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Abstract: This paper considers the fixed-time synchronization (FIXTS) of neural networks (NNs)
by using quantized intermittent control (QIC). Based on QIC, a fixed-time controller is designed to
ensure that the NNs achieve synchronization in finite time. With this controller, the settling time can
be estimated regardless of initial conditions. After ensuring that the system has stabilized through
this strategy, it is suitable for image protection given the behavior of the system. Meanwhile, the
encryption effect of the image depends on the encryption algorithm, and the quality of the decrypted
image depends on the synchronization error of NNs. The numerical results show that the designed
controller is effective and validate the practical application of FIXTS of NNs in image protection.

Keywords: fixed-time synchronization; quantized intermittent control; image protection; neural
networks

1. Introduction

With the rapid development of the internet and the increased exchange of information
in the network [1], information security becomes particularly important [2,3]. When
data is transmitted, it can be subject to network attacks, which can lead to data leakage.
Therefore, for reasons of data security, encryption algorithms are widely used in secure
communications, especially in digital image processing [4–7]. In [4], a new technique is
proposed to create chaos-based encryption schemes with larger parameter spaces using
chaotic maps with adaptive symmetry. Furthermore, chaotic encryption algorithms have
received a great deal of attention due to their unpredictability and extreme sensitivity of
the initial conditions [6,8,9]. However, not all chaotic encryption algorithms guarantee the
possibility of lossless decryption. Therefore, we choose a chaotic encryption algorithm
the synchronization of NNs [7,10], which can guarantee the decryption of the image after
the error system is synchronized. In [7], a chaotic cryptosystem using a synchronous
chaotic system as a key generator is proposed. Thus, the security of medical image
transmission and storage can be improved. Up to now, there has been considerable
research into the synchronization of NNs. Among them, finite-time synchronization (FTS)
has been extensively studied because of its ability to converge in a relatively short period
of time [11–14]. In [12], the main study is the FTS of coupled neural networks when the
controller is discontinuous; in [14], the main study is FTS of neural networks with time
delays.

However, finite-time synchronization also has its drawbacks in that the estimate of
the FTS establishment time depends on changes in the initial conditions of the system [15].
However , the initial values of the system are more difficult to obtain [16]. For example, in
secure communication, how should one decrypt an image after applying chaotic encryption
when the initial values of the system are not available? Reference [17] proposes a special
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kind of FTS, namely FIXTS, that can solve this problem. The estimated time establishment
for FIXTS does not depend on the initial value of the system. Thus, it can be used to decrypt
chaotic encrypted images that lack a systematic initial value. Therefore, it is important
to study chaotic encryption algorithms based on fixed-time synchronization of neural
networks in image protection.

Fixed-time synchronization of neural networks by designing a new controller. In recent
decades, researchers have proposed many different control methods to stabilise various
systems, such as adaptive control [18], pinning control [19,20], intermittent control [21]
and sliding mode control [22,23]. As intermittent control has a discontinuous working
time, control costs can be reduced. Therefore, it is more beneficial for applications in the
engineering field. In addition, since the communication channel capacity is also limited [24],
we have considered signal quantization in the design of the controller [25,26]. Thus, this
paper investigates fixed-time synchronization of neural networks based on quantized
interval control, after which the synchronized sequences are used for image encryption
and decryption.

Motivated by the aforementioned concerns, this paper proposes a method of quantized
intermittent control to ensure that the neural networks achieves FIXTS and applies the
synchronization sequence to image protection. The contributions and innovations of this
paper can be summarised as follows.

(1) Considering the limited channel capacity and control costs, a combination of
intermittent control and quantization strategies is therefore used. Neural network synchro-
nization is achieved by this method.

(2) A fixed time controller was designed through which the fixed time synchronization
of the neural network was achieved. In contrast to FTS, the estimated time for FIXTS is
established independent of the initial conditions.

(3) Applying chaotic neural networks and fixed-time synchronization techniques to
the encryption and decryption of images. The application of this chaotic neural network
enables the image encryption system to resist stronger security attacks and has greater
robustness.

The chapter arrangement of this paper is as follows: in Section 2, the system model is
presented, with some useful definitions and assumptions. In in Section 3, the fixed-time
synchronization of neural networks and its strict derivation are studied. In in Section 4,
the theoretical results are verified by example and simulation results. Furthermore, apply
fixed-time synchronization to image protection. In in Section 5, the conclusion is given.

2. Preliminaries and System Description

Consider the following NNs for i = 1, 2, . . ., n:

ṁi(ς) = −cimi(ς) +
n

∑
j=1

aij f j(mi(ς)), (1)

where ς indicates the time scale, m(ς) = (m1(ς), m2(ς), · · · , mn(ς))T ∈ Rn is the state
vector of the neural networks, f (m(ς)) = ( f1(m1(ς)), f2(m2(ς)), · · · , fn(mn(ς))T is vector-
valued activation function. C = diag(c1, c2, . . ., cn) > 0 is the self-feedback connection
weight matrix, A = (aij)n×n is a synaptic connection weight matrix.

In order to facilitate understanding, we take the system (1) as the drive system, the
response system is shown in the following equation:

χ̇i(ς) = −ciχi(ς) +
n

∑
j=1

aij f j(χi(ς)) + ui(ς), (2)

where i = 1, 2, . . .n, χ(ς) = (χ1(ς), χ2(ς), · · · , χn(ς))T ∈ Rn is the state vector of the neural
networks, f (χ(ς)) = ( f1(χ1(ς)), f2(χ2(ς)), · · · , fn(χn(ς))T is vector-valued activation
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function. ui(ς) is a controller; C = diag(c1, c2, . . ., cn) > 0 is the self-feedback connection
weight matrix, A = (aij)n×n is a synaptic connection weight matrix.

Definition 1 ([27]). If there exists a constant T > 0 such that the following inequality holds:

lim
ς→T
‖mi(ς)− χi(ς)‖ = 0. (3)

for any i = 1, 2, . . ., n, if ς ≥ T, then the drive system (1) and the response system (2) are said to be
FIXTS.

Assumption 1 ([24]). f : Rn → Rn are nonlinear functions satisfying the Lipstchiz condition
and there exist constant L ≥ 0, such that:

‖ f (χi(ς))− f (mi(ς))‖ ≤ L‖χi(ς)−mi(ς)‖, (4)

where i = 1, 2, . . ., n and χi(ς), mi(ς) ∈ R.

Lemma 1 ([28]). If V(ς) is a non-negative function and satisfies the following conditions:{
V̇(ς) ≤− aVp(ς)− bVq(ς), ς ∈ [kT, kT + σT),

V̇(ς) ≤0, ς ∈ [kT + σT, (k + 1)T),
(5)

where T > 0, 0 < σ < 1, k = 0, 1, 2, . . ., a > 0, b > 0, 0 < p < 1, q > 1. Then V(ς) ≡ 0, if

ς ≥ Tmax =
1

aσ(1− p)
+

1
bσ(q− 1)

. (6)

Lemma 2 ([29]). If 0 < p ≤ 1, q > 1 and η1, η2, . . ., ηn ≥ 0, then

n

∑
i=1

η
p
i ≥ (

n

∑
i=1

ηi)
p,

n

∑
i=1

η
q
i ≥ n1−q(

n

∑
i=1

ηi)
q. (7)

Lemma 3 ([30]). If there exists a positive constant γ and a positive definite symmetric matrix Λ,
then for any matrices P and Q the following inequality holds:

PTQ + QT P ≤ γPTΛP + γ−1QTΛ−1Q. (8)

3. Main Results

In this section, we will study the fixed-time synchronization of neural networks via
QIC. Define ϑi(ς) = χi(ς)−mi(ς) as the error system, thus, the error dynamics system can
be expressed as:

ϑ̇i(ς) = −ciϑi(ς) +
n

∑
j=1

aijgj(ϑi(ς)) + ui(ς), (9)

where gj(ϑi(ς)) = f j(χi(ς))− f j(mi(ς)).
In order to achieve FIXTS, the quantized intermittent controller is designed as follows:

ui(ς) =− r1q(ϑi(ς))− r2sgn(q(ψi(ς)))
(
|ϑi(ς)|α

+ |ϑi(ς)|β
)

, ς ∈ [kT, kT + σT),

ui(ς) =− r1q(ϑi(ς)), ς ∈ [kT + σT, (k + 1)T),

(10)

where 0 < α < 1, β > 1, r1 > 0, r2 > 0, 0 < σ < 1.
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Furthermore, ω =
{
±ωi : ωi = ρiω0, 0 < ρ < 1, i = 0,±1,±2, . . .

}
∪ {0} with a suffi-

ciently large constant ω0 > 0. For ∀τ ∈ R, q(τ) is constructed as follows:

q(τ) =


ωi, i f

1
1 + δ

ωi < τ ≤ 1
1− δ

ωi,

0, i f τ = 0,

− q(−τ), i f τ < 0,

(11)

where δ = 1−ρ
1+ρ . According to the analysis in [24], if ∆ ∈ [−δ, δ] exists in Equation (10), then

q(τ) = (1 + ∆)τ, ∀τ ∈ R. Furthermore, at the same time if Λ(ς) = diag(Λ1(ς), . . .Λn(ς)) ,
and Λi(ς) ∈ [−δ, δ], i = 1, 2. . .n, then:

q(ϑi(ς)) = (In + Λ(ς))ϑi(ς). (12)

Theorem 1. If the following inequalities hold, the error system (9) will be stable in a fixed time
Tmax.

− ‖C‖+ λ1‖AAT‖+ λ−1
1 L + r1(−1 + δ) + 2r2 < 0,

− ‖C‖+ λ1‖AAT‖+ λ−1
1 L + r1(−1 + δ) < 0,

(13)

where λ1 and L are positive constants, and r1 > 0, r2 > 0, 0 < σ < 1, 0 < δ < 1.
Consequently, the response system (2) is fixed-timely synchronized onto drive system (1) under

the controller (10). The fixed time can be estimated by:

Tmax =
1

2r2σ 1−α
2

+
1

2r2σ
β−1

2

. (14)

where r2 is the control gain parameter and σ is the intermittent control parameter.

Proof. Based on the Lyapunov method, if a perturbation is given to the system, when
the perturbation disappears, the stored energy of the system will gradually decay until
it tends to the equilibrium state, and the energy of the system tends to a minimal value.
Furthermore, the Lyapunov function is designed as follows:

V(ς) = ϑi(ς)
Tϑi(ς). (15)

The Lyapunov function is derived and take the derivative of V(ς) at different time
periods of the quantized intermittent controller (10), as follows:

When ς ∈ [kT, kT + σT)

ϑ̇i(ς) =− Cψi(ς) + Ag(ϑi(ς))− r1q(ϑi(ς))− r2sgn(q(ϑi(ς)))
(
|ϑi(ς)|α + |ϑi(ς)|β

)
.

Then,

V̇(ς) =ϑi(ς)
T2ϑ̇i(ς)

=ϑi(ς)
T2
(
− Cϑi(ς) + Ag(ϑi(ς))− r1q(ϑi(ς))

− r2sgn(q(ϑi(ς)))(|ϑi(ς)|α + |ϑi(ς)|β)
)

=− ϑi(ς)
T2Cψi(ς) + 2ϑi(ς)

T Ag(ϑi(ς))− ϑi(ς)
T2r1q(ϑi(ς))

− 2ϑi(ς)
Tr2sgn(q(ϑi(ς)))|ϑi(ς)|α − 2ϑi(ς)

Tr2sgn(q(ϑi(ς)))|ϑi(ς)|β.
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By using Assumption 1 and Lemma 3, where λ1 is a positive constant and the following
inequality holds:

2ϑi(ς)
T Ag(ψi(ς)) ≤λ1ϑi(ς)

T AATϑi(ς) + λ−1
1 g(ϑi(ς))

T g(ϑi(ς))

≤λ1ϑi(ς)
T AATϑi(ς) + λ−1

1 Lϑi(ς)
Tϑi(ς),

Using Equation (12), then:

−ϑi(ς)
Tq(ϑi(ς)) = −ϑi(ς)

T(I + ∆(ς))ϑi(ς) ≤ ϑi(ς)
T(−1 + δ)ϑi(ς),

Accordng to (12) and δ < 1, if ϑi(ς) > 0(or < 0), then q(ϑi(ς)) > 0(or < 0). Hence,

sgn(q(ϑi(ς))) = sgn(ϑi(ς)),

Then,

ϑi(ς)
Tr2sgn(q(ϑi(ς)))|ϑi(ς)|α = ϑi(ς)

Tr2sgn(ϑi(ς))|ϑi(ς)|α

≥ r2|ϑi(ς)
Tϑi(ς)|

α+1
2 ,

ϑi(ς)
Tr2sgn(q(ϑi(ς)))|ϑi(ς)|β = ϑi(t)Tr2sgn(ϑi(ς))|ϑi(ς)|β

≥ r2|ϑi(ς)
Tϑi(ς)|

β+1
2 .

Therefore,

V̇(ς) ≤− ϑi(ς)
T2||C||ϑi(ς) + λ1ϑi(ς)

T AATϑi(ς) + λ−1
1 Lϑi(ς)

Tϑi(ς)

+ ϑi(ς)
T2r1(−1 + δ)ϑi(ς)− 2r2|ϑi(ς)

Tϑi(ς)|
α+1

2 − 2r2|ϑi(ς)
Tϑi(ς)|

β+1
2

≤ϑi(ς)
T2
(
− ‖C‖+ λ1‖AAT‖+ λ−1

1 L + r1(−1 + δ)
)

ϑi(ς)

− 2r2|ϑi(ς)
Tϑi(ς)|

α+1
2 − 2r2|ϑi(ς)

Tϑi(ς)|
β+1

2 .

By inequalities (13), then

V̇(ς) ≤− 2r2|ϑi(ς)
Tϑi(ς)|

α+1
2 − 2r2|ϑi(ς)

Tϑi(ς)|
β+1

2

=− 2r2V
α+1

2 − 2r2V
β+1

2 . (16)

Similarly, when ς ∈ [kT + σT, (k + 1)T)

ϑ̇(ς) = −Cϑi(ς) + Ag(ϑi(ς))− r1q(ϑi(ς))

then

V̇(ς) =ϑi(ς)
T2ϑ̇i(ς)

=ϑi(ς)
T2
(
− Cϑi(ς) + Ag(ϑi(ς))− r1q(ϑi(ς))

)
=− ϑi(ς)

T2Cϑi(ς) + 2ϑi(ς)
T Ag(ϑi(ς))− ϑi(ς)

T2r1q(ϑi(ς))

≤− ϑi(ς)
T2‖C‖ϑi(ς) + λ1ϑi(ς)

T AATϑi(ς) + λ−1
1 Lϑi(ς)

Tϑi(ς)

+ ϑi(ς)
T2r1(−1 + δ)ϑi(ς)

≤ϑi(ς)
T2
(
− ‖C‖+ λ1‖AAT‖+ λ−1

1 L + r1(−1 + δ)
)

ϑi(ς).

By inequalities (13), then
V̇(ς) ≤ 0. (17)
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For ς ∈ Rn, we have:{
V̇(ς) ≤ −2r2V

α+1
2 − 2r2V

β+1
2 , ς ∈ [kT, kT + σT),

V̇(ς) ≤ 0, ς ∈ [kT + σT, (k + 1)T),
(18)

where r2 is the control gain parameter and σ is the intermittent control parameter. Under
the Lemma 1, let a = 2r2, b = 2r2, p = α+1

2 , q = β+1
2 , then we have Tmax = 1

2r2σ 1−α
2

+ 1
2r2σ

β−1
2

.

It follows that, V(ς) ≡ 0, if ς > Tmax. Moreover,the system error ϑi(ς) will converge to zero
within Tmax. Consequently, under the controller (10), the response system (2) is fixed-timely
synchronized onto the drive system (1). This completes the proof.

Remark 1. In inequalities (18), if the Intermittent control parameter σ = 0 or σ = 1, the discrete
time controller (10) will become a continuous time controller. To date, researchers have made in-
depth analyses of continuous-time systems, and relevant details can be found in [31–33]. Similarly,
the drive system (1) and the response system (2) can be synchronized.

Remark 2. When the intermittent control parameter σ = 0 , the controller is expressed as follows

ui(ς) = −r1q(ϑi(ς)). (19)

When the intermittent control parameter σ = 1 , the controller of a system is expressed as
follows

ui(ς) = −r1q(ϑi(ς))− r2sgn(q(ϑi(ς))). (20)

Remark 3. From Equation (14), we can see that the establishment of the estimated time for FIXTS
is closely related to r2. When the parameter α, β, σ are constants, Tmax = 1

2r2σ 1−α
2

+ 1
2r2σ

β−1
2

will

become a strictly decreasing function with respect to the parameter r2. As a result, we can control
the estimation time by adjusting the value of r2.

4. Numerical Simulation: Synchronized and Applied to Image Encryption
4.1. FIXTS of Neural Networks via Quantized Intermittent Control

In this section, we will verify the correctness of the controller (10) design by means of
a simulation example, thus proving the correctness of Theorem 1.

The Chua’s circuit equation consider neural networks described by the following
equation to illustrate Theorem 1 [34]:

ṁ(ς) = −Cm(ς) + A f (m(ς)), (21)

where m(ς) = (m1(ς), m2(ς), m3(ς))
T , f (m(ς)) = 0.5(|m1(ς) + 1| − |m1(ς) − 1|, 0, 0)T ,

A = diag(54/7, 0, 0),

C =

 19
7 −9 0
−1 1 −1
0 14.28 0

.

When the initial state of m(0) = (0.65, 0.2, 0.8)T , the chaotic attractor can be observed
according to Figure 1a.

Consider the error system as follows:

ϑ̇(ς) = −Cϑ(ς) + Ag(ϑ(ς)) + u(ς), (22)
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where u(ς) is a controller, the controller as follows:
u(ς) = −r1q(ϑ(ς))− r2sgn(q(ϑ(ς)))

(
|ϑ(ς)|α

+ |ϑ(ς)|β
)

, ς ∈ [kT, kT + σT),

u(ς) = −r1q(ϑ(ς)), ς ∈ [kT + σT, (k + 1)T),

(23)

where 0 < σ < 1 is an intermittent adjustment parameter and 0 < δ = 1−ρ
1+ρ < 1 is a

parameter related to quantification, we choose σ = 0.4, ρ = 0.6, then δ = 1−ρ
1+ρ = 0.25.

According to the inequalities (13) and L = 1, λ1 = 1, we can obtain the gain parameters
of the controller r1 > 47.377 and 0 < r2 < 0.375r1 − 17.7664. We choose r1 = 60 and
0 < r2 < 4.7336, then choose r2 = 4. Furthermore, α > 0, β > 1, then choose α = 0.5,
β = 1.5. Therefore, under the controller (23), the error system is stabilized, which is shown
in Figure 1b. Furthermore, by (14), one can estimate the settling time by Tmax = 1.6667 (s).
From Figure 1b, one can get that the synchronization error approaches to zero before
1.6667 (s). This suggests that Theorem 1 is correct.

(a) The chaotic trajectories of the chua system. (b) Synchronization errors ϑ(ς) under the controller (23).

Figure 1. Fixed-time synchronization of “Chua’s circuit”.

4.2. Application of FIXTS to Image Protection

In this section, we apply Theorem 1 to image protection. When the NNs achieves
FIXTS, the drive system sequence is applied to the image encryption and the response
system sequence is used as the decryption sequence for the encrypted image (see Figure 2).

Figure 2. Encryption and decryption process of the proposed algorithm.
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I. Chaotic Encryption and Decryption Mechanism: Choose a picture P (lena.tiff) with
a size M× N × 3, then the image encryption described as follows.

(1). Assume that the pixel size of image P is M × N and that the pixel values are
all integers from 0 to 255. Then, the pixel values of image P are read through the three
channels R, G and B. Therefore, three grey scale images PR(i, j), PG(i, j) and PB(i, j) can
be obtained.

(2). Obtain the sequence S1 of the drive system after achieving FIXTS and integerise
the sequence S1 as follows.

X1 = mod( f loor(S1 + 100) ∗ 102, 10 ∗max(M, N)) + 2,

S = mod( f loor((S1 + 1000) ∗ 102), 256).

The resulting X1 is the pseudo-random sequence and S is the diffusion pseudo-random
sequence. Then, the dislocation pseudorandom sequences X1p and X1n are generated by
X1, and the forward diffusion pseudorandom sequence S1p and the inverse diffusion
pseudorandom sequence S1n are generated by S.

(3). Disorder the grey-scale images PR(i, j), PG(i, j), PB(i, j) with the Arnold matrix,
the disorder steps are as follows.

mod(X1n(k) + X1p ∗ k, M ∗ N) + 1, k = 1, 2, . . ., M ∗ N.

As a result, the images MR(i, j), MG(i, j) and MB(i, j) can be obtained after the
dislocation.

(4). The forward diffusion and reverse diffusion of the scrambled images MR(i, j),
MG(i, j) and MB(i, j) are performed based on the heteroskedastic operation, so that the
encrypted images ER(i, j), EG(i, j) and EB(i, j) can be obtained. The specific encryption
algorithm is shown in Algorithm 1 (taking image MB(i, j) as an example):

Algorithm 1 Diffusion processing(eg:image MB(i, j))

Input:
MB(i,j), M, N, S1p, S1n.

Output:
EB(i,j).

1: B(i)=MB(:);
2: B0=0, B1=zeros(1,M*N);
3: B1(1)=bitxor(bitxor(B0,S1p),B(1));
4: for i = 2 : M ∗ N do
5: B1(i)=bitxor(bitxor(B1(i− 1),S1p(i)),B1(i));
6: end for
7: B2=zeros(1,M*N);
8: B2(i)=bitxor(bitxor(B0,S1n(M ∗ N)),B1(M ∗ N));
9: for i = M ∗ N − 1 :−1 :1 do

10: B2(i)=bitxor(bitxor(B2(i + 1),S1n(i)),B1(i));
11: end for
12: EB(i,j)=reshape(B2,M,N);
13: return EB(i,j);

(5). The decryption process, by selecting the response system sequence S and carrying
out the reverse process of steps (1)–(4), results in the decrypted images DR, DG and DB,
and finally the three grayscale images are synthesized, which is the decrypted image P
(lena.tiff).
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II. Experimental Results: In this section, specific simulation examples are analysed
in order to determine the effectiveness of FIXTS of NNs applied to image protection. In
Example 1 the image lena is analysed for encryption and decryption and other related
image analysis. In Example 2 the encryption and decryption algorithm is performed on
the depth image. In Example 3 the corresponding comparison with articles of the similar
type is given. Example 4 gives the performance analysis of the execution of encryption and
decryption algorithms for images.

Example 1. Image encryption and decryption.

A image (lena.tiff) of size 256 × 256 was selected for simulation verification. From
Figure 3a–c it can be seen that the lena has been encrypted by the drive system sequence
and is able to recover the lena by decrypting it in response to the system sequence. From
the histogram of the information distribution in Figure 3d–f, it can be observed that the
image information has been completely hidden and then recovered again afterwards.

(a) Original image. (b) Encrypted image. (c) Decrypted image.

(d) Histogram of (a). (e) Histogram of (b). (f) Histogram of (c).

Figure 3. Encryption and decryption of “Lena.tiff.” after the system FIXTS.

Table 1 shows the correlation of adjacent pixels of the three images acquired by the
lena plot through the R, G and B channels. By analysing the correlation of adjacent pixels in
the horizontal, vertical and diagonal directions of the image. From the table, it is clear that
the correlation of adjacent pixel points after lena has been encrypted almost converges to
zero, thus demonstrating the effectiveness of applying FIXTS of NNs to image protection.
Comparing the correlation between the original image and the decrypted image, we can
see that the correlation between the adjacent pixels of the decrypted image is close to that
of the original image, thus proving that our decryption algorithm works well.

Figure 4a–f shows what happens when the neural network does not implement fixed
time synchronization. From Figure 4a–c it is known that the image is not recoverable,
verifying that when the system is not synchronized, the response system sequence cannot
be obtained and therefore the decrypted image cannot be decrypted. Thus, the performance
of the image encryption algorithm proposed in this paper is demonstrated.
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Figure 5 represents the lena diagram as a decrypted image based on fixed time syn-
chronization with different mould taking accuracy. Figure 5a indicates the synchronization
of the error system with mode-taking accuracy of 103, Figure 5b indicates the synchro-
nization of the error system with mode-taking accuracy of 104 and Figure 5c indicates the
synchronization of the error system with mode-taking accuracy of 105. The effect of the
synchronization of the error system with mode-taking accuracy on the quality of the image
decryption can be seen in Figure 5a–c. Figure 5 illustrates the sensitivity of the decryption
sequences, when the synchronization error system has different mode-taking accuracy, the
resulting decryption sequences are different, and thus the quality of the decrypted images
is also different.

Table 1. Correlation coefficients for encrypted and decrypted color images of “Lena.tiff”.

Direction Chaos Map R G B

Original image 0.98920 0.98230 0.95770
Horizontal Encrypted image 0.00420 0.00260 −0.00240

Decryptedl image 0.97080 0.96380 0.93960

Original image 0.96980 0.96890 0.91810
Vertical Encrypted image −0.00230 −0.0029 −0.00340

Decryptedl image 0.95160 0.93660 0.89960

Original image 0.97980 0.95550 0.93290
Diagonal Encrypted image 0.00210 −0.00043 0.00023

Decryptedl image 0.96230 0.95070 0.91320

(a) Original image. (b) Encrypted image. (c) Decrypted image.

(d) Histogram of (a). (e) Histogram of (b). (f) Histogram of (c).

Figure 4. Encryption and decryption of “Lena.tiff.” when the system is not synchronized.
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(a) Decrypted image with mode-
taking accuracy of 103.

(b) Decrypted image with mode-
taking accuracy of 104.

(c) Decrypted image with mode-
taking accuracy of 105.

(d) Histogram of (a). (e) Histogram of (b). (f) Histogram of (c).

Figure 5. The sensitivity of the decryption sequences.

Example 2. Encryption and decryption of deep images.

Applying the encryption and decryption algorithm of the image to the depth image,
it can be seen in Figure 6a–c that the depth image is encrypted and then restored to the
depth image. It can be observed from Figure 6e that the depth image information has
been completely hidden, and Figure 6f has been re-decrypted to restore the depth image
information again.

(a) Original image. (b) Encrypted image. (c) Decrypted image.

(d) Histogram of (a). (e) Histogram of (b). (f) Histogram of (c).

Figure 6. Encryption and decryption of depth image.

Example 3. Compared with the Existing Achievements.

In this example, we compare our encryption algorithm with a similar recent article, as
shown in Table 2. In Table 2, the encryption algorithms of several articles are compared,
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comparing the correlation of adjacent pixel points in the horizontal, vertical, and diagonal
directions of the “Lena.tiff”. The values of adjacent pixel correlation for our encryption
algorithm in horizontal, vertical, and diagonal directions are 0.00260,−0.00290, and 0.00043.
Analyzed from the horizontal direction, our encryption algorithm effect is better than that
of the encryption algorithm of Reference [35–38], and the same as that of Reference [10];
analyzed from the vertical direction, our encryption algorithm effect is better than that of
the encryption algorithm of Reference [10,35–38]; analyzed from the diagonal direction,
our encryption algorithm effect is better than that of the encryption algorithm of Refer-
ence [35–38], and close to that of the encryption algorithm of Reference [10]. In general, the
encryption effect of our encryption algorithm is better than Reference [35–38] and close to
Reference [10].

Table 2. Comparison of correlation coefficients of encrypted “Lena.tiff”.

Algorithms Horizontal Vertical Diagonal

Our algorithm 0.00210 −0.00043 0.00023

Ref. [35] 0.01180 0.01810 0.03670

Ref. [36] −0.00430 −0.00370 0.01960

Ref. [10] 0.00210 −0.00140 −0.00020

Ref. [37] 0.00380 −0.00410 −0.00360

Ref. [38] −0.01680 0.04450 −0.00220

Example 4. Analysis of the execution efficiency of the algorithm.

In this example, we analyze the encryption algorithm of the image as well as the
execution efficiency of the decryption algorithm. In Table 3, we have performed a compar-
ative analysis for different types of images and different sizes of images to test the time
consumed by the encryption process and the time consumed by the decryption process for
these images. Test results running on Windows 10 64-bit operating system, equipped with
Inter Xeon Gold 6230R processor, 256 GB RAM. From Table 3, we can find that the larger
the size of the image, the more time it takes to encrypt and decrypt. The encryption and
decryption time for grayscale images is less than that for color images.

Table 3. Analysis of the execution efficiency of encryption and decryption algorithms.

Image Types Size File Size (KB) Encryption Process Time (s) Decryption Process Time (s)

Grayscale image of ‘lena.tiff’ 512 × 512 480 0.637100 0.522666

color image of ‘lena.tiff’ 512 × 512 768 1.909023 1.485432

Grayscale image of ‘onion.tiff’ 198 × 135 31 0.072459 0.056197

color image of ‘onion.tiff’ 198 × 135 44 0.210034 0.162479

5. Conclusions

This paper focuses on fixed-time synchronization of neural networks under quantized
intermittent control, while applying the fixed-time synchronization technique to image pro-
tection. A controller is designed based on intermittent control and quantization strategies,
which allows the neural network to achieve fixed time synchronization. During image
transmission, image encryption is applied to the original image using the drive sequence at
the sender side, so that even if the image is intercepted during transmission, the informa-
tion of the image cannot be obtained without the drive sequence secret key or the response
sequence secret key. The image information can be obtained by decrypting the image with
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the synchronized response sequence at the receiving side. Thus, achieving image protection.
In addition, when applying the driver sequence for image encryption or the decryption
sequence for image decryption, care should be taken to achieve synchronization between
the driver system and the response system, and to ensure that the synchronization error is
as small as possible. Finally, numerical results show that the designed controller is effective
and validate the practical application of fixed-time synchronization of neural networks in
image protection. In the future, more complex neural networks can be considered for image
protection applications. More complex neural networks have more complex dynamical
behaviors and will have different encryption effects on images.
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