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Abstract: Melting heat transfer has a vital role in forming energy storage devices such as flexible
thin film supercapacitors. This idea should be welcomed in the thin film theoretical models to
sustain technological advancement, which could later benefit humankind. Hence, the present work
endeavors to incorporate the melting heat transfer effect on the Carreau thin hybrid nanofluid film
flow over an unsteady accelerating sheet. The mathematical model that obeyed the boundary layer
theory has been transformed into a solvable form via an apt similarity transformation. Furthermore,
the collocation method, communicated through the MATLAB built-in bvp4c function, solved the
model numerically. Non-uniqueness solutions have been identified, and solutions with negative
film thickness are unreliable. The melting heat transfer effect lowers the heat transfer rate without
affecting the liquid film thickness, while the Carreau hybrid nanofluid contributes more entropy than
the Carreau nanofluid in the flow regime.

Keywords: thin film; Carreau fluid; hybrid nanoparticles; melting heat transfer

1. Introduction

The thin film flow research has a great prospect in technological advancement due to
its significance in producing electronic devices such as integrated circuits and microscopic
fluidic devices [1]. For example, one can see how a solid surface is coated by a thin liquid
film in those manufacturing operations. Another potential manufacturing process subset
to the thin film flow application is the cast film extrusion that produces polymer sheets
and films [2]. Realising the strength of the thin film flow research as an enzyme to attain
the next stage of technological development, Wang [3] pioneered the problem of the thin
film flow past an accelerating sheet and attested the unavailability of similarity solutions
when the flow unsteadiness’ rate exceeds 2. Then, Usha and Sridharan [4] revisited the
flow problem in [3] asymmetrically and proved that the similarity solutions are absent
when the flow unsteadiness’ rate exceeds 4. As time went by, the researchers learned that
heat transfer analysis is crucial in the thin film flow problem, aligned with the initiative
to comprehend the heat exchangers and chemical processing equipment’s design. Thus,
Andersson et al. [5] solved the thin film flow and heat transfer past an accelerating sheet;
they also devised a novel similarity solution for the temperature field. This contribution
of [5] is remarkable and highly assists in investigating the heat transfer aspect in the present
work. After that, Wang [6] presented the analytic solutions for the thin film flow and heat
transfer problem over an unsteady accelerating sheet. The strong contributions of [3–6]
are the impetus for the thin film flow and heat transfer research under the following
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effects: thermocapilarity [7,8], general surface temperature [9,10], thermal radiation [11],
magnetohydrodynamics (MHD) [12], viscous dissipation [13], slip effects [14,15].

The strength of the non-Newtonian fluid in illuminating varying fluid viscosity under
the applied force has vast industrial applications and managed to attract the researchers’
attention to be considered under various settings, such as in [16,17]. On the other hand, the
researchers’ consideration of the non-Newtonian fluid in the thin film flow problem is raised
because the protective coating applied on an extrudate is a non-Newtonian fluid. Therefore,
Andersson et al. [18] investigated the power-law thin liquid film flow past an accelerating
sheet and found a contradict trend in the fluid velocity when the power-law fluid adapts
to the pseudoplastic and dilatant features respectively. Furthermore, Chen [19] enhanced
the work of [18] by incorporating the heat transfer characteristic as it is an essential factor
to decide the final product’s quality. Subsequently, the researchers’ consideration of other
generalised non-Newtonian fluid models such as the Carreau fluid model increased due
to its validity for high and low shear rates. Myers [20] critically analysed the generalised
non-Newtonian fluid’s potential in the thin film flow and suggested that the Carreau
fluid model is a better choice due to its accuracy rate. Accordingly, there is a number of
significant works reported within the scope of the Carreau thin film flow; see [21–24].

Besides that, hybrid nanofluid is an incredible invention by humankind to uplift tech-
nological advancement to the next level. Choi and Eastman [25] introduced the brilliant
idea of suspending the nanosized metal element in the fluid to boost its heat transfer rate.
Although nanofluid hits the peak of the researchers’ interest due to its applications in the
heat transfer equipment, nanofluid is incompatible with some specified real-world applica-
tions that require substitution between some nanofluids’ properties [26]. Thus, the hybrid
nanofluid is proposed to encounter this issue through the experimental works [27,28],
and the hybrid nanofluid managed to gain vast interest from the researchers. Shortly, the
theoretical works, such as [29] gained momentum in the hybrid nanofluid after the valuable
works of Devi and Devi [30,31]. The hybrid nanofluid also succeeded in the thin film flow
over an accelerating sheet owing to industrial applications such as microfluidics [32]. For
instance, Sadiq et al. [33] explored the Maxwell thin hybrid nanofluid film flow across the
Darcy-Forchheimer porous media and inferred that the augmentation of the heat transfer
rate in the hybrid Maxwell nanofluid is better than the single-typed Maxwell nanofluid.

Melting heat transfer is a common phase experienced by industrial processes such
as casting. Epstein and Cho [34] is one of the earliest works involved in the melting
heat transfer effect in the laminar boundary layer flow. Epstein and Cho [34] solved the
boundary layer flow problem past the horizontal positioned static flat surface along with
the melting heat transfer effect. Ishak et al. [35] extended the work in [29] by considering
the flow past the moving sheet and reported that the melting heat transfer effect is the
decreasing function of the convective heat transfer rate. Then, Khashi’ie et al. [36] recon-
sidered the problem solved in [35] by incorporating the presence of hybrid nanoparticles
and corroborated the finding as mentioned above in [35]. Even though the melting heat
transfer effect has been probed under several settings; see [37,38]; yet, the inspection of the
melting heat transfer effect in the thin film flow is scarce. Thus, this motivates the present
work to scruntise the melting heat transfer effect in the thin film flow.

Overall, the present work attempts to solve the problem of the Carreau thin hybrid
nanofluid film flow past an accelerating sheet under the influence of the melting heat trans-
fer. The present model is relatively new, and entropy generation analysis is performed. The
present work also adapts the similarity transformation suggested by Andersson et al. [5],
and the formulated mathematical model has been solved in the built-in collocation method,
the bvp4c, to produce the approximate solutions. Furthermore, non-uniqueness solutions
have been reported for every case of governing parameters’ variations. The findings of the
present work may serve as a reference for improving the material processing industry.
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2. Mathematical Model

Ruminate the Carreau fluid flow bounded by a thin liquid film and a horizontally
placed accelerating sheet from a narrow opening at the Cartesian coordinate system origin.
The two-dimensional flow is assumed to be incompressible, unsteady while the thin liquid
film has an unvarying thickness, H(t). Figure 1 depicts the flow setup, and y−coordinate
is located normal to the x−coordinate. The sheet’s accelerated act, which portrays the
stretching sheet situation, brings about the fluid motion delimited by the thin film and the
accelerating sheet. The sheet is accelerated with speed Uw(x, t) = bx

(1−σt) , where b and σ

are positive constants with dimension time–1, σt 6= 1, while b > 0 conveys the stretching
rate. The sheet surface is impermeable and melts. The melting surface temperature is
denoted by Tm̃, whereas T is the fluid temperature. The wall temperature, Tw is defined

as Tw = Ts − T0

√
b2x4

4ν2
f (1−σt)

, and 0 ≤ T0 ≤ Ts [39]. Here, the slit temperature and reference

temperature are denoted by Ts and T0, respectively. Besides, the end effects and gravity
are assumed to be very small and thus omitted. The formulated boundary layer model
in the present work is only sensible if the liquid film thickness does not overlap with the
boundary layer thickness. Otherwise, the present formulated model becomes irrational [40].
Also, the planar thin liquid film is assumed to be smooth and free of any surface waves [5].
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Figure 1. Schematic diagram of the thin film flow past an accelerated sheet.

The Carreau fluid’s Cauchy stress tensor is given as [20]

τ = −pI + ηA1, (1)

where

η = η∞ + (η0 − η∞)
[
1 +

(
λ

.
γ
)2
] n−1

2 . (2)

Here, τ is the Cauchy stress tensor, p is the pressure, I denotes the identity tensor, η0
signifies the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, λ implies the
material time constant, and n represents the power-law index. The shear rate,

.
γ can be

elaborated as

.
γ =

√
1
2
( .
γ :

.
γ
)
=

√
1
2

Π =

√
1
2

tr
(

A2
1

)
=

√
1
2∑

i
∑

j

.
γij

.
γji. (3)

In Equation (3), Π is the second invariant strain rate tensor and A1 is the Rivlin-
Ericksen tensor expressed further as

A1 = (gradV) + (gradV)T . (4)
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The most practical cases where η0 � η∞ is considered. Normally, the value of η∞
is determined by the extrapolation procedure or chosen to be zero (suggested theoretical
value) [41]. Thus, in the present work, the value of η∞ is set to zero, and affect Equation (1)
to become

τ = −pI + η0

[
1 +

(
λ

.
γ
)2
] n−1

2 A1. (5)

The Carreau fluid model shows pseudoplastic, dilatant, and Newtonian features when
0 < n < 1, n > 1 and n = 0, respectively, where n is the power-law index. Under these
assumptions, the governing liquid film flow of the Carreau fluid can be written as [42].

∂u
∂x

+
∂v
∂y

= 0, (6)

∂u
∂t + u ∂u

∂x + v ∂u
∂y =

µhn f
ρhn f

∂2u
∂y2

[
1 + λ2

(
∂u
∂y

)2
] n−1

2

+
µhn f
ρhn f

(n− 1)λ2 ∂2u
∂y2

(
∂u
∂y

)2
[

1 + λ2
(

∂u
∂y

)2
] n−3

2
,

(7)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 , (8)

where u and v are the velocity components along the x- and y- directions, respectively, λ is
a material time constant, n signifies the power-law index. Meanwhile,

(
ρCp

)
hn f , µhn f , ρhn f ,

and khn f are the hybrid nanofluid’s heat capacity, dynamic viscosity, density and thermal
conductivity, respectively. The further definition of µhn f , ρhn f , khn f , and

(
ρCp

)
hn f are

expressed in Table 1.

Table 1. The hybrid nanofluid’s correlation properties’ definitions (see [43]).

Properties Au-Cu/(CMC/H2O) Mathematical Relation

Density ρhn f =
(

1− φhn f

)
ρ f + φ1ρs1 + φ2ρs2

Dynamic viscosity
(Brinkman model) µhn f =

µ f

(1−φhn f )
2.5

Thermal capacity
(
ρCp

)
hn f =

(
1− φhn f

)(
ρCp

)
f + φ1

(
ρCp

)
s1 + φ2

(
ρCp

)
s2

Thermal
conductivity

(Maxwell model)
khn f
k f

=

(
φ1ks1+φ2ks2

φhn f

)
+2k f +2(φ1ks1+φ2ks2)−2φhn f k f(

φ1ks1+φ2ks2
φhn f

)
+2k f−(φ1ks1+φ2ks2)+φhn f k f

According to Table 1, the nanoparticle volume fraction is φ and φ = 0 reduces
the model into a regular fluid. Next, φ1 and φ2 signify the Au’s and Cu’s nanoparticle
volume fraction, respectively. The total volume concentration of two types of nanoparticles
suspended in the hybrid nanofluid is determined as φhn f = φ1 + φ2. Meanwhile, ρ f and
ρhn f are the densities of the base fluid and the hybrid nanoparticle, respectively, k f and khn f
are the thermal conductivities of the base fluid and the hybrid nanoparticles, respectively,(
ρCp

)
f and

(
ρCp

)
hn f are the heat capacitance of the base fluid and the hybrid nanoparticle,

respectively. These correlations are based on physical assumptions and agree with the
conservation of mass and energy. Thus, the physical properties of the base fluid (water),
gold (Au) and copper (Cu) hybrid nanofluids are given in Table 2.
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Table 2. The thermophysical properties of selected nanoparticles and base fluid (sodium car-
boxymethyl cellulose (CMC)/water) (see [44,45]).

Properties ρ (kg/m3) k(W/mK) β̂ × 10−5 (mK) Cp (J/kgK)

Au 19,300 318 1.4 129
Cu 8933 400 1.67 385

CMC/H2O
(0–0.3%) 997.1 0.613 21 4179

The Equations (6)–(8) are getting along with the boundary conditions

t < 0 : u = 0, v = 0, T = ∂T
∂y = 0 for all x and y.

t ≥ 0 : u = Uw(x, t),
khn f
ρhn f

(
∂T
∂y

)
y=0

=
[
L +

(
Cp
)

s(Tm̃ − Ts)
]
v(x, t),

T = Tm̃ at y = 0,
∂u
∂y = 0, ∂T

∂y = 0, v = dh
dt at y = h,

(9)

At y = h, the kinematic constraint is enforced in the fluid motion through v = dh/dt.
The wall shear stress and heat flux disappear entirely at the adiabatic free surface and thus
∂u/∂y = ∂T/∂y = 0 at y = h. Next, we introduce the similarity transformations as follows
(Andersson et al. [5]):

ψ = x f (ζ)
√

ν f b
1−σt , u = ∂ψ

∂y = bx
1−σt f ′(ζ),

v = − ∂ψ
∂x = −

√
ν f b

1−σt f (ζ), θ(ζ) = T−Tm̃
T0−Tm̃

,

T = Ts − T0

(
bx2

2ν f

)
1√

(1−σt)3 θ(ζ),

(10)

ζ = y

√
b

ν f (1− σt)
, (11)

where prime infers the derivative concerning ζ. Employing the similarity conversion as
in (10) and (11) into the governing model (6)–(9) satisfies the continuity equation, and the
remaining equations are transformed as follows:

(
µhn f /µ f
ρhn f /ρ f

)(
1 + nWe2 f ′′ 2

)(
1 + We2 f ′′ 2

) n−3
2 f ′′′ +

(
f f ′′ − ωζ

2 f ′′ − f ′2 −ω f ′
)
= 0, (12)

khn f /k f(
ρCp

)
hn f

/(
ρCp

)
f

θ′′ + Pr
(

f θ′ − 2 f ′θ − ζω

2
θ′ − 3ω

2
θ

)
= 0, (13)

with the boundary conditions

Pr f (0) +
khn f /k f
ρhn f /ρ f

χθ′(0) = 0, f ′(0) = 1, f (β) = ωβ/2,

f ′′ (β) = 0, θ(0) = 0, θ′(β) = 0,
(14)

wherein We =
√

λ2b3x2

ν f (1−σt)3 , is the local Weissenberg number [46], ω = σ
b is the dimen-

sionless measure of unsteadiness, the Prandtl number is defined as Pr =
(Cp) f µ f

k f
, while

the melting heat transfer parameter is signified by χ =
(Cp) f (T0−Tm̃)

L+(Cp)s(Tm̃−Ts)
. Moreover, β is an

unknown constant that conveying the dimensionless film thickness. β also implies the
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similarity variable (ζ) value at the free surface, and hence the expression in (11) can take
the following form:

β = h

√
b

ν f (1− σt)
, (15)

This unknown constant β must be calculated as an integral part of the boundary-value
problem. Thus,

dh
dt

= − βσ

2

√
ν f

ν f (1− σt)
, (16)

elucidates the film thickness’s rate of change. On the other hand, when n = 1 and We = 0,
the Carreau fluid model in Equations (12) and (13) reveals the Newtonian characteristics.
The physical quantities of interest in the present work are the local skin friction coefficient(

C f x

)
and the local Nusselt number (Nux), which can be defined as follows:

C f x =
τw

ρ f (Uw)
2/2

, Nux =
qwx
k f T0

, (17)

Here, the wall shear stress (τw) and the heat flux from the surface of the sheet (qw)
are given by [47].

τw =

µhn f
∂u
∂y

[
1 + λ2

(
∂u
∂y

)2
] n−1

2


y=0

, qw = −khn f

(
∂T
∂y

)∣∣∣∣
y=0

, (18)

By employing (10)–(11) and inducing (19) into (18) provides the following expression.

C f xRe1/2
x =

µhn f
µ f

2 f ′′ (0)
{

1 + We2[ f ′′ (0)]2
} n−1

2 , 2NuxRe−3/2
x (1− αt)1/2 k f

khn f
= θ′(0). (19)

The local Reynolds number is defined as Rex = xUw(x,t)
ν f

.

3. Entropy Analysis

The entropy generation analysis is ideal for calculating the dissipated heat energy and
measuring any flow systems’ performance deterioration. This nonconserved property can
be communicated in the following dimensional form [48]:

_
S
′′′

gen =
khn f

T2
0

(
∂T
∂y

)2
+

µhn f

T0

[
1 + λ2

(
∂u
∂y

)2
] n−1

2 (
∂u
∂y

)2
, (20)

where terms on heat irreversibility is given followed by the fluid friction irreversibility. By
using Equations (10) and (11) into (20), the nondimensional form of the volumetric entropy
generation can be formed as follows:

_
Ns =

khn f

k f
θ′

2
(ζ) +

µhn f

µ f

Br
ε

f ′′ 2(ζ), (21)

Here, the local entropy generation rate
(
_
Ns

)
, the Brinkman number (Br), and the

temperature difference parameter (ε) are further defined as follows:

_
Ns =

_
S
′′′

genT2
0 (1− σt)ν f

bk f (T0 − Tm̃)
2 , Br =

µ f b2x2

k f (1− σt)2(T0 − Tm̃)
, ε =

T0

T0 − Tm̃
. (22)
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In the entropy generation analysis, it is necessary to compute the Bejan number to
identify which entropy generation appears to dominate the flow system, either frictional or
thermal entropy generation. Thus, the Bejan number is calculated in the present work, and
it takes the following form:

Be =

( khn f
k f

θ′2(ζ)
)

( khn f
k f

θ′2(ζ) +
µhn f
µ f

Br
ε f ′′ 2(ζ)

) =
1

1 + Φ
, (23)

where Φ =

(
µhn f

µ f
Br
ε f ′′ 2(ζ)

)
(

khn f
k f

θ′2(ζ)

) is the irreversibility ratio. Expression in (23) signifies the

heat transfer irreversibility and total entropy ratio in the flow system. Contact melting,
lubrication, and electronic cooling are some heat transfer applications where the Bejan
number is vital. Equation (23) also can be utilised to determine the following effects in the
flow system (see Table 3):

Table 3. Physical significance of the Bejan number [49].

No. Condition in Equation (23) Interpretation

1. When Φ = 0, Be = 1 Heat transfer irreversibility is highly
influencing the flow system.

2. When Φ = 1, Be = 0.5
Both heat transfer irreversibility and fluid

friction irreversibility are equally influencing
the flow system.

3. When Be = 0 Fluid friction irreversibility is highly
influencing the flow system.

4. Results and Discussion

The transport phenomena in the thin film flow regime can be learned by plotting
the velocity and temperature profiles. In addition, calculating the local skin friction
coefficient, the local Nusselt number and the dimensionless film thickness when the
pertinent parameters vary is also necessary to inspect the present model’s performance.
Thus, all numerical outputs were generated by setting the governing parameters’ values
within the following fixed range: 0 ≤ We ≤ 0.3, 0 ≤ χ ≤ 2.5, 0.8 ≤ ω ≤ 1.4, and
0.6 ≤ n ≤ 1.6. The Prandtl number is fixed to 8 throughout the computation process.
Also, φ1 and φ2 represents the gold (Au) and copper (Cu) nanoparticle volume fractions,
respectively. The numerical outputs are compared between the Carreau hybrid nanofluid
case, where φ1 = 0.02, φ2 = 0.03, and the single-typed Carreau nanofluid is considered
with φ1 = 0, φ2 = 0.03. These parameter values are chosen based on the availability
of the numerical solutions. However, those parameter values lie within the acceptable
range established in previously published works. Equations (12)–(14), which convey the
simplified form of the present thin film flow problem, are solved using the bvp4c function
found in the MATLAB 2019a software. This built-in collocation code eases the solving
process even though the present work has dimensionless film thickness as the unknown
parameter [50]. Besides that, all computed numerical results are accurate within 1× 10−10.
In order to test the precision of the present method, the thin film flow problem studied by
Wang [6] have been resolved via the bvp4c function, and the comparison of the results is
given in Table 4. Table 4 proves that the built-in collocation method agrees well with the
numerical results produced via the homotopy analysis method in [6]. Meanwhile, the CPU
time for calculating the non-uniqueness solutions is presented in Table 5. In this sample, it
is apparent that the CPU time increases from the first to the second solution in every case
of n. Before the presentation and discussion of the results go further, it is appropriate to
confer about the non-uniqueness numerical solutions. It is undeniable that more than one
numerical solutions are obtainable by providing a good set of guess values since that is the
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built-in bvp4c routine’s requirement. The present work found that the second solutions
always yield negative film thickness. The negative film thickness implies the thin liquid
film’s distortion, and hence an ideal thin liquid film cannot be formed [23]. Therefore, the
trends showed by the second solution are disregarded.

Table 4. Comparison value of −θ′(0) in the problem solved by Wang [6].

Pr
−θ

′
(0)

Wang [6] Present Result

0.01 0.037734 0.0377342
0.1 0.343931 0.3439312
1 1.999590 1.9995914
2 2.975450 2.9759050

Table 5. CPU time for calculating the first and second solutions when χ = 1.5, ω = 0.8, Pr = 8, and
We = 0.05.

n
CPU Time (Seconds)

First Solution Second Solution

0.6 0.491 1.502
0.8 0.499 1.496
1.0 0.502 1.436
1.2 0.508 1.399
1.6 0.512 1.368

Now, Table 6 demonstrates the trend of β for the Carreau hybrid nanofluid and Carreau
nanofluid when We increases. The increment of We from 0 to 0.3 affects the dimensionless
film thickness to decrease by 0.25% for Carreau hybrid nanofluid and decrement by 0.18%
for the Carreau nanofluid. The reason for this occurrence can be collected from Figure 2
and Table 7. Figure 2 shows that the fluid velocity increases insignificantly across the
flow regime when We increases. The increment in We elucidates a longer relaxation
rate; thus, the Carreau fluid takes more time to react with the external forces. Since the
accelerating sheet imposes drag force towards the Carreau fluid (this can be evident by
the negative values of C f xRe1/2

x in Table 7), the fluid velocity increases slightly past the
unsteady accelerating sheet, which elevates the wall shear stress and increases the values
of C f xRe1/2

x in a minimal amount.

Table 6. Numerical outputs of β for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid when
ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
β

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
1.54820137 1.64482153

(−7.56677274) (−8.69372861)

0.01
1.54819697 1.64481817

(−7.56278525) (−8.68784901)

0.05
1.54809161 1.64473765

(−7.47673697) (−8.56397941)

0.1
1.54776380 1.64448683

(−7.28412028) (−8.30238316)

0.3
1.54439508 1.64188656

(−6.63114764) (−7.49066700)
() Second solution.
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Table 7. Numerical outputs of C f xRe1/2
x for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and

nanofluid when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
CfxRe1/2

x

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
−3.09668738 −2.57368640

(−19.16027074) (−20.29066744)

0.01
−3.09667513 −2.57367904

(−19.13980681) (−20.26302661)

0.05
−3.09638151 −2.57350275

(−18.69982744) (−19.68364588)

0.1
−3.09546813 −2.57295373

(−17.72582610) (−18.47813713)

0.3
−3.08610125 −2.56727029

(−14.52820034) (−14.88712835)
() Second solution.

Meanwhile, Figure 3 displays the temperature profiles across the thin film flow vicinity.
For the Carreau fluid associated with the hybrid nanoparticles, the temperature increases
when We increases. This behavior is evident when 0 ≤ ζ < 0.72727. It should be noted
that the fluid is under the influence of shear thinning effect (n = 0.8), and hence the fluid
viscosity may decrease with the act of the accelerating sheet and the melting heat transfer’s
effect. At this moment, when the effect of We is amplified, the fluid temperature augments
since the relaxation time is prolonged. A similar result has been reported by Hayat et al. [51].
However, after ζ = 0.72727, the fluid far from the accelerating surface is less affected with
the melting heat transfer and thus, the fluid temperature decreases when We increases.
On the other hand, in the case of the Carreau nanofluid, fluid temperature increases with
declining values of We when 0 ≤ ζ < 0.72727, and the opposite trend is observed after
ζ = 0.72727. Such an interesting difference in the trend might be due to the suspended
nanoparticles’ thermal conductivity in the base fluid. Besides that, Table 8 tabulates changes
in the heat transfer rate at the accelerating impermeable surface. The flow with the copper
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nanoparticles spectacle a gradual increase in θ′(0), and this is acceptable because copper
has better thermal conductivity and results in an increased rate in heat exchange. However,
the hybrid nanofluid does not exhibit a gradual degree of improvement. The heat transfer
rate decreases when We’s value increases from 0 to 0.3. The increment in the fluid relaxation
time affects the Carreau hybrid nanofluid to become warm, which lowers heat flux from
the accelerating surface and diminishes θ′(0).
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Table 8. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
−2.323216453× 10−16 −1.98241088× 10−16(
−1.63498096× 10−13) (

3.92924247× 10−16)
0.01

−2.34231832× 10−16 −1.97629390× 10−16(
−1.81621360× 10−13) (

−4.96367481× 10−8)
0.05

−2.38023218× 10−16 −1.84582892× 10−16(
−2.65814195× 10−17) (

−1.16042427× 10−15)
0.1

−2.38200133× 10−16 −1.46101909× 10−16(
−3.67289115× 10−15) (

4.52972244× 10−14)
0.3

−9.21786995× 10−17 3.65397478× 10−17(
8.12603466× 10−17) (

−3.53683008× 10−9)
() Second solution.

The results’ discussion is further by examining the behavior of the temperature profiles
and θ′(0) when χ increases. Even though the temperature profiles in Figure 4 reveal an
unusual degree of dissonance, Table 9 informs that the convective heat transfer rate at the
accelerating sheet increases in the single-typed nanofluid but deteriorates in the Carreau
fluid with hybrid suspensions. The increment in χ indicates more cold fluid molecules
exist from the melting accelerating sheet towards the warm fluid. Therefore, the nanofluid
temperature declines at the moving surface and augments the heat exchange rate. The
work of Khan et al. [52] also conveyed such similar result. Conversely, the hybrid nanofluid
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temperature may have retained a low thermal conductivity, ensuring the low heat flux rate
and reducing θ′(0) at the accelerating surface. Table 10 confirms that when the Carreau
fluid with the presence of the nanoparticles changes its character from the shear thinning
to the shear thickening feature, the dimensionless film thickness slightly increases, in
increments of about 0.035% and 0.025% for the Carreau hybrid nanofluid and Carreau
single-typed nanofluid, respectively.
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Figure 4. Temperature distribution/profile when ω = 0.8, n = 0.8, Pr = 8, and We = 0.05.

Table 9. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when ω = 0.8, n = 0.8, Pr = 8, and We = 0.05.

χ
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.5
8.06112535× 10−16 −2.50887021× 10−17(
4.40156253× 10−9) (

5.80458696× 10−7)
1.0

−1.84797181× 10−14 −3.67551030× 10−16(
−4.87963701× 10−8) (

2.33177392× 10−13)
1.5

−2.38023218× 10−16 −1.84582892× 10−16(
−2.65814195× 10−17) (

−6.39677735× 10−15)
2.0

−2.90618915× 10−16 3.70535475× 10−16(
−4.54529432× 10−17) (

−1.34610120× 10−14)
2.5

−5.43841326× 10−16 6.27111798× 10−16(
−2.19788267× 10−15) (

1.09052102× 10−16)
() Second solution.
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Table 10. Numerical outputs of β for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
β

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−1.54798177 1.64465370
(−7.39052211) (−8.44119210)

0.8
1.54809161 1.64473765

(−7.47673697) (−8.56397941)

1.0
1.54820137 1.64482153

(−7.56677274) (−8.69372861)

1.2
1.54831102 1.64490536

(−7.66098390) (−8.83125851)

1.6
1.54853004 1.64507283

(−7.86361369) (−9.13373232)
() Second solution.

Meanwhile, the temperature profiles in Figure 5 display that when ζ ≤ 0.444, the
Carreau hybrid nanofluid temperature decreases while n increases from 0.6 to 1.6. This is
because the dilatant feature retards the heat energy transmission. However, when the liquid
film vicinity travel at ζ > 0.444, the fluid temperature becomes an increasing function of n.
The area far from the accelerating sheet is possibly less affected by the shear force from
the accelerating sheet, so heat transmission is reduced. Also, from Figure 5, it is observed
that the fluid temperature is low at the area far from the accelerating sheet compared to
the fluid temperature near the sheet’s surface. Table 11 identifies that the heat transfer
rate at the accelerating sheet gradually decreases for the Carreau hybrid nanofluid when
n increases. This is true because Metzner et al. [53] corroborated that dilatant fluid has
a lower heat transfer rate than the shear-thinning fluid. On the other hand, the opposite
trend is perceived for the single-typed hybrid nanofluid. In the single-typed nanofluid
considered in the present work, the nanoparticle volume fraction is less than the hybrid
nanofluid, which may increase the fluid’s thermal conductivity as the low-temperature
molecules enter the flow stream. Thus, a moderate increase in θ′(0)’s values can be noticed
along with the increment of n. Table 12 delivers the decrement of C f xRe1/2

x along with the
increment of n. The strengthening effect of n reduces the wall shear stress at the accelerating
sheet. Hence, the values of C f xRe1/2

x decline.
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Table 11. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−4.47529129× 10−16 6.06222801× 10−16(
−2.02318698× 10−15) (

1.07353816× 10−14)
0.8

−5.43841326× 10−16 6.27111798× 10−16(
−2.19788267× 10−15) (

1.09052102× 10−16)
1.0

−6.39204439× 10−16 6.48824224× 10−16(
−3.75921582× 10−14) (

1.62156980× 10−15)
1.2

−7.28671413× 10−16 6.70578557× 10−16(
2.96819224× 10−17) (

2.17295471× 10−14)
1.6

−9.13862705× 10−16 7.14748340× 10−16(
−3.81864083× 10−9) (

2.90372611× 10−16)
() Second solution.

Table 12. Numerical outputs of C f xRe1/2
x for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and

nanofluid when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
CfxRe1/2

x

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−3.09607536 −2.57331897

(−18.26496764) (−19.11861939)

0.8
−3.09638151 −2.57350275

(−18.69982744) (−19.68364589)

1.0
−3.09668738 −2.57368640
(−7.56677274) (−20.29066744)

1.2
−3.09699297 −2.57386991

(−19.64894688) (−20.94523474)

1.6
−3.09760332 −2.57423653

(−20.72373597) (−22.42507737)
() Second solution.

Figures 6–9 show the results of the entropy generation analysis. Figure 6 views the

increment in
_
Ns when Br increases. Adding value in Br engenders more heat in the fluid

flow vicinity, affecting the system more in chaos and resulting in undesirable flow systems’
performance. Moreover, Figure 7 exposes the Bejan number profiles when Br varies, and
the values of Be increases along with the increment in Br. It is clear that the heat transfer
irreversibility is gradually influencing throughout the flow system when Br rises, except
for the case of the Carreau single-typed nanofluid, and Br = 0.5. Figure 7 indicates that
when Carreau nanofluid at Br = 0.5, fluid friction irreversibility dominates the flow system.

Figures 8 and 9 present the profiles of
_
Ns and Be profiles when n varies. The variation in n

gives insignificant changes on
_
Ns and Be profiles. For example, from Figure 8, the state of

the Carreau fluid from portraying the shear-thinning trait and then to the shear-thickening
feature yields more heat energy incorporated to the system but minimal. However, the heat
transfer irreversibility highly influences the fluid flow system, although Figure 9 shows the
minor decrement in Be when the values of n increases.
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Figure 9. Be profiles when χ = 2.5, ω = 0.6, Pr = 8, ε = 0.2, Br = 1.5 and We = 0.05.

5. Conclusions

The present work endeavored to investigate the performance of the Carreau thin
hybrid nanofluid film flow and heat transfer while the melting heat transfer effect imposed
on the accelerating sheet. Interestingly, this is the original work in the thin film Carreau
hybrid nanofluid theoretical model, considering the impact of the melting heat transfer.
Two approximate solutions were identified for every variation case. The Carreau hybrid
nanofluid’s heat transfer rate decreases when the fluid adapts to the dilatant feature.
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Besides that, the presence of the hybrid nanoparticles promotes entropy in the flow system
compared to the mono-typed nanoparticles. The numerical solutions with negative film
thickness indicated defective thin film flow and unreliable. However, the melting heat
transfer effect does not affect the liquid film thickness.
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Nomenclature

A1 first Rivlin-Ericksen tensor (Pa)
Au gold
b stretching rate

(
s−1)

Be Bejan number (−)
C f x local skin friction coefficient (−)
Cp specific heat at constant pressure

(
Jkg−1K−1

)
Cu copper
f (ζ) dimensionless stream function (−)
H(t) liquid thin film thickness (m)
I identity tensor (−)
k f fluid’s thermal conductivity

(
Wm−1K−1

)
khn f hybrid nanofluid’s thermal conductivity

(
Wm−1K−1

)
L fluid’s latent heat (J/kg)
n power-law index (−)
_
Ns local entropy generation rate
Nux local Nusselt number (−)
p pressure (Pa)
Pr Prandtl number (−)
qw wall heat flux

(
Js−1m−2

)
Rex local Reynolds number (−)
T temperature (K)
Ts temperature at slit (K)
Tw wall temperature (K)
T0 reference temperature (K)
Tm̃ melting surface temperature (K)
t time (s)
u, v velocity components at x− and y− axes

(
ms−1)

Uw(x, t) accelerating sheet’s velocity
(
ms−1)

V velocity fields
(
ms−1)

We local Weissenberg number (−)
x, y Cartesian coordinates (m)
Greek Symbols
Π second invariant strain rate tensor (Pa)
β unknown parameter (−)
.
γ shear rate (s)
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ω unsteadiness parameter (−)
ζ similarity variable (−)
η apparent viscosity

(
kgm−1s−1)

η∞ high shear rates viscosity
(
kgm−1s−1)

η0 zero shear rates viscosity
(
kgm−1s−1)

θ non-dimensional temperature (−)
λ material time constant (s)
µhn f hybrid nanofluid’s dynamic viscosity

(
kgm−1s−1)

µ f fluid’s dynamic viscosity
(
kgm−1s−1)

ν f base fluid’s kinematic viscosity
(
m2s−1)

ρhn f hybrid nanofluid’s density
(
kgm−3)

σ positive constant
(
s−1)

τ Cauchy stress tensor (Pa)

τw wall shear stress
(

kgm−1s−2
)

φ1 Au’s nanoparticle volume fraction (−)
φ2 Cu’s nanoparticle volume fraction (−)
ψ stream function (−)
χ melting heat transfer parameter (−)
Subscripts
w condition at the stretching sheet’s wall
f base fluid
n f nanofluid
hn f hybrid nanofluid
s1 Au’s solid component
s2 Cu’s solid component
Superscript
′ derivative with respect to ζ
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