposed.

2. Mathematical Preliminaries of the Model

This section presents a short summary of the mathematical concepts to understand
Bayesian networks. A Bayesian network is a directed acyclic graph G = (V, E).
V = {X1, X2, . . . , Xn} is the set of nodes that represents n random variables, and E ⊂ V×V
is the set of links that represents the conditional dependencies among the nodes (|E| = m).
If (U, W) ∈ E, the node U is called the parent of W, U ∈ pa(W). Each node follows
a conditional probability distribution (CPD) according to the Bayesian network. For



Mathematics 2021, 9, 3097 4 of 16

example, if W ∈ V has several parents U1, . . . , Un ∈ V, the CPD associated to W is
P(W = w0|U1 = u1, . . . , Un = un).

The probabilistic graphical model used in this work evolves with time, and conse-
quently, the model depends on t. In this way, the vector X(t) = (X1(t), . . . , Xn(t)) is the set
of random variables at time t. Furthermore, the following two conditions are considered:

• Markov’s assumption: the variables at the next step of time t + ∆t only depend on the
variables at time t.

X(t + ∆t) ⊥ {X(t− k∆t), . . . , X(t− ∆t)}|X(t), k ∈ Z+. (1)

• Time-invariant: the CPDs of the random variables do not change through time.

P(X(t + ∆t) = A|X(t) = B) = P(X(t + (k + 1)∆t) = A|X(t + k∆t) = B), (2)

for all t and k ∈ Z+, where A = (a1, . . . , an) and B = (b1, . . . , bn) are the vectors of
values that the random variables X = (X1, . . . , Xn) can take.

Then, the conditional probability distribution can be calculated as follows:

P(X(t + ∆t) = A|X(t) = B) =
n

∏
i=1

P
(
Xi(t + ∆t) = ai|pa(Xi(t + ∆t)) = b̄i

)
(3)

where b̄i is the values of the parents of Xi(t + ∆t) taken from the values B.

3. Structure of the Model

The model proposed in this work involves two different networks:

1. The device network is formed by r ∈ N devices. This network takes into account the
interactions among the devices—the main feature that influences the propagation
process. Then, this type of malware propagates through this network.

2. The Bayesian network. The Bayesian network explains how the characteristics (related
to the propagation process) of each device change over time.

It was considered that a device i is endowed with four characteristics at time t: epi-
demiological state X1(i, t), target consideration X2(i, t), efficient security countermeasures
X3(i, t), and the number of infectious nodes in contact with the node i, X4(i, t). The
temporal model based on Bayesian networks is illustrated in Figure 1.

Figure 1. Bayesian network associated to the proposed model.

Then, the evolution of the epidemiological state of a node depends on the four charac-
teristics:

• As with most of the models, the state of the device in the previous step influences the
new state.

• The target consideration decides if a node can be damaged since an APT only attacks
the target nodes.
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• Having efficient security countermeasures leads to more difficult infection and faster
recovery.

• The infection process depends on the number of infectious nodes in contact with the
node i [19]. If the number is very big, the infection is more likely.

Moreover, nodes can stop having efficient security countermeasures or they can
start having them. This happens because one person can install or uninstall efficient
anti-malware software in their device. Then, X3(i, t) can change over time. Therefore, it
depends on this variable in the previous epoch.

3.1. Characteristics of Each Node/Device

The node i is endowed with the following characteristics at each step of time t:

• Epidemiological state X1(i, t). A device can have one of the following four states
in each epoch: susceptible, infectious, damaged or recovered. Susceptible devices
(denoted by x11 = “susceptible”) are those devices that are free of malware and can
be infected. Infectious devices (denoted by x12 = “infectious”) are devices that are
reached by the malware but they do not suffer its malicious activity. Moreover,
these devices can infect other susceptible devices. Damaged devices (denoted by
x13 = “damaged”) are devices that are infected and can suffer malicious activity. These
devices can infect other susceptible devices too. According to ATPs, only the targets
can be damaged. Finally, recovered devices (denoted by x14 = “recovered”) are devices
that no longer have the malware. In this way, this constitutes a compartmental model
whose dynamics consist of the following: if the ATP malware reaches a susceptible
device, it becomes infected. An infected device can turn into a recovered one if the
malware is removed, or it can become damaged if this is a target device and the
malware manages to activate. Finally, a damaged device turns into a recovered device
when the malware is removed. Then, the dynamics of this model is SIDR (susceptible–
infectious–damaged–recovered). The relations of the different states are represented
in the flow diagram shown in Figure 2.

Figure 2. Flow diagram representing the dynamics of the SIDR model.

• Target consideration X2(i, t). We have considered two types of devices: devices that
the ATP wants to damage (the targets), and devices that are not of interest for the
malware. Thus, the random variable X2(i, t) can adopt two values: the device is a
target (denoted by x21 = “yes”) and the device is not a target (denoted by x22 = “no”).

• Efficient security countermeasures X3(i, t). We have taken into account two kinds
of devices: devices that are endowed with efficient security countermeasures and
devices that do not have security efficient countermeasures. On the one hand, the
devices with efficient countermeasures (denoted by x31 = “yes”) can recover easily and
can be infected with more difficulty. On the other hand, the devices without efficient
countermeasures (denoted by x32 = “no”) can be easily infected and can recover with
more difficulty.

• Number of infectious nodes in contact with a node/device X4(i, t). If we consider the
degree of the node i, ki, the number of infectious neighbors of device i at t satisfies
0 ≤ X4(i, t) ≤ ki. For all the nodes, we consider a partition of the interval [0, K],
0 = γ0 < γ1 < . . . < γl = K = max{k1, . . . , kr}, to define the discrete possible values
of X4(i, t). In our model, we considered three possible values:
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(1) x41 = 0, there are no infectious and damaged neighbor devices. Then, the
probability of a susceptible device being infectious is 0.

(2) x42 ∈ {1, 2, 3, 4}, there are some infectious and damaged neighbors. Thus, the
probability of a susceptible device being infectious is p1 > 0.

(3) x43 > 4, there are many infectious and damaged neighbors. This means that the
probability of a susceptible device being infectious is p2 with p2 > p1 > 0.

3.2. Propagation of the Malware

In order to study the propagation of the malware, we use Bayesian networks. Then, if
we take into account Equation (3) and the Bayesian network represented in Figure 1, we
obtain the following:

P(X(i, t + ∆t) = A|X(i, t) = B) (4)

=
n

∏
j=1

P
(
Xj(i, t + ∆t) = aj|pa(Xj(i, t + ∆t)) = b̄j

)
= P(X1(i, t + ∆t) = a1|(X1(i, t), X2(i, t), X3(i, t), X4(i, t)) = b̄1)

· P(X2(i, t + ∆t) = a2|X2(i, t) = b̄2)

· P(X3(i, t + ∆t) = a3|X3(i, t) = b̄3)

Then, we only need to determine three CPDs: the CPD of X1(i, t+∆t) (epidemiological
state), the CPD of X2(i, t + ∆t) (target consideration), and the CPD of X3(i, t + ∆t) (efficient
countermeasures). The CPD of X2(i, t + ∆t) is shown in Table 2.

Table 2. CPD of X2(i, t + ∆t).

X2(i, t) x21 x22
x21 c1,1 c1,2
x22 c2,1 c2,2

Note that

c1,1 = P(X2(i, t + ∆t) = ‘yes’|X2(i, t) = ‘yes’), (5)

c1,2 = P(X2(i, t + ∆t) = ‘yes’|X2(i, t) = ‘no’), (6)

c2,1 = P(X2(i, t + ∆t) = ‘no’|X2(i, t) = ‘yes’), (7)

c2,2 = P(X2(i, t + ∆t) = ‘no’|X2(i, t) = ‘no’). (8)

Table 3 presents the CPD of X3(i, t + ∆t):

e1,1 = P(X3(i, t + ∆t) = ‘yes’|X3(i, t) = ‘yes’), (9)

e1,2 = P(X3(i, t + ∆t) = ‘yes’|X3(i, t) = ‘no’), (10)

e2,1 = P(X3(i, t + ∆t) = ‘no’|X3(i, t) = ‘yes’), (11)

e2,2 = P(X3(i, t + ∆t) = ‘no’|X3(i, t) = ‘no’). (12)

Table 3. CPD of X3(i, t + ∆t).

X3(i, t) x31 x32
x31 e1,1 e1,2
x32 e2,1 e2,2

Finally, there is a CPD for X1(i, t + ∆t). Inasmuch as the variable X1(i, t) can have four
values, the variable X2(i, t) can have two values, the variable X3(i, t) can have two values,
the variable X4(i, t) can have three values, and the CPD for the X1(i, t + ∆t) can have
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4× 2× 2× 3× 4 = 192 parameters. Due to there being too many parameters to include in
one table, we can consider several tables with fewer values. For example, if we regard each
table with the same values of “X4(i, t)” and “X1(i, t)”, then there are 12 tables (there are
12 possible combinations of the variables “X4(i, t)” and “X1(i, t)”) with 16 parameters in
each table as is shown in Table 4.

Table 4. CPD of X1(i, t + ∆t).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 s1,1 s1,2 s1,3 s1,4
x12 s2,1 s2,2 s2,3 s2,4
x13 s3,1 s3,2 s3,3 s3,4
x14 s4,1 s4,2 s4,3 s4,4

For example, we can regard Table 4 associated to X4(i, t) = “more than four devices”
and X1(i, t) = “Infectious”. Then, s1,1 is the probability of X1(i, t + ∆t) = “Susceptible”
supposing that X2(i, t) = “yes” , X3(i, t) = “yes”, X4(i, t) = “more than four devices”, and
X1(i, t) = “Infectious”; s2,2 is the probability of X1(i, t + ∆t) = “Infectious” supposing
that X2(i, t) = “yes”, X3(i, t) = “no”, X4(i, t) = “more than four devices” and X1(i, t) =
“Infectious”; s2,3 is the probability of X1(i, t + ∆t) = “Infectious” supposing that X2(i, t) =
“no”, X3(i, t) = “yes”, X4(i, t) = “more than four devices”, and X1(i, t) = “Infectious”,
and so on.

Once the probabilities are defined, random values are used to simulate malware prop-
agation. First, we need to know which are the probabilities associated to our situation. For
example, if we consider a node with the characteristics X4(i, t) = “more than four devices”,
X1(i, t) = “Infectious”, X2(i, t) = “no” and X3(i, t) = “yes”, then we have to take into
account the colored columns of Tables 5 and 6.

Table 5. CPD of the epidemiological state.

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 s1,1 s1,2 s1,3 s1,4
x12 s2,1 s2,2 s2,3 s2,4
x13 s3,1 s3,2 s3,3 s3,4
x14 s4,1 s4,2 s4,3 s4,4

Table 6. CPDs of the target (on the left) and efficient countermeasures (on the right).

X2(i, t) x21 x22
x21 c1,1 c1,2
x22 c2,1 c2,2

X3(i, t) x31 x32
x31 e1,1 e1,2
x32 e2,1 e2,2

Next, if we apply Equation (3), we obtain that there are 16 possible values for
P(X(i, t + ∆t) = A|X(i, t) = B). These values are: x1 = s1,3 × c1,2 × e1,1, x2 = s1,3 × c1,2 ×
e2,1, x3 = s1,3 × c2,2 × e1,1, x4 = s1,3 × c2,2 × e2,1, etc. Then, we can form the following
intervals:

[0, x1), [x1, x1 + x2), [x1 + x2, x1 + x2 + x3), . . . , [
15

∑
l=1

xl ,
16

∑
l=1

xl = 1), (13)

that are illustrated in Figure 3.
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Then, if we choose at random a number within [0, 1), this can be situated in one of the
16 intervals. In this case, if the number is in the first interval, X1(i, t + ∆t) = “Susceptible”,
X2(i, t + ∆t) = “yes”, and X3(i, t + ∆t) = “yes”. If the number is in the second interval,
X1(i, t + ∆t) = “Susceptible”, X2(i, t + ∆t) = “yes”, and X3(i, t + ∆t) = “no”. The same
technique can be used for the rest of the intervals.

Figure 3. Intervals of the probabilities P(X(i, t + ∆t) = A|X(i, t) = B).

This way, we can obtain the future characteristics of a node i. Therefore, this method
is applied to each node of our network to simulate one step of the model. Finally, we repeat
the same process over a certain number of steps.

4. Illustrative Example of Malware Propagation

This section shows a temporal model based on the previous Bayesian network with
defined parameters.

4.1. Initial Conditions

The following initial conditions were taken into account to obtain the simulations
associated to the proposed model:

1. There are 19 devices in the network. Moreover, the network satisfies the following
characteristics: the average grade is 2.421, the network diameter is 3 and the network
density is 0.269.

2. There are two targets, which are represented with blue in Figure 4a. The rest of the
nodes are not considered targets.

3. There are devices with efficient countermeasures (in green) and without efficient
countermeasures (in pink), shown in Figure 4b.

4. All of the devices are susceptible, except two, which are infectious. The susceptible
devices are shown in green and the infectious devices are illustrated in orange in
Figure 4c.

(a) (b) (c)

Figure 4. Initial conditions of the simulations; (a) Targets; (b) Efficient countermeasures; (c) Initial states.

4.2. Determination of the CPDs

The probabilities of the conditional probability distributions (CPDs) in the Bayesian
network are defined as follows.

First, it is considered that targets does not change through time. Then, the CPD
associated with the future target is shown in Table 7.

According to the countermeasures, the probability of a device having efficient coun-
termeasures is high if this has efficient countermeasures. This happens because efficient
countermeasures are usually maintained due to the security awareness of a user, which
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usually remain unchanged through time. Similarly, if a device does not have efficient
countermeasures, the probability of having efficient countermeasures is low. Therefore, the
CPD associated with the future target is shown in Table 7.

Table 7. CPDs of the target (on the left) and efficient countermeasures (on the right).

X2(i, t) x21 x22
x21 1 0
x22 0 1

X3(i, t) x31 x32
x31 0.95 0.05
x32 0.05 0.95

The CPD of the future state can be divided into 12 tables:

1. The first table considers that there are no infectious devices around and the node is
susceptible (X4(i, t) = 0 and X1(i, t) = ‘susceptible’). If there are no infectious devices,
a node cannot be infected. Then, the node must stay in the same state. An example of
CPD is shown in Table 8.

2. The second table considers that there are no infectious devices in contact with the
node and the node is infectious (X4(i, t) = 0 and X1(i, t) = ‘infectious’). In this table,
it is considered that there is a probability to stay in the same state, a probability to
be damaged (if the node is a target), and a probability to be recovered. Moreover,
it is considered that there is a higher probability to recover if the node has efficient
countermeasures. An example of CPD is the Table 8.

Table 8. CPDs of the future state without infectious devices and with the initial states: susceptible
(on the left) and infectious (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 1 1 1 1
x12 0 0 0 0
x13 0 0 0 0
x14 0 0 0 0

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0.2 0.3 0.5 0.7
x13 0.6 0.6 0 0
x14 0.2 0.1 0.5 0.3

3. The third table takes into account that there are no infectious devices around the node
and the node has a damaged state (X4(i, t) = 0 and X1(i, t) = ‘damaged’). Therefore,
there is a probability to stay in the damaged state and a probability to turn into a
recovered device. Furthermore, because it is considered that only targets can be
damaged, the probabilities of the devices that are no targets are erased. An example
of CPD is shown in Table 9.

4. The fourth table keeps in mind that there are no infectious devices around, and the
node is a recovered device (X4(i, t) = 0 and X1(i, t) = ‘recovered’). Then, the node
must stay in the same state due to the flow diagram shown in Figure 1. An example
of this table is shown in Table 9.
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Table 9. CPDs of the future state without infectious devices and with the initial states: damaged (on
the left) and recovered (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 - -
x12 0 0 - -
x13 0.4 0.5 - -
x14 0.6 0.5 - -

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0 0 0 0
x13 0 0 0 0
x14 1 1 1 1

5. The fifth table takes into account that there are between one and four infectious devices
around and the node is susceptible (X4(i, t) ∈ {1, 2, 3, 4} and X1(i, t) = ‘susceptible’).
Then, there is a probability to be infected and a probability to remain in the same state.
If a node has efficient countermeasures, it is more difficult to turn into an infectious
device. An instance of CPD is shown in Table 10.

6. The sixth table considers that there are between one and four infectious devices and
the node is infectious (X4(i, t) ∈ {1, 2, 3, 4} and X1(i, t) = ‘infectious’). Therefore,
probabilities to turn into damaged and recovered devices exist. There is a probability
to remain in the same state too. In this table, the efficient countermeasures are also
kept in mind. An instance of CPD is presented in Table 10.

Table 10. CPDs of the future state with one to four infectious devices and with the initial states:
susceptible (on the left) and infectious (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0.5 0.3 0.5 0.3
x12 0.5 0.7 0.5 0.7
x13 0 0 0 0
x14 0 0 0 0

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0.2 0.3 0.5 0.7
x13 0.6 0.6 0 0
x14 0.2 0.1 0.5 0.3

7. The seventh table considers that there are between one and four infectious devices
in contact and the node is damaged (X4(i, t) ∈ {1, 2, 3, 4} and X1(i, t) = ‘damaged’).
Therefore, a probability to turn into a recovered state exists. There is also a probability
to stay in the same state. The probabilities of the devices that are not targets are erased
because only targets can be damaged. An example of CPD is found in Table 11.

8. The eighth table takes into account that there are between one and four devices in
contact and the node is recovered (X4(i, t) ∈ {1, 2, 3, 4} and X1(i, t) = ‘recovered’).
There is only a probability of 1 to remain in the same state. An example of CPD is
shown in Table 11.



Mathematics 2021, 9, 3097 11 of 16

Table 11. CPDs of the future state with one four infectious devices and with the initial states:
damaged (on the left) and recovered (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 - -
x12 0 0 - -
x13 0.4 0.5 - -
x14 0.6 0.5 - -

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0 0 0 0
x13 0 0 0 0
x14 1 1 1 1

9. The ninth table regards that there are more than four infectious devices and the
node is susceptible (X4(i, t) > 4 and X1(i, t) = ‘susceptible’). Then there is a higher
probability to turn into an infectious device due to there being a lot of infectious
devices around the node. There are probabilities to remain susceptible too. An
instance of CPD is shown in Table 12.

10. The tenth table considers that there are more than four infectious devices and the node
is infectious (X4(i, t) > 4 and X1(i, t) = ‘infectious’). This table takes into account that
the node can turn into a damaged node (if the node is a target) or a recovered node.
An example of CPD is shown in Table 12.

Table 12. CPDs of the future state with more than four infectious devices and with initial states:
susceptible (on the left) and infectious (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0.3 0.1 0.3 0.1
x12 0.7 0.9 0.7 0.9
x13 0 0 0 0
x14 0 0 0 0

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0.2 0.3 0.5 0.7
x13 0.6 0.6 0 0
x14 0.2 0.1 0.5 0.3

11. The eleventh table considers that more than four infectious devices in contact exists
and the node is damaged (X4(i, t) > 4 and X1(i, t) = ‘damaged’). Then, the node can
turn into a recovered one or remain in the same state. An instance of CPD is shown in
Table 13.

12. Finally, the twelfth table takes into account that there are more than four devices in
contact and the node is recovered (X4(i, t) > 4 and X1(i, t) = ‘recovered’). Therefore,
there is only the probability to stay in the same state. An example of CPD is shown in
Table 13.
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Table 13. CPDs of the future state with more than four infectious devices and with initial states:
damaged (on the left) and recovered (on the right).

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 - -
x12 0 0 - -
x13 0.4 0.5 - -
x14 0.6 0.5 - -

X2(i, t) x21 x22
X3(i, t) x31 x32 x31 x32

x11 0 0 0 0
x12 0 0 0 0
x13 0 0 0 0
x14 1 1 1 1

4.3. Simulation of the Model

An example of malware propagation taking into account the previous CPDs is shown
in Figures 5 and 6. The program GNU Octave was used to perform this simulation.

Figure 5. Malware propagation with damaged devices.

In the simulation of Figure 5, one can see how susceptible devices disappear through
time. Moreover, recovered devices increase through time. According to the infectious
devices, first, these increase and later decrease. Finally, the two targets are damaged.

On the other hand, using the same parameters, we can obtain Figure 6. In this case,
the simulation is similar to the previous simulation. However, in this case, any target is
reached.

In reference to the evolution, this can end up in two ways:

1. All devices are recovered. This happens when all the susceptible devices are infected.
We can observe this in Figure 5.

2. Some devices are recovered and some devices are susceptible. This happens when all
the damaged and infected devices are recovered and some susceptible devices remain.
We can observe this in Figure 6.
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Figure 6. Malware propagation without damaged devices.

After several simulations, we obtained that there is an approximate percentage of
72% to infect a target. This is a high probability, so it would be necessary to change the
characteristics of the nodes (increase security countermeasures) or the characteristics of the
network (networks with different links) to improve security. For example, if considering
more devices with highly efficient security countermeasures (X3(i, t) = “yes”), then it is
harder for the malware to propagate in the network. Another option is to consider more
nodes with fewer neighboring nodes. As a consequence, it is harder to infect these nodes
and the epidemic propagation is lower.

4.4. Effect of the Efficient Security Countermeasures and Number of Neighboring
Infectious Devices

The number of devices with efficient security countermeasures affect malware propa-
gation. In order to show this, we considered three initial conditions:

• All nodes have efficient security countermeasures: all of the devices have some type
of efficient software anti-malware.

• Fifty percent of the nodes have efficient security countermeasures: 9 out of 19 devices
have some type of efficient anti-malware software.

• All nodes do not have efficient security countermeasures: none of the devices have
some type of efficient anti-malware software.

We also considered the average of three characteristics: the sum of the number of
infectious devices during the epidemic (total number of infectious), the number of epochs
until reaching the peak (epoch of the peak), the duration of the infection and the peak of
the infection. After several simulations, we obtained the results shown in Table 14.

Table 14. Effect of the efficient security countermeasures.

All with Software 50% Software Without Software

Total number of infectious 32 38 47.5
Epoch of the peak 3.4 3.5 3.8

Peak of the infection 6.8 8.7 9.8
Duration of the infection 8.4 9.5 11.2
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Therefore, we obtain that the total number of infectious increases when we remove
efficient software of the devices. This can happen because the APT is stealthy and tries to
hide from efficient software. Then, if there is a device with efficient software, it is more
difficult to infect that device. Moreover, the peak is reached between epochs 3 and 4 in all
of the simulations. This implies that the speed of the propagation decreases when all of
the devices have efficient software due to the peak being slower. However, if we consider
the duration of the infection, we can deduce that the recuperation is faster when all of the
devices have efficient software.

In previous simulations, it is defined that the boundary γ1 for the number of infectious
nodes in contact with a device is 4. If we consider different values of γ1, we can observe
that this parameter also affects the model propagation. Considering 50% of devices having
efficient software anti-malware, we obtain Figure 7.

2 nodes 3 nodes 4 nodes
0

10

20

30

40

Total number of infectious

Figure 7. Total number of infectious devices with different values of γ1.

Then, if the boundary is smaller, the total number of infectious devices in the epidemic
is bigger.

5. Conclusions

In this work, a new type of model that simulates malware propagation was created.
This model is based on dynamic Bayesian networks and simulates the malware used in
APTs. Moreover, considered individual characteristics were considered to define the model,
such as efficient countermeasures, epidemiological states, the number of infectious nodes
in contact with a node, and being a target.

Under certain characteristics, this type of malware can damage the target devices of
our network. With this model, we can calculate the probability of damaging target devices
in a network. If there is high probability, the network of devices is not safe. Then, we can
improve the efficient countermeasures or change the links of the network to avoid malware
damaging the targets. For example, instead of considering that 50% of devices have high
efficient countermeasures, we can consider higher percentages, or we can consider fewer
links between the devices.

Moreover, this model can be applied to a concrete network. Keeping this in mind
this, it would be interesting to study different networks in this model and observe how
the networks affect malware propagation. We can take into account other measures
instead of the number of infectious that are in contact with a node, such as centrality
measures. Moreover, Bayesian networks are a type of machine learning technique. Due to
the development of deep learning techniques, it would be intriguing to use these techniques
to calculate the parameters of the model and simulate malware propagation. Some of these
ideas will be studied in the future.



Mathematics 2021, 9, 3097 15 of 16

Author Contributions: Conceptualization, J.D.H.G.; methodology, J.D.H.G., A.M.d.R. and R.C.-V.;
software, J.D.H.G.; writing—original draft preparation, J.D.H.G., and A.M.d.R.; writing—review and
editing, J.D.H.G., A.M.d.R. and R.C.-V. All authors have read and agreed to the published version of
the manuscript.

Funding: J.D. Hernández Guillén is supported by Banco Santander and Universidad de Salamanca
(Spain) under a postdoctoral grant.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Li, J.H. Overview of Cyber Security Threats and Defense Technologies for Energy Critical Infrastructure. J. Electron. Inf. Technol.

2020, 42, 2065–2081.
2. Bhamare, D.; Zolanvari, M.; Erbad, A.; Jain, R.; Khan, K.; Meskin, N. Cybersecurity for industrial control systems: A survey.

Comput. Secur. 2020, 89, 101677. [CrossRef]
3. NIST. Information Security. Special Publication 800–39. 2011. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-39.pdf (accessed on 22 October 2021).
4. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A survey on advanced persistent threats: Techniques, solutions, challenges,

and research opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]
5. Lemay, A.; Calvet, J.; Menet, F.; Fernandez, J.M. Survey of publicly available reports on advanced persistent threat actors. Comput.

Secur. 2018, 72, 26–59. [CrossRef]
6. Chen, P.; Desmet, L.; Huygens, C. A study on advanced persistent threats. In IFIP International Conference on Communications and

Multimedia Security; Springer: Berlin/Heidelberg, Germany, 2014; pp. 63–72.
7. Chakkaravarthy, S.S.; Sangeetha, D.; Vaidehi, V. A survey on malware analysis and mitigation techniques. Comput. Sci. Rev. 2019,

32, 1–23. [CrossRef]
8. Fu, Y.; Li, H.; Wu, X.; Wang, J. Detecting APT attacks: A survey from the perspective of big data analysis. J. Commun. 2015, 36,

1–14.
9. Moon, D.; Im, H.; Kim, I.; Park, J.H. DTB-IDS: An intrusion detection system based on decision tree using behavior analysis for

preventing APT attacks. J. Supercomput. 2017, 73, 2881–2895. [CrossRef]
10. Lu, J.; Chen, K.; Zhuo, Z.; Zhang, X. A temporal correlation and traffic analysis approach for APT attacks detection. Clust. Comput.

2019, 22, 7347–7358. [CrossRef]
11. Hosseini, S.; Azgomi, M.A. The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks. Physica A

2018, 512, 803–817. [CrossRef]
12. Kudo, T.; Kimura, T.; Inoue, Y.; Aman, H.; Hirata, K. Stochastic modeling of self-evolving botnets with vulnerability discovery.

Comput. Commun. 2018, 124, 101–110. [CrossRef]
13. Xiao, X.; Fu, P.; Li, Q.; Hu, G.; Jiang, Y. Modeling and validation of SMS worm propagation over social networks. J. Comput. Sci.

2017, 21, 132–139. [CrossRef]
14. Hernández, J.; del Rey, A.; Casado-Vara, R. Security Countermeasures of a SCIRAS Model for Advanced Malware Propagation.

IEEE Access 2019, 7, 135472–135478. [CrossRef]
15. Hernández, J.; del Rey, A. Modeling malware propagation using a carrier compartment. Commun. Nonlinear Sci. Numer. Simul.

2018, 56, 217–226. [CrossRef]
16. Piqueira, J.R.C.; Batistela, C.M. Considering quarantine in the SIRA malware propagation model. Math. Probl. Eng. 2019, 2019,

6467104. [CrossRef]
17. Hosseini, S.; Azgomi, M. A model for malware propagation in scale-free networks based on rumor spreading process. Comput.

Networks 2016, 108, 97–107. [CrossRef]
18. Huang, S. Global dynamics of a network-based WSIS model for mobile malware propagation over complex networks. Physica A

2018, 503, 293–303. [CrossRef]
19. Martín, A.; Hernández, G.; Tabernero, A.B.; Queiruga, A. Advanced malware propagation on random complex networks.

Neurocomputing 2021, 423, 689–696. [CrossRef]
20. Zimba, A.; Chen, H.; Wang, Z.; Chishimba, M. Modeling and detection of the multi-stages of advanced persistent threats attacks

based on semi-supervised learning and complex networks characteristics. Future Gener. Comput. Syst. 2020, 106, 501–517.
[CrossRef]

21. Zhou, P.; Gu, X.; Nepal, S.; Zhou, J. Modeling social worm propagation for advanced persistent threats. Comput. Secur. 2021, 108,
102321. [CrossRef]

22. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
23. Cai, B.; Huang, L.; Xie, M. Bayesian networks in fault diagnosis. IEEE Trans. Ind. Inform. 2017, 13, 2227–2240. [CrossRef]
24. Varshney, D.; Kumar, S.; Gupta, V. Predicting information diffusion probabilities in social networks: A Bayesian networks based

approach. Knowl.-Based Syst. 2017, 133, 66–76. [CrossRef]

http://doi.org/10.1016/j.cose.2019.101677
https:// nvlpubs.nist.gov/ nistpubs/Legacy/SP/ nistspecialpublication800-39.pdf
https:// nvlpubs.nist.gov/ nistpubs/Legacy/SP/ nistspecialpublication800-39.pdf
http://dx.doi.org/10.1109/COMST.2019.2891891
http://dx.doi.org/10.1016/j.cose.2017.08.005
http://dx.doi.org/10.1016/j.cosrev.2019.01.002
http://dx.doi.org/10.1007/s11227-015-1604-8
http://dx.doi.org/10.1007/s10586-017-1256-y
http://dx.doi.org/10.1016/j.physa.2018.08.081
http://dx.doi.org/10.1016/j.comcom.2018.04.010
http://dx.doi.org/10.1016/j.jocs.2017.05.011
http://dx.doi.org/10.1109/ACCESS.2019.2942809
http://dx.doi.org/10.1016/j.cnsns.2017.08.011
http://dx.doi.org/10.1155/2019/6467104
http://dx.doi.org/10.1016/j.comnet.2016.08.010
http://dx.doi.org/10.1016/j.physa.2018.02.117
http://dx.doi.org/10.1016/j.neucom.2020.03.115
http://dx.doi.org/10.1016/j.future.2020.01.032
http://dx.doi.org/10.1016/j.cose.2021.102321
http://dx.doi.org/10.1109/TII.2017.2695583
http://dx.doi.org/10.1016/j.knosys.2017.07.003


Mathematics 2021, 9, 3097 16 of 16

25. Kondakci, S. Epidemic state analysis of computers under malware attacks. Simul. Model. Pract. Theory 2008, 16, 571–584.
[CrossRef]

26. Zimba, A.; Chen, H.; Wang, Z. Bayesian network based weighted APT attack paths modeling in cloud computing. Future Gener.
Comput. Syst. 2019, 96, 525–537. [CrossRef]

27. Koch, D.; Eisinger, R.S.; Gebharter, A. A causal Bayesian network model of disease progression mechanisms in chronic myeloid
leukemia. J. Theor. Biol. 2017, 433, 94–105. [CrossRef]

28. Jiang, X.; Wallstrom, G.; Cooper, G.F.; Wagner, M.M. Bayesian prediction of an epidemic curve. J. Biomed. Inform. 2009, 42, 90–99.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.simpat.2008.02.011
http://dx.doi.org/10.1016/j.future.2019.02.045
http://dx.doi.org/10.1016/j.jtbi.2017.08.023
http://dx.doi.org/10.1016/j.jbi.2008.05.013
http://www.ncbi.nlm.nih.gov/pubmed/18593605

	Introduction
	Mathematical Preliminaries of the Model
	Structure of the Model
	Characteristics of Each Node/Device
	Propagation of the Malware

	Illustrative Example of Malware Propagation
	Initial Conditions
	Determination of the CPDs
	Simulation of the Model
	Effect of the Efficient Security Countermeasures and Number of Neighboring Infectious Devices

	Conclusions
	References

