
mathematics

Article

A Novel Trading Strategy Framework Based on Reinforcement
Deep Learning for Financial Market Predictions

Li-Chen Cheng 1, Yu-Hsiang Huang 2 , Ming-Hua Hsieh 3 and Mu-En Wu 1,*

����������
�������

Citation: Cheng, L.-C.; Huang, Y.-H.;

Hsieh, M.-H.; Wu, M.-E. A Novel

Trading Strategy Framework Based

on Reinforcement Deep Learning for

Financial Market Predictions.

Mathematics 2021, 9, 3094. https://

doi.org/10.3390/math9233094

Academic Editor: Juan

Antonio Morente Molinera

Received: 13 October 2021

Accepted: 28 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Finance Management, National Taipei University of Technology,
Taipei 106, Taiwan; jessicacheng@ntut.edu.tw

2 Department of Computer Science and Information Management, Soochow University, Taipei 100, Taiwan;
ECRV456789@gmail.com

3 Department of Risk Management and Insurance, National Chengchi University, Taipei 116, Taiwan;
mhsieh@nccu.edu.tw

* Correspondence: mnasia1@gmail.com

Abstract: The prediction of stocks is complicated by the dynamic, complex, and chaotic environment
of the stock market. Investors put their money into the financial market, hoping to maximize profits
by understanding market trends and designing trading strategies at the entry and exit points. Most
studies propose machine learning models to predict stock prices. However, constructing trading
strategies is helpful for traders to avoid making mistakes and losing money. We propose an automatic
trading framework using LSTM combined with deep Q-learning to determine the trading signal and
the size of the trading position. This is more sophisticated than traditional price prediction models.
This study used price data from the Taiwan stock market, including daily opening price, closing
price, highest price, lowest price, and trading volume. The profitability of the system was evaluated
using a combination of different states of different stocks. The profitability of the proposed system
was positive after a long period of testing, which means that the system performed well in predicting
the rise and fall of stocks.

Keywords: machine learning; stock trading; decision making; deep learning; reinforcement learning

1. Introduction

Market forces cause stock prices to change every day. Influencing the stock market
are uncertain factors caused most notably by political issues and the government. Such
uncertainty complicates the determination of appropriate trading strategies for selling
or buying stock. Stock market analysis includes portfolio optimization [1], investment
strategy determination [2], and market risk analysis [3]. Stock price trend prediction has
attracted researchers and participants from various disciplines, such as economics, financial
engineering, statistics, operations research, and machine learning [4–6].

Traditional studies have proposed algorithms to predict stock trends based on ma-
chine learning techniques, such as artificial neural networks (ANNs) and support vector
machines (SVMs) [5–8]. Recently, scholars have begun to adopt well-known deep learning
techniques, such as recurrent neural networks (RNNs) and long short-term memory (LSTM)
networks [9,10], for stock price prediction. Designing a profitable stock trading strategy is a
challenging issue in financial market research, as financial time series data is highly volatile
and noisy. Traditional traders must analyze large amounts of data to decide whether to
place empty orders, multiple orders, or no transactions. In addition, after deciding to make
a single order, to maximize profits, they must decide the size of the transaction. Recently,
some researchers have proposed trading algorithms to maximize profits [3].

Reinforcement learning and Q-learning are machine learning algorithms for automat-
ing goal-directed learning and decision making [11]. Moody and Saffell [12] optimized
portfolios and trading stocks using direct reinforcement learning. Using reinforcement

Mathematics 2021, 9, 3094. https://doi.org/10.3390/math9233094 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4013-0865
https://orcid.org/0000-0002-4839-3849
https://doi.org/10.3390/math9233094
https://doi.org/10.3390/math9233094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233094
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233094?type=check_update&version=2

Mathematics 2021, 9, 3094 2 of 16

learning, Deepmind learned to play seven Atari video games, even achieving human-
expert level on three of them. The system later achieved a human-expert level in over
20 different Atari games [13]. AlphaGo, that combines neural networks and reinforcement
learning, beat the best Go player in the world, boosting the popularity of reinforcement
learning applied in deep learning as a topic of research.

In this study, we propose a novel automatic trading system which combines deep
learning and reinforcement learning to determine the trading signal and the size of the
trading position. The system is constructed from an LSTM network combined with deep
Q-learning, which is an off-policy reinforcement learning algorithm that seeks to find the
best action to take given the current state. It is considered off-policy because the Q-learning
function learns from actions that are outside the current policy, such as random actions,
and therefore no policy is needed. More specifically, Q-learning seeks to learn a policy
that maximizes the total reward. Our system is based on the deep Q-network [14]. We
verify this system with five different financial products and three different states. The
paper is organized as follows. In Section 2, we review related work, and in Section 3 we
introduce our methodology. Our experimental data and results are presented in Section 4.
We conclude in Section 5.

2. Literature Review

Stock market prediction had been proposed by many researchers using several ma-
chine learning techniques [15–19]. Recently, deep learning models have been a popular
research issue [20–22] and we briefly discuss previous applications of deep learning to
financial trading. Ding et al. [23] proposed a deep convolutional neural network using
event embedding which combined the influence of long-term events and short-term events
to predict stock prices. Their events included stock price changes over months, weeks,
and days. They demonstrated that combining event embedding with deep convolutional
networks is useful for stock price prediction.

Akita et al. [24] built an LSTM model using textual and numerical information to
predict ten company’s closing stock prices. The experimental results showed that com-
bining textual and numerical information was better than methods that use only textual
data or only numerical data. Nelson, Pereira, and de Oliveira [25] proposed a model
based on LSTM using five historic price measures (open, close, low, high, and volume) and
175 technical indicators to predict stock price movement.

Liu et al. [26] predicted stock price movements using a novel end-to-end attention-
based event model. They proposed the ATT-ERNN model to exploit implicit correlations
between world events, including the effect of event counts and short-term, medium-term,
and long-term influence, as well as the movement of stock prices. Qin [27] forecasted time
series using a novel dual-stage attention-based recurrent neural network (DA-RNN) which
consisted of an encoder with an input attention mechanism and a decoder with a temporal
attention mechanism.

Fischer and Krauss [9] applied an LSTM model to a large-scale financial market
prediction task on S&P 500 data from December 1992 to October 2015. They showed that the
LSTM model outperformed standard deep net and traditional machine learning methods.
Zhao et al. [28] captured market dynamics from multimodal information (fundamental
indicators, technical indicators, and market structure) for stock return prediction by using
an end-to-end market-aware system. Their market awareness system led to reduced error,
and temporal awareness across stacks of market images led to further error reductions.

In reinforcement learning (RL), the model learns to map situations to actions to
maximize the reward [29]. The RL agent is not instructed explicitly about how to improve
its learning [14]; instead, the agent only observes state information from its environment.
The agent then learns by itself to select actions given this state and the reward obtained.

A reinforcement learning system includes a policy, a reward, a value function, and
an environment. At each time step t = 0, 1, 2, 3, . . . , the agent and environment interact
with each other; the agent observes st ∈ S, where S is the set of possible states from the

Mathematics 2021, 9, 3094 3 of 16

environment, and then selects an action, at ∈ A(st), where A(st) is the set of actions that
may be executed in state st. In the next time step, the agent receives a reward, rt + 1 ∈ <,
and observes a new state, st + 1. The agent’s policy is its mapping from states to actions
at each time step. A policy is denoted πt, where πt (s, a) is the probability that at = a if
st = s. Reinforcement learning is how the agent improves its policy given its experience.
The agent’s goal is the maximum reward over the long term.

Moody and Saffell [12] introduced recurrent reinforcement learning (RRL), a direct
reinforcement approach that outperformed a Q-learning implementation. Their RRL trader
uses a one-layer NN to maximize a function of risk-adjusted profit, which takes as input the
past eight returns and its previous output. The trader was tested on USD/GBP currency
pair data, half-hourly from January 1996 to August 1996, achieving an annualized profit of
15%. Gold [30] further tested RRL on other currency markets with half-hourly data for the
entire year of 1996, achieving a varied profit from−82.1% to 49.3%, with an average of 4.2%
over ten different currency pairs. Duerson et al. [31] used two techniques based on recurrent
reinforcement learning (RLL) and two based on Q-learning for the problem of investment
strategy determination. They combined reinforcement learning and a trading system.
Traditionally, stock prediction and transactions are separated into independent systems as
forecaster and trader systems. They demonstrated strong performance for the Q-learning
approach: on some data series, the results were twice as good as the buy-and-hold strategy.
Nevmyvaka et al. [32] reported on the first extensive empirical application of reinforcement
learning (RL) to the problem of optimized execution using large-scale NASDAQ market
microstructure datasets. They used historical INET records and conducted experiments on
three stocks—Amazon (AMZN), Qualcomm (QCOM), and NVIDIA (NVDA)—showing
that RL beat the submit and leave (S&L) policy, which was already an improvement over a
simple market order.

Dempster and Leemans [33] used adaptive reinforcement learning (ARL) on the
currency market. In their system, they added a risk management layer and a dynamic
hyper-parameter optimization layer. They tested the system on two years of EUR/USD
historical data, from January 2000 to January 2002, with 1-min granularity, achieving
an average 26% annual return. Lee et al. [34] proposed a new stock trading system
based on reinforcement learning. MQ-trader, the proposed framework, consists of four
cooperative Q-learning agents: buy and sell signal agents, which use global trend prediction
to determine when to buy or sell stock shares, and buy and sell order agents, which decide
the best buy price (BP) and sell price (SP) to execute intraday orders. Lee applied the
four-agent approach to KOSPI 200, which includes 200 major Korean stocks. When using
stock data from the Korean stock market, they found that their systems yielded better
performance than other baseline systems.

Cumming et al. [35] introduced an RL trading algorithm based on least-squares
temporal difference (LSTD). Their state signal consisted of the open, highest, lowest, and
close prices (bid only) from the last 8 periods, where each period covers a minute. The
reward was defined as the profit from each transaction. In experiments, their method
achieved a 1.64% annualized profit on the EUR/USD pair market. Deep reinforcement
learning methods combined with different trading strategies have become popular [36,37]
and been evaluated for their robustness and effectiveness on different countries’ stock
markets. The proposed three-layered multi-ensemble approach performed better than
a conventional buy-and-hold strategy [38]. The three layer-stock framework, including
a stacking layer, reinforcement meta learner, and ensembling layer, was evaluated with
the experimental dataset containing S&P500, J.P. Morgan and Microsoft stocks between
1 January 2012 and 31 December 2019. The proposed ensemble method led to better trading
results and less overfitting. The final return was better than the benchmark. Recently, a
novel multi-agent deep reinforcement learning approach for stock trading was proposed
and evaluated with an S&P500 dataset using walk-forward methodology. The experiment
results showed that the multi-agent deep reinforcement learning approach performed

Mathematics 2021, 9, 3094 4 of 16

better than a conventional buy-and-hold strategy [39]. This study will use this method as
the base line.

3. Methodology

Reinforcement learning (RL) is learning what to do, i.e., how to map situations to
actions, to maximize a numerical reward signal. Unlike supervised learning, the RL agent
never receives examples of correct or incorrect performance to boost learning [24]. Instead,
the agent is only provided with state information from its environment. The agent then
learns to act through state. It learns what action is the best from rewards obtained for
trying different actions by itself. The agent’s only goal is to maximize the rewards it gets.

We propose a framework to determine trading signals to maximize the total profit de-
pending on the Q-value at each moment. In our framework, we modify the deep Q-learning
algorithm on the stock market proposed by Mnih [24]. They combined deep neural net-
works and Q-learning to master difficult control policies for Atari 2600 computer games.

Figure 1 shows our proposed framework. A reinforcement learning system includes
four main elements: a policy, a reward signal, a value function, and, optionally, a model
of the environment. More specifically, the agent and environment interact at each of a
sequence of discrete time steps, t = 0, 1, 2, 3, . . . At each time step t, the agent receives some
representation of the environment’s state, st ∈ S where S is the set of possible states, and on
that basis selects an action, at ∈ A(st), where A(st) is the set of actions available in state st.
One time step later, in part as a result of its action, the agent receives a numerical reward,
rt+1 ∈ <, and finds itself in a new state, st+1. At each time step, the agent implements a
mapping from states to probabilities of selecting each possible action. This mapping is
called the agent’s policy and is denoted πt where πt (s, a) is the probability that at = a if
st = s. Reinforcement learning methods specify how the agent changes its policy as a result
of its experience. The agent’s goal, broadly speaking, is to maximize the total amount of
reward it receives over the long run.

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17

an S&P500 dataset using walk-forward methodology. The experiment results showed that
the multi-agent deep reinforcement learning approach performed better than a conven-
tional buy-and-hold strategy [39]. This study will use this method as the base line.

3. Methodology
Reinforcement learning (RL) is learning what to do, i.e., how to map situations to

actions, to maximize a numerical reward signal. Unlike supervised learning, the RL agent
never receives examples of correct or incorrect performance to boost learning [24]. Instead,
the agent is only provided with state information from its environment. The agent then
learns to act through state. It learns what action is the best from rewards obtained for
trying different actions by itself. The agent’s only goal is to maximize the rewards it gets.

We propose a framework to determine trading signals to maximize the total profit
depending on the Q-value at each moment. In our framework, we modify the deep Q-
learning algorithm on the stock market proposed by Mnih [24]. They combined deep neu-
ral networks and Q-learning to master difficult control policies for Atari 2600 computer
games.

Figure 1 shows our proposed framework. A reinforcement learning system includes
four main elements: a policy, a reward signal, a value function, and, optionally, a model
of the environment. More specifically, the agent and environment interact at each of a
sequence of discrete time steps, t = 0, 1, 2, 3, … At each time step t, the agent receives some
representation of the environment’s state, st ∈ S where S is the set of possible states, and
on that basis selects an action, at ∈ A(st), where A(st) is the set of actions available in state
st. One time step later, in part as a result of its action, the agent receives a numerical re-
ward, rt + 1 ∈ ℜ, and finds itself in a new state, st+1. At each time step, the agent implements
a mapping from states to probabilities of selecting each possible action. This mapping is
called the agent’s policy and is denoted πt where πt (s, a) is the probability that at = a if st =
s. Reinforcement learning methods specify how the agent changes its policy as a result of
its experience. The agent’s goal, broadly speaking, is to maximize the total amount of re-
ward it receives over the long run.

At each moment, the agent observes the state from the environment and then decides
what action to take using the deep Q-network. After taking an action, the agent receives a
reward. Detailed definitions of the states, actions, and reward of each agent and the deep
Q-network are provided in the following sections.

Figure 1. Proposed system.

3.1. State Signal
Consider the stocks in time interval [1, … , ܶ]. Denote ܱ ௧ܲ,	ܪ ௧ܲ,	ܮ ௧ܲ,	ܥ ௧ܲ, ܸܱ௧ as the

open price, highest price, lowest price, close price, and volume of stock at time ݐ, respec-
tively. Note that the time interval between ݐ − 1 and ݐ represents one day, one week, or

Figure 1. Proposed system.

At each moment, the agent observes the state from the environment and then decides
what action to take using the deep Q-network. After taking an action, the agent receives a
reward. Detailed definitions of the states, actions, and reward of each agent and the deep
Q-network are provided in the following sections.

3.1. State Signal

Consider the stocks in time interval [1, . . . , T]. Denote OPt, HPt, LPt, CPt, VOt as
the open price, highest price, lowest price, close price, and volume of stock at time t,
respectively. Note that the time interval between t− 1 and t represents one day, one week,
or one month. In this paper, we consider the gross returns of these five features as the input

Mathematics 2021, 9, 3094 5 of 16

of Q-learning. The symbols of gross returns are defined as Ot =
OPt−OPt−1

OPt−1
, Ht =

HPt−HPt−1
HPt−1

,

Ct =
CPt−CPt−1

CPt−1
, Lt =

LPt−LPt−1
LPt−1

, Vt =
VOt−VOt−1

VOt−1
, respectively.

Let

S = {S1,5, S1,10, S1,20, S2,5, S2,10, S2,20, . . . , St,5, St,10, St,20, . . . , ST,5, ST,10, ST,20}

be the collection of state signals, where St,5, St,10, and St,20 represent.

St,5 =


Ot−4, Ht−4, Lt−4, Ct−4, Vt−4
Ot−3, Ht−3, Lt−3, Ct−3, Vt−3
Ot−2, Ht−2, Lt−2, Ct−2, Vt−2
Ot−1, Ht−1, Lt−1, Ct−1, Vt−1

Ot, Ht, Lt, Ct, Vt

, St,10 =



Ot−9, Ht−9, Lt−9, Ct−9, Vt−9
Ot−8, Ht−8, Lt−8, Ct−8, Vt−8

. . .

. . .
Ot−1, Ht−1, Lt−1, Ct−1, Vt−1

Ot, Ht, Lt, Ct, Vt

,

and St,20 =


Ot−19, Ht−19, Lt−19, Ct−19, Vt−19
Ot−18, Ht−18, Lt−18, Ct−18, Vt−18

. . .
Ot−1, Ht−1, Lt−1, Ct−1, Vt−1

Ot, Ht, Lt, Ct, Vt

, respectively.

The main components of the state signal St ∈ S, where S is a set of states {s1, s2, s3, . . . },
are features extracted from market data, including open price, highest price, close price,
lowest price, and volume. Each state St includes k ∈ {5, 10, 20} days of stock data. Each
feature is normalized to the range [−1, 1]:

St = [[Ot−k+1, Ht−k+1, Ct−k+1, Lt−k+1, Vt−k+1],.... (1)

[Ot−2, Ht−2, Ct−2, Lt−2, Vt−2], [Ot−1, Ht−1, Ct−1, Lt−1, Vt−1], [Ot, Ht, Ct, Lt, Vt]] (2)

where
Ot =

OPt −OPt−1

OPt−1
, Ht =

HPt − HPt−1

HPt−1
, Ct =

CPt − CPt−1

CPt−1
, (3)

Lt =
LPt − LPt−1

LPt−1
, Vt =

VOt −VOt−1

VOt−1
, (4)

where OPt is the open price at time t, HPt is the highest price at time t, CPt is the close price
at time t, Lt is the lowest price at time t, and Vt is the volume at time t.

3.2. Trading Strategy

There are five actions, denoted as Act = {aLL, aLS, aSit, aSS, aSL} for agents in the
proposed model. These actions represent long large size (aLL), long small size (aLS), sit
(aSit), short small size (aSS), and short large size (aSL), respectively. The input of our training
model at time t is the state St,k ∈ S. According to the state St,k the model determines the
one action in Act at time t.

The proposed agent can take only five different actions: long large size, long small
size, sit, short small size, and short large size. The action signal can be simplified to
A(s) = [aLL, aLS, aSit, aSS, aSL] ∀s ∈ S, where [aLL, aLS, aSit, aSS, aSL] are interpreted by the
environment as desired in Table 1. If the action signal is a0 or a1, we open a long position.
If the action signal is a2, we do nothing (sit). If the action signal is a3 or a4, we open a
short position.

Our trading strategy is long (short) stock at the moment before the market closes and
clean the position at the moment the market opens on the next day. For example, if we
long the stock with closed price CPt on day t, we clean (short) the stock the next day at
the price OPt. The profit and loss on day t is calculated as CPt+1 −OPt. In this study, we
represent the five actions about the positions with different sizes, where aLL represents two
long units of stock, aLS represents one long unit of stock, aSit represents do nothing, aSS
represents one short unit of stock, and aSL represents two short units of stock.

Mathematics 2021, 9, 3094 6 of 16

Table 1. Interpretation of each action.

Signal Action Size Reward

aLL Long Large (2 units) 2 ∗ (OPt+1 − CPt)
aLS Long Small (1 unit) 1 ∗ (OPt+1 − CPt)
aSit Sit 0 0
aSS Short Small (1 units) 1 ∗ (CPt −OPt+1)
aSS Short Large (2 units) 2 ∗ (CPt −OPt+1)

Our trading strategy is day trading within two days. We open the position with
trading price Ct, closed price at time t, and then close the position at time t + 1 with trading
price Ot+1, open price at time t + 1. We observe k ∈ {5, 10, 20} days of open price, highest
price, close price, lowest price, and volume and then decide to open a long position or open
a short position at time t. Further, we close the position at time t + 1. In addition to the
trading signal, our deep Q-network also determines the position size, that is, either small or
large. In other words, the agent decides what action to take using the deep Q-network after
knowing the state and then executes the transaction at time t. The environment returns a
reward at time t + 1.

In the classical Q learning approach, we must give the state and action as an input
resulting in a Q value for that state and action. Replicating this approach in neural networks
is problematic as one must give the model the state and action for each possible action
of the agent, leading to many forward passes in the same model. Instead, the model is
designed in such a way that it predicts Q values for each action for a given state. As a
result, only one forward pass is required. The implementation of DQN for our model is
similar to the Q learning method. To start, instead of initializing the Q matrix, the model
is initialized. In the ε greedy policy, instead of choosing the action based on policy π,
Q values are calculated according to the model. At the end of every episode, the model is
trained using random mini batches of experience.

The core of the framework is a deep neural network, schematically depicted in Figure 2.
This network is tasked with computing the action value for the market environment. The
input layer has a number of neurons defined by the elements in our state signal, which
includes k ∈ {5,10,20} [6] days of normalized open price, highest price, close price, lowest
price, and volume. This input layer is followed by five hidden layers.

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 17

Figure 2. Schematic of proposed system’s Q-network.

4. Experiment
We collected two different types of financial data to verify the proposed system. Data

descriptions are shown in Table 2. These six financial products can have different patterns
during the same period. The accumulated profit of these products are shown in Figures
3–8. Code 0050 and TSMC have the same pattern because 0050 holds 18.78% of TSMC
stock. Although 1101 does not show an increasing or decreasing trend, it is more volatile
than 0050 and TSMC.

Codes 00655L and 00672L are leveraged ETFs, which is a security that seeks to mul-
tiply or invert the daily return of financial derivatives or debts. Code 00655L tracks the
twice-daily performance of the FTSE China A50 index, and 00672L tracks the performance
of the S&P GSCI Crude Oil 2× Leveraged Index ER.

We chose 0050 because the fund’s constituents are selected from the top 50 listed
stocks on the Taiwan Stock Exchange by market weight, including 1101, 2330 and 2881.
We also chose 00655L and 00672L because leveraged ETFs have high volatility

Table 2. Data descriptions.

Code Name Type Highest
Price

Lowest
Price

Period

0050 Yuanta/P-shares Taiwan Top 50 ETF ETF 90 50 January 2016–December
2018

1101 Taiwan Cement Corp Stock 47 25 January 2016–December
2018

2330 TSMC Stock 265 130 January 2016–December
2018

2881 Fubon Financial Holding Co, Ltd. Stock 43 18 January 2016–December
2018

00655L Cathay FTSE China A50 Daily Leveraged
2× ETF

ETF 48 20 March 2016–December
2018

00672L Yuanta S&P GSCI Crude Oil 2× Leveraged
ER Futures ETF

ETF 35 21 October 2016–December
2018

4.1. Results and Discussion
Our results are presented in two stages. First, we compared the performance of the

LSTM network with the deep neural network and the RNN network, and then we chose
the best-performing network to construct the proposed framework. Second, we conducted

Figure 2. Schematic of proposed system’s Q-network.

The first hidden layer is a long short-term memory (LSTM) layer. LSTM is chosen
because it is one of the most advanced deep learning architectures for financial tasks

Mathematics 2021, 9, 3094 7 of 16

(Fischer & C. Krauss, 2018). The remaining hidden layers are fully connected deep neural
network (DNN) layers.

The output layer has five neurons to represent action values (QaLL(S), QaLs(S), QaSit(S),
QaSS(S), QaSL(S)), where QaLL(S) represents the prediction Q-value based on state and ac-
tion aLL, QaLs(S) that for state and action aLs, QaSit(S) that for state and action aSit, QaSS(S)
that for state and action aSS, and QaSL(S) that for state and action aSL.

We choose the maximize action value as our action. The deep Q-network is initialized
with a random set. As the network interacts with the market environment in a training
process, it collects and stores state, action, and reward in memory. After a fixed period, we
update the deep Q-network using the mean squared error (MSE) between the reward and
action value received from the neural network.

4. Experiment

We collected two different types of financial data to verify the proposed system. Data
descriptions are shown in Table 2. These six financial products can have different patterns
during the same period. The accumulated profit of these products are shown in Figures 3–8.
Code 0050 and TSMC have the same pattern because 0050 holds 18.78% of TSMC stock.
Although 1101 does not show an increasing or decreasing trend, it is more volatile than
0050 and TSMC.

Table 2. Data descriptions.

Code Name Type Highest Price Lowest Price Period

0050 Yuanta/P-shares Taiwan Top 50 ETF ETF 90 50 January 2016–December 2018

1101 Taiwan Cement Corp Stock 47 25 January 2016–December 2018

2330 TSMC Stock 265 130 January 2016–December 2018

2881 Fubon Financial Holding Co, Ltd. Stock 43 18 January 2016–December 2018

00655L Cathay FTSE China A50 Daily
Leveraged 2× ETF ETF 48 20 March 2016–December 2018

00672L Yuanta S&P GSCI Crude Oil
2× Leveraged ER Futures ETF ETF 35 21 October 2016–December 2018

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 17

Figure 3. Accumulated profit of 0050.

In Figure 4, the results show that 5-day, 10-day and 20-daysstates yielded positive
profit. Training the model with 10 days of OHCLV on 1101 yielded the best performance.
In addition, the model suffered a large loss in June 2018.

Figure 4. Accumulated profit of 1101.

In Figure 5, the results show that all three states yielded positive profits over time.
Training the model with 10 days of OHCLV on 2330 yielded the best performance.

Figure 3. Accumulated profit of 0050.

Mathematics 2021, 9, 3094 8 of 16

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 17

Figure 3. Accumulated profit of 0050.

In Figure 4, the results show that 5-day, 10-day and 20-daysstates yielded positive
profit. Training the model with 10 days of OHCLV on 1101 yielded the best performance.
In addition, the model suffered a large loss in June 2018.

Figure 4. Accumulated profit of 1101.

In Figure 5, the results show that all three states yielded positive profits over time.
Training the model with 10 days of OHCLV on 2330 yielded the best performance.

Figure 4. Accumulated profit of 1101.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 17

Figure 5. Accumulated profit of 2330.

In Figure 6, the results show that 10-day and 20-day states yielded positive profit,
and the 5-day state yielded negative profit. Training the model with 10 and 20 days of
OHCLV on 2881 yielded the best performance. The model for the 5-day state suffered a
large loss in November 2016.

.

Figure 6. Accumulated profit of 2881.

In Figures 7 and 8, we trained the model to trade leveraged ETFs. Again, the Y axis
represents accumulated profit, the X axis represents time, and the three different lines

Figure 5. Accumulated profit of 2330.

Mathematics 2021, 9, 3094 9 of 16

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 17

Figure 5. Accumulated profit of 2330.

In Figure 6, the results show that 10-day and 20-day states yielded positive profit,
and the 5-day state yielded negative profit. Training the model with 10 and 20 days of
OHCLV on 2881 yielded the best performance. The model for the 5-day state suffered a
large loss in November 2016.

.

Figure 6. Accumulated profit of 2881.

In Figures 7 and 8, we trained the model to trade leveraged ETFs. Again, the Y axis
represents accumulated profit, the X axis represents time, and the three different lines

Figure 6. Accumulated profit of 2881.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 17

represent the accumulated profit of the three different states. Figure 7 shows that 5-day
and 20-day states yielded positive profit. Figure 8 shows that the model suffered a large
loss in November 2018.

Figure 7. Accumulated profit of 00655L.

Figure 8. Accumulated profit of 00672L.

As shown in Table 4, we further used the win rate to analyze the performance of the
framework. Our trading system’s win rates ranged between 48% and 60%; these low re-
sults were due to the goal of our framework, which was to build a framework that learns

Figure 7. Accumulated profit of 00655L.

Mathematics 2021, 9, 3094 10 of 16

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 17

represent the accumulated profit of the three different states. Figure 7 shows that 5-day
and 20-day states yielded positive profit. Figure 8 shows that the model suffered a large
loss in November 2018.

Figure 7. Accumulated profit of 00655L.

Figure 8. Accumulated profit of 00672L.

As shown in Table 4, we further used the win rate to analyze the performance of the
framework. Our trading system’s win rates ranged between 48% and 60%; these low re-
sults were due to the goal of our framework, which was to build a framework that learns

Figure 8. Accumulated profit of 00672L.

Codes 00655L and 00672L are leveraged ETFs, which is a security that seeks to multiply
or invert the daily return of financial derivatives or debts. Code 00655L tracks the twice-
daily performance of the FTSE China A50 index, and 00672L tracks the performance of the
S&P GSCI Crude Oil 2× Leveraged Index ER.

We chose 0050 because the fund’s constituents are selected from the top 50 listed
stocks on the Taiwan Stock Exchange by market weight, including 1101, 2330 and 2881. We
also chose 00655L and 00672L because leveraged ETFs have high volatility.

4.1. Results and Discussion

Our results are presented in two stages. First, we compared the performance of the
LSTM network with the deep neural network and the RNN network, and then we chose
the best-performing network to construct the proposed framework. Second, we conducted
various experiments to verify the proposed framework. In this experiment, we used a
rolling window to evaluate the proposed approach. Each window included a three-month
training period and a one-month testing period (3 months/1 month).

The key task of the proposed framework is to accurately predict stock and to determine
the action to take. In this section, we used different neural networks to predict stock price
movement. The input layer of the neural networks matches our state, such that the input
data includes the open price, highest price, close price, lowest price, and volume. The
output layer is a classification layer. As shown in Table 3, we achieved at least 77% accuracy
in all models. LSTM outperformed other models in four of five different stocks. Hence, we
used LSTM to construct the deep Q-network.

4.2. Analysis of Deep Q-Learning Performance

We conducted various experiments to verify the proposed systems using five different
stocks and three different states (5, 10, and 20 days of OHCLV). We assumed initial invest-
ment funds of 100,000. We used our framework to trade 0050, 2330, and 1101 from April
2016 to December 2018, 00655L from July 2016 to December 2018, and 00672L from January
2017 to December 2018.

Mathematics 2021, 9, 3094 11 of 16

Table 3. Performance of stock price movement.

Accuracy Precision Recall F1-Measure

0050

LSTM 0.8594 0.8696 0.8333 0.9091
RNN 0.8750 0.8824 0.8333 0.9375
DNN 0.8643 0.8708 0.835 0.91

2330

LSTM 0.8630 0.8728 0.8595 0.8564
RNN 0.7697 0.7843 0.7763 0.7694
DNN 0.8519 0.8547 0.8658 0.8538

1101

LSTM 0.8772 0.9090 0.8173 0.8567
RNN 0.8438 0.8718 0.8947 0.8500
DNN 0.8112 0.8014 0.8001 0.7964

0065L

LSTM 0.9318 0.9174 0.8889 0.9143
RNN 0.9218 0.9174 0.9214 0.9179
DNN 0.8125 0.8750 0.7778 0.8235

00672L

LSTM 0.9390 0.9260 0.9572 0.938
RNN 0.9062 0.9200 0.9583 0.9388
DNN 0.9022 0.8835 0.9292 0.9020

In Figure 3, the Y axis represents accumulated profit, and the X axis represents time.
The three different lines represent the accumulated profit of the three different states. The
results show that 5-day and 20-day states yielded positive profit. The 10-day states yielded
negative profit. We found that training the model with 5 days of OHCLV on 0050 yielded
the best performance.

In Figure 4, the results show that 5-day, 10-day and 20-daysstates yielded positive
profit. Training the model with 10 days of OHCLV on 1101 yielded the best performance.
In addition, the model suffered a large loss in June 2018.

In Figure 5, the results show that all three states yielded positive profits over time.
Training the model with 10 days of OHCLV on 2330 yielded the best performance.

In Figure 6, the results show that 10-day and 20-day states yielded positive profit, and
the 5-day state yielded negative profit. Training the model with 10 and 20 days of OHCLV
on 2881 yielded the best performance. The model for the 5-day state suffered a large loss in
November 2016.

In Figures 7 and 8, we trained the model to trade leveraged ETFs. Again, the Y axis
represents accumulated profit, the X axis represents time, and the three different lines
represent the accumulated profit of the three different states. Figure 7 shows that 5-day
and 20-day states yielded positive profit. Figure 8 shows that the model suffered a large
loss in November 2018.

As shown in Table 4, we further used the win rate to analyze the performance of
the framework. Our trading system’s win rates ranged between 48% and 60%; these low
results were due to the goal of our framework, which was to build a framework that learns
to trade a high stock spread between two days. The result show that our goal was achieved.
Although we did not have a high win rate, we made a good profit.

Mathematics 2021, 9, 3094 12 of 16

Table 4. Win rate.

Code 5 Days 10 Days 20 Days

0050 0.6035 0.4563 0.5357
1101 0.5102 0.5585 0.5760
2330 0.5580 0.5232 0.86
2881 0.5573 0.5398 0.5601

00655L 0.56034 0.4563 0.5357
00672L 0.48621 0.5212 0.5419

4.3. The Evaluation of Financial Performance

The development of a strategy requires a good evaluation metric to judge whether
the strategy is profitable. The most basic metrics include winning probability, odds ratio,
maximum draw-down (MDD), and reward over MDD. We have listed the performance
of our experiments in Tables 5–8. In terms of profit factor (PF), if it is greater than 1, the
strategy is in a profitable state. Generally, PF is recommended to be greater than 1.5, so
that the cumulative profit and loss curve rises steadily. In the experiment, we observed
that our trading model performed well for most parameters.

Table 5. Evaluation metric of stock 2330.

Maximum Draw-Down Return over Maximum Draw-Down Profit Factor

5 10 20 5 10 20 5 10 20
0.00% 0.00% 0.00% mdd = 0 mdd = 0 mdd = 0 no loss no loss no loss

2016/4/1 0.00% 0.00% 0.00% mdd = 0 mdd = 0 mdd = 0 no loss no loss no loss
2016/5/1 0.00% −0.34% −0.95% mdd = 0 5.55 −0.69 no loss 6.43 0.32
2016/6/1 0.00% −0.44% −0.95% mdd = 0 4.09 0.58 no loss 5.00 1.58
2016/7/1 0.00% −0.44% −0.95% mdd = 0 6.02 0.90 no loss 6.89 1.89
2016/8/1 0.00% −0.68% −0.95% mdd = 0 2.86 1.32 no loss 2.70 2.32
2016/9/1 0.00% −0.83% −0.95% mdd = 0 2.17 2.38 no loss 2.38 3.37
2016/10/1 −0.38% −1.41% −0.95% 16.24 0.85 3.43 16.25 1.63 4.42
2016/11/1 −0.85% −1.41% −0.95% 6.63 2.05 2.90 7.22 2.53 2.90
2016/12/1 −1.22% −1.41% −1.26% 4.26 3.33 1.55 5.00 3.47 1.87
2017/1/1 −3.10% −1.41% −1.74% 1.03 3.15 0.83 1.97 3.07 1.53
2017/2/1 −3.85% −1.41% −1.94% 0.62 2.87 0.65 1.59 2.59 1.42
2017/3/1 −5.35% −1.41% −2.13% 0.15 2.94 0.49 1.14 2.63 1.33
2017/4/1 −5.73% −1.41% −2.13% 0.07 2.80 0.73 1.07 2.44 1.49
2017/5/1 −6.38% −1.41% −2.13% −0.05 3.50 0.82 0.96 2.80 1.56
2017/6/1 −6.38% −1.41% −2.13% 0.22 5.56 1.34 1.21 3.85 1.90
2017/7/1 −6.38% −1.41% −2.13% 0.16 5.77 0.84 1.14 3.96 1.43
2017/8/1 −6.38% −1.41% −2.13% 0.38 4.96 0.75 1.33 2.79 1.36
2017/9/1 −6.38% −1.41% −2.13% 0.74 5.31 0.70 1.65 2.92 1.33
2017/10/1 −6.38% −1.41% −2.13% 1.11 8.42 1.36 1.99 4.05 1.64
2017/11/1 −6.38% −1.41% −2.13% 1.06 7.50 1.01 1.89 3.04 1.41
2017/12/1 −6.38% −2.32% −2.13% 1.42 4.00 1.13 2.20 2.43 1.46
2018/1/1 −6.38% −2.32% −2.13% 1.23 5.38 1.31 1.90 2.92 1.53
2018/2/1 −6.38% −2.58% −2.13% 1.29 3.72 1.69 1.94 2.02 1.69
2018/3/1 −6.38% −2.58% −3.38% 0.93 5.80 0.03 1.54 2.59 1.01
2018/4/1 −6.38% −2.65% −3.67% 0.57 4.48 −0.05 1.27 1.96 0.98
2018/5/1 −6.38% −2.65% −4.68% 0.69 4.79 −0.27 1.33 2.02 0.88
2018/6/1 −6.38% −2.65% −4.68% 1.07 5.07 0.31 1.51 2.08 1.14
2018/7/1 −6.38% −2.65% −4.68% 0.74 5.82 −0.27 1.31 2.24 0.90
2018/8/1 −6.38% −2.65% −4.68% 0.99 6.82 0.14 1.41 2.45 1.05
2018/9/1 −6.38% −2.65% −4.68% 1.28 8.57 0.22 1.53 2.83 1.08
2018/10/1 −6.38% −2.65% −4.68% 2.30 10.72 0.84 1.95 3.29 1.31

Mathematics 2021, 9, 3094 13 of 16

Table 6. Evaluation metric of stock 2881.

Maximum Draw-Down Return over Maximum Draw-Down Profit Factor

5 10 20 5 10 20 5 10 20
0.00% 0.00% 0.00% mdd = 0 mdd = 0 mdd = 0 no loss no loss no loss

2016/4/1 −0.29% −0.31% −0.26% −1.00 −1.00 −1.00 0.00 0.00 0.00
2016/5/1 −0.29% −0.31% −0.26% −0.34 −0.90 −0.54 0.66 0.10 0.46
2016/6/1 −0.29% −0.31% −0.26% 1.10 0.81 −0.04 2.10 1.81 0.96
2016/7/1 −0.29% −0.31% −0.26% 1.93 0.73 0.92 2.93 1.67 1.92
2016/8/1 −0.29% −0.31% −0.26% 2.78 1.24 1.63 3.78 2.15 2.63
2016/9/1 −0.44% −0.31% −0.37% 0.87 0.55 0.15 1.52 1.31 1.09
2016/10/1 −0.44% −0.31% −0.40% 1.05 0.81 0.05 1.63 1.45 1.03
2016/11/1 −1.10% −0.31% −0.40% −0.26 1.10 2.21 0.80 1.62 2.34
2016/12/1 −1.41% −0.31% −0.40% −0.43 1.44 2.80 0.66 1.81 2.70
2017/1/1 −1.43% −0.31% −0.40% −0.44 1.18 2.41 0.66 1.58 2.18
2017/2/1 −1.46% −0.31% −0.40% −0.45 1.56 2.70 0.65 1.77 2.32
2017/3/1 −1.46% −0.31% −0.40% −0.37 2.03 2.42 0.71 2.00 2.04
2017/4/1 −1.66% −0.38% −0.40% −0.51 0.64 2.74 0.61 1.24 2.18
2017/5/1 −1.75% −0.41% −0.40% −0.54 0.52 2.48 0.58 1.21 1.96
2017/6/1 −1.75% −0.44% −0.40% −0.53 0.42 2.59 0.59 1.17 2.00
2017/7/1 −1.75% −0.51% −0.40% −0.52 0.24 2.94 0.59 1.11 2.13
2017/8/1 −1.75% −0.55% −0.40% −0.49 0.15 2.74 0.62 1.07 1.98
2017/9/1 −1.75% −0.59% −0.40% −0.54 0.07 3.14 0.60 1.03 2.12
2017/10/1 −1.82% −0.67% −0.40% −0.56 −0.06 3.19 0.58 0.97 2.14
2017/11/1 −1.82% −0.67% −0.40% −0.54 0.12 4.15 0.59 1.06 2.49
2017/12/1 −1.82% −0.67% −0.40% −0.41 0.24 4.03 0.69 1.12 2.38
2018/1/1 −1.82% −0.67% −0.40% −0.33 0.26 3.71 0.75 1.13 2.15
2018/2/1 −1.82% −0.67% −0.42% −0.19 0.86 2.94 0.86 1.44 1.80
2018/3/1 −1.82% −0.67% −0.42% −0.09 1.13 2.94 0.93 1.58 1.80
2018/4/1 −1.82% −0.67% −0.56% −0.07 1.46 2.00 0.94 1.75 1.66
2018/5/1 −1.82% −0.67% −0.56% −0.11 1.67 2.56 0.92 1.86 1.84
2018/6/1 −1.82% −0.67% −0.93% −0.36 1.09 0.79 0.78 1.43 1.31
2018/7/1 −1.82% −0.67% −0.93% −0.32 1.18 0.85 0.80 1.46 1.33
2018/8/1 −1.82% −0.67% −0.95% −0.43 1.06 0.74 0.75 1.40 1.29
2018/9/1 −1.82% −0.67% −0.95% −0.46 1.17 0.85 0.74 1.44 1.33
2018/10/1 −1.82% −0.67% −1.04% −0.22 0.83 0.60 0.88 1.28 1.23

Table 7. Evaluation metric of stock 0050.

Maximum Draw-Down Return over Maximum Draw-Down Profit Factor

5 10 20 5 10 20 5 10 20
0 0 0 mdd = 0 mdd = 0 mdd = 0 no loss no loss no loss

2016/4/1 0.00% 0.00% −0.05% mdd = 0 mdd = 0 −1.00 no loss no loss no loss
2016/5/1 −0.29% −0.06% −0.05% −0.35 −1.00 10.00 0.66 0.00 11.00
2016/6/1 −0.46% −0.06% −0.45% −0.59 −0.67 0.11 0.41 0.33 1.10
2016/7/1 −0.62% −0.20% −0.45% −0.69 −1.00 1.12 0.31 0.09 2.00
2016/8/1 −0.87% −0.20% −0.45% −0.78 −0.10 3.35 0.22 0.91 4.00
2016/9/1 −1.36% −0.20% −0.45% −0.86 −0.15 2.90 0.14 0.87 2.86
2016/10/1 −1.36% −0.20% −0.45% −0.69 −0.90 2.68 0.32 0.53 2.50
2016/11/1 −1.36% −0.20% −0.45% −0.35 −0.85 3.91 0.65 0.55 3.19
2016/12/1 −1.36% −0.20% −0.45% −0.21 −0.55 3.80 0.79 0.71 3.00
2017/1/1 −1.36% −0.20% −0.45% −0.21 −1.00 4.02 0.79 0.57 3.12
2017/2/1 −1.36% −0.20% −0.45% 0.27 −0.50 4.02 1.26 0.79 3.12
2017/3/1 −1.36% −0.20% −0.45% 0.41 −0.52 3.91 1.40 0.78 2.94
2017/4/1 −1.36% −0.20% −0.45% 0.45 −0.67 4.80 1.45 0.73 3.39
2017/5/1 −1.36% −0.20% −0.45% 0.48 −0.97 4.24 1.48 0.65 2.65
2017/6/1 −1.36% −0.21% −0.45% 0.52 −1.00 3.91 1.51 0.63 2.35
2017/7/1 −1.36% −0.27% −1.13% 0.17 −1.00 0.89 1.13 0.58 1.49
2017/8/1 −1.36% −0.28% −1.13% 0.24 −1.00 1.20 1.17 0.57 1.66
2017/9/1 −1.36% −0.33% −1.32% 0.22 −1.00 0.61 1.16 0.52 1.31
2017/10/1 −1.36% −0.41% −1.32% 0.18 −1.00 1.06 1.13 0.47 1.54

Mathematics 2021, 9, 3094 14 of 16

Table 7. Cont.

Maximum Draw-Down Return over Maximum Draw-Down Profit Factor

2017/11/1 −1.36% −0.44% −1.91% 0.26 −1.00 0.10 1.18 0.45 1.05
2017/12/1 −1.36% −0.47% −1.91% 0.28 −1.00 0.13 1.20 0.44 1.07
2018/1/1 −1.36% −0.56% −1.91% 0.25 −1.00 0.84 1.17 0.40 1.42
2018/2/1 −1.36% −0.56% −1.91% 0.65 −0.96 1.26 1.45 0.42 1.63
2018/3/1 −1.36% −0.75% −1.91% 0.52 −1.00 2.10 1.33 0.34 2.05
2018/4/1 −1.36% −0.75% −1.91% 0.40 −0.97 1.70 1.24 0.36 1.71
2018/5/1 −1.36% −0.75% −1.91% 1.04 −0.60 1.70 1.62 0.60 1.71
2018/6/1 −1.36% −0.75% −1.91% 1.27 −0.44 1.70 1.75 0.71 1.71
2018/7/1 −1.36% −0.75% −1.91% 2.19 −0.53 1.15 2.30 0.67 1.39
2018/8/1 −1.36% −0.75% −2.79% 2.31 −0.52 0.39 2.37 0.68 1.16
2018/9/1 −1.36% −0.75% −2.79% 2.48 −0.19 0.63 2.47 0.88 1.26
2018/10/1 −1.36% −0.75% −2.79% 1.84 −0.34 0.97 1.79 0.80 1.40

Table 8. Evaluation metric of stock 1101.

5 10 20 5 10 20 5 10 20

0.00% 0.00% 0.00% mdd = 0 mdd = 0 mdd = 0 no loss no loss no loss
2016/4/1 −0.14% 0.00% 0.00% −1.00 mdd = 0 mdd = 0 0.00 no loss no loss
2016/5/1 −0.14% 0.00% −0.02% 0.15 mdd = 0 6.51 1.15 no loss 7.50
2016/6/1 −0.19% −0.04% −0.02% −0.89 4.51 7.51 0.48 5.50 8.50
2016/7/1 −0.19% −0.26% −0.02% 0.61 −0.15 9.01 1.35 0.85 10.00
2016/8/1 −0.19% −0.26% −0.17% 0.71 0.73 0.06 1.42 1.73 1.05
2016/9/1 −0.19% −0.26% −0.17% 1.18 0.46 1.59 1.69 1.36 2.42
2016/10/1 −0.19% −0.26% −0.17% 1.13 0.35 1.77 1.64 1.25 2.58
2016/11/1 −0.19% −0.26% −0.17% 1.47 0.19 1.24 1.84 1.13 1.75
2016/12/1 −0.19% −0.26% −0.17% 1.42 0.27 1.59 1.78 1.18 1.96
2017/1/1 −0.19% −0.26% −0.23% 0.74 −0.15 0.31 1.29 0.92 1.15
2017/2/1 −0.19% −0.30% −0.30% 3.40 −0.27 −0.02 2.36 0.85 0.99
2017/3/1 −0.19% −0.30% −0.43% 3.50 0.53 −0.30 2.40 1.29 0.81
2017/4/1 −0.19% −0.30% −0.43% 4.13 0.37 −0.12 2.65 1.18 0.93
2017/5/1 −0.25% −0.30% −0.43% 2.09 0.03 −0.24 1.73 1.01 0.86
2017/6/1 −0.26% −0.30% −0.43% 1.98 0.07 −0.28 1.70 1.03 0.84
2017/7/1 −0.26% −0.39% −0.43% 2.72 −0.44 −0.03 1.97 0.81 0.98
2017/8/1 −0.26% −0.40% −0.43% 2.28 −0.45 −0.29 1.70 0.80 0.85
2017/9/1 −0.26% −0.40% −0.52% 2.17 −0.35 −0.43 1.64 0.84 0.77
2017/10/1 −0.26% −0.40% −0.57% 2.17 −0.43 −0.48 1.64 0.82 0.73
2017/11/1 −0.27% −0.40% −0.57% 1.92 −0.43 −0.46 1.55 0.82 0.74
2017/12/1 −0.31% −0.40% −0.65% 1.50 −0.18 −0.54 1.48 0.92 0.68
2018/1/1 −0.31% −0.40% −0.65% 1.50 0.13 −0.22 1.48 1.05 0.87
2018/2/1 −0.31% −0.40% −0.65% 1.65 0.13 −0.15 1.52 1.05 0.91
2018/3/1 −0.34% −0.40% −0.65% 1.32 −0.14 −0.28 1.42 0.95 0.85
2018/4/1 −0.34% −0.40% −0.65% 1.42 0.29 0.11 1.45 1.11 1.06
2018/5/1 −0.34% −0.40% −0.65% 4.21 0.51 2.10 2.35 1.20 2.16
2018/6/1 −0.34% −0.40% −0.65% 4.94 0.84 1.69 2.58 1.32 1.76
2018/7/1 −0.91% −0.40% −1.28% 0.80 3.60 0.05 1.37 2.39 1.03
2018/8/1 −1.03% −0.40% −1.28% 0.60 4.47 0.38 1.29 2.72 1.19
2018/9/1 −1.03% −0.40% −1.28% 0.76 5.10 0.18 1.38 2.97 1.08
2018/10/1 −1.21% −0.40% −1.28% 0.35 4.45 0.27 1.17 2.37 1.13

5. Conclusions and Future Work

Traditionally, it is difficult to create a trading strategy. We must analyze many aspects
of the target—price data, technical indicators, and so on—after which we must decide
when to trade and how many shares to trade. This is a difficult and time-consuming job for
traders. Hence, we built an automated trading framework based on deep neural networks
and reinforcement learning. The experiment used five different Taiwan stock constituents
from January 2009 to December 2018.

Mathematics 2021, 9, 3094 15 of 16

We make three key contributions to the literature: focusing on the different deep
neural networks, we found that LSTM outperformed other neural networks in financial
time series prediction tasks based on our collected stock data. LSTM outperformed for
four of five different stocks. The second contribution is our automated trading system,
based on five kinds of basic daily price data (e.g., open price, highest price, closed price,
lowest price, and volume). Our trading strategy was daily trading within two days. We
obtained trading signals and sizes from our framework to decide whether to sell, hold or
buy, and close the position the next day. We demonstrated that the proposed framework
yielded good returns in some stocks. However, we only verified our framework on the
Taiwan stock market, and we used the same neural network to construct a framework for
five different stocks.

Recently, some researchers have proposed framework integrated stock prices and
financial news for stock prediction. In future research, sentiment analysis of news articles
should be integrated as another resource of information on the environment. A reinforce-
ment learning model should also be applied in the cryptocurrency market, including
Bitcoin, Ethereum, and so on.

A limitation is that the proposed model was only evaluated for one stock at the Taiwan
stock market. Since we were limited with respect to funding, we only collected a small
dataset for evaluating the proposed model. Future work should include verifying the
proposed model by collecting a larger dataset.

Author Contributions: Conceptualization, L.-C.C. and M.-E.W.; methodology, L.-C.C., M.-E.W. and
Y.-H.H.; software, Y.-H.H.; writing—original draft preparation, Y.-H.H. and L.-C.C.; writing—review
and editing, L.-C.C., M.-H.H. and M.-E.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This study was supported in part by the Ministry of Science and Technology of Taiwan
under grant numbers MOST 105-2410-H-031-035-MY3 and MOST 108-2410-H-027-020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benita, F.; López-Ramos, F.; Nasini, S. A bi-level programming approach for global investment strategies with financial intermedi-

ation. Eur. J. Oper. Res. 2019, 274, 375–390. [CrossRef]
2. Liu, Z.; Wang, J. Supply chain network equilibrium with strategic financial hedging using futures. Eur. J. Oper. Res.

2019, 272, 962–978. [CrossRef]
3. Sermpinis, G.; Stasinakis, C.; Rosillo, R.; de la Fuente, D. European exchange trading funds trading with locally weighted support

vector regression. Eur. J. Oper. Res. 2017, 258, 372–384. [CrossRef]
4. Doyle, J.R.; Chen, C.H. Patterns in stock market move ments tested as random number generators. Eur. J. Oper. Res. 2013,

227, 122–132. [CrossRef]
5. Oztekin, A.; Kizilaslan, R.; Freund, S.; Iseri, A. A data analytic approach to forecasting daily stock returns in an emerging market.

Eur. J. Oper. Res. 2016, 253, 697–710. [CrossRef]
6. Zhang, J.; Cui, S.; Xu, Y.; Li, Q.; Li, T. A novel data-driven stock price trend prediction system. Expert Syst. Appl. 2018, 97, 60–69.

[CrossRef]
7. Chou, J.-S.; Nguyen, T.-K. Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning

Regression. IEEE Trans. Ind. Inform. 2018, 14, 3132–3142. [CrossRef]
8. Delaney, L. Investment in high-frequency trading technology: A real options approach. Eur. J. Oper. Res. 2018, 270, 375–385.

[CrossRef]
9. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.

2018, 270, 654–669. [CrossRef]
10. Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction. Knowl.-Based Syst. 2019,

164, 163–173. [CrossRef]
11. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
12. Moody, J.; Saffell, M. Learning to trade via direct reinforcement. IEEE Trans. Neural Netw. 2001, 12, 875–889. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejor.2018.10.009
http://doi.org/10.1016/j.ejor.2018.07.029
http://doi.org/10.1016/j.ejor.2016.09.005
http://doi.org/10.1016/j.ejor.2012.11.057
http://doi.org/10.1016/j.ejor.2016.02.056
http://doi.org/10.1016/j.eswa.2017.12.026
http://doi.org/10.1109/TII.2018.2794389
http://doi.org/10.1016/j.ejor.2018.03.025
http://doi.org/10.1016/j.ejor.2017.11.054
http://doi.org/10.1016/j.knosys.2018.10.034
http://doi.org/10.1007/BF00115009
http://doi.org/10.1109/72.935097
http://www.ncbi.nlm.nih.gov/pubmed/18249919

Mathematics 2021, 9, 3094 16 of 16

13. Sutton, R.S. Temporal Credit Assignment in Reinforcement Learning. Ph.D. Thesis, University of Massachusetts Amherst,
Amherst, MA, USA, 1985.

14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforce-
ment learning. arXiv 2013, arXiv:1312.5602.

15. Chung, H.; Shin, K.S. Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability
2018, 10, 3765. [CrossRef]

16. Carta, S.; Corriga, A.; Ferreira, A.; Recupero, D.R.; Saia, R. A holistic auto-configurable ensemble machine learning strategy for
financial trading. Computation 2019, 7, 67. [CrossRef]

17. Carta, S.; Medda, A.; Pili, A.; Reforgiato, D.R.; Saia, R. Forecasting e-commerce products prices by combining an autoregressive
integrated moving average (ARIMA) model and google trends data. Future Internet 2019, 11, 5. [CrossRef]

18. Vukovic, D.; Vyklyuk, Y.; Matsiuk, N.; Maiti, M. Neural network forecasting in prediction Sharpe ratio: Evidence from EU debt
market. Phys. A Stat. Mech. Appl. 2020, 542, 123331. [CrossRef]

19. Maiti, M.; Vyklyuk, Y.; Vuković, D. Cryptocurrencies chaotic co-movement forecasting with neural networks. Internet Technol.
Lett. 2020, 3, 157. [CrossRef]

20. Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E. Deep learning for stock market prediction. Entropy 2020, 22, 840.
[CrossRef]

21. Nabipour, M.; Nayyeri, P.; Jabani, H.; Shahab, S.; Mosavi, A. Predicting stock market trends using machine learning and deep
learning algorithms via continuous and binary data; a comparative analysis. IEEE Access 2020, 8, 150199–150212. [CrossRef]

22. LeCun, Y.; Bengio, Y.; Hinton, G.J. Hinton. Deep. Learn. 2015, 521, 436.
23. Ding, X.; Zhang, Y.; Liu, T.; Duan, J. Deep learning for event-driven stock prediction. In Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 2327–2333.
24. Akita, R.; Yoshihara, A.; Matsubara, T.; Uehara, K. Deep learning for stock prediction using numerical and textual information. In

Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan,
26–29 June 2016; pp. 1–6.

25. Nelson, D.M.; Pereira, A.C.; de Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In Pro-
ceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
pp. 1419–1426.

26. Liu, J.; Chen, Y.; Liu, K.; Zhao, J. Attention-Based Event Relevance Model for Stock Price Movement Prediction. In Communications
in Computer and Information Science, Proceedings of the China Conference on Knowledge Graph and Semantic Computing, Chengdu, China,
26–29 August 2017; Springer: Singapore, 2017; pp. 37–49.

27. Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; Cottrell, G. A dual-stage attention-based recurrent neural network for time
series prediction. arXiv 2017, arXiv:1704.02971.

28. Zhao, R.; Deng, Y.; Dredze, M.; Verma, A.; Rosenberg, D.; Stent, A. Visual Attention Model for Cross-sectional Stock Return
Prediction and End-to-End Multimodal Market Representation Learning. In Proceedings of the Thirty-Second International Flairs
Conference, Sarasota, FL, USA, 19–22 May 2019.

29. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998.
30. Gold, C. FX trading via recurrent reinforcement learning. In Proceedings of the 2003 IEEE International Conference on Computa-

tional Intelligence for Financial Engineering, 2003, Proceedings, Hong Kong, China, 20–23 March 2003; pp. 363–370.
31. Duerson, S.; Khan, F.; Kovalev, V.; Malik, A.H. Reinforcement Learning in Online Stock Trading Systems. Available online:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.5299&rep=rep1&type=pdf (accessed on 1 October 2021).
32. Nevmyvaka, Y.; Feng, Y.; Kearns, M. Reinforcement learning for optimized trade execution. In Proceedings of the 23rd

International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 673–680.
33. Dempster, M.A.; Leemans, V. An automated FX trading system using adaptive reinforcement learning. Expert Syst. Appl. 2006,

30, 543–552. [CrossRef]
34. Lee, J.W.; Park, J.; Jangmin, O.; Lee, J.; Hong, E. A Multiagent Approach to $ Q $-Learning for Daily Stock Trading. IEEE Trans.

Syst. Man Cybern.-Part A Syst. Hum. 2007, 37, 864–877. [CrossRef]
35. Cumming, J.; Alrajeh, D.D.; Dickens, L. An Investigation into the Use of Reinforcement Learning Techniques within the

Algorithmic Trading Domain. Master’s Thesis, Imperial College London, London, UK, 2015.
36. Xiong, Z.; Liu, X.-Y.; Zhong, S.; Yang, H.; Walid, A. Practical deep reinforcement learning approach for stock trading. arXiv 2018,

arXiv:1811.07522.
37. Wu, X.; Chen, H.; Wang, J.; Troiano, L.; Loia, V.; Fujita, H. Adaptive stock trading strategies with deep reinforcement learning

methods. Inf. Sci. 2020, 538, 142–158. [CrossRef]
38. Carta, S.; Corriga, A.; Ferreira, A.; Podda, A.S.; Recupero, D.R. A multi-layer and multi-ensemble stock trader using deep learning

and deep reinforcement learning. Appl. Intell. 2021, 51, 889–905. [CrossRef]
39. Carta, S.; Ferreira, A.; Podda, A.S.; Recupero, D.R.; Sanna, A. Multi-DQN: An ensemble of Deep Q-learning agents for stock

market forecasting. Expert Syst. Appl. 2021, 164, 113820. [CrossRef]

http://doi.org/10.3390/su10103765
http://doi.org/10.3390/computation7040067
http://doi.org/10.3390/fi11010005
http://doi.org/10.1016/j.physa.2019.123331
http://doi.org/10.1002/itl2.157
http://doi.org/10.3390/e22080840
http://doi.org/10.1109/ACCESS.2020.3015966
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.5299&rep=rep1&type=pdf
http://doi.org/10.1016/j.eswa.2005.10.012
http://doi.org/10.1109/TSMCA.2007.904825
http://doi.org/10.1016/j.ins.2020.05.066
http://doi.org/10.1007/s10489-020-01839-5
http://doi.org/10.1016/j.eswa.2020.113820

	Introduction
	Literature Review
	Methodology
	State Signal
	Trading Strategy

	Experiment
	Results and Discussion
	Analysis of Deep Q-Learning Performance
	The Evaluation of Financial Performance

	Conclusions and Future Work
	References

