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Abstract: This paper aims to present two nonstandard finite difference (NFSD) methods to solve
an SIR epidemic model. The proposed methods have important properties such as positivity and
boundedness and they also preserve conservation law. Numerical comparisons confirm that the
accuracy of our method is better than that of other existing standard methods such as the second-order
Runge–Kutta (RK2) method, the Euler method and some ready-made MATLAB codes.
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1. Introduction

The modeling of physical, chemical, and biological systems is commonly based on
nonlinear ordinary differential equations (ODEs). Mathematical models and their simula-
tions are important for understanding the quality and quantity of these systems. Numerical
methods, such as Euler and Runge–Kutta methods for solving the mentioned equations, are
typically used [1–12]. A downside of these methods is that the qualitative characteristics of
a true solution are not transferred to the numerical solution. To overcome such a deficiency,
the NSFD methods were introduced by Mickens [13,14]. Indeed, these methods were
proposed in order to preserve the main characteristics of systems of differential equations,
which preserve positivity, boundedness, stability of equilibrium points and conservation
law [15–41]. For a method to be designated as an NSFD, at least one of the following
criteria should be fulfilled:

• In the first-order discrete derivatives, step-size h in the denominator is replaced by a
function φ(h), such that

φ(h) = h +O(h2), as h→ 0. (1)

• Nonlinear terms in f (y) can be approximated non-locally (by a suitable function of
several of the mesh points), for instance:

x2 ≈ xk+1xk, x3 ≈ xk+1x2
k , x(1− x) ≈ xk(1− xk+1).

The main goal of this article is to introduce and present two NSFD methods to solve
an SIR epidemic model. The constructed methods preserve the characteristics of the
mathematical model such as positivity, boundedness, stability of equilibrium points and
conservation law. The rest of the paper is structured as follows: In Section 2, we introduce
the mathematical model for the SIR epidemic model with its equilibrium points. We
also investigate the positivity properties of the model. In Section 3, the new schemes are
proposed. The positivity property is investigated in Section 4. In Section 5, we investigate
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the elementary stability of the new schemes. In Section 6, we present the results obtained
by the new schemes and some schemes such as the Euler method, ode45 (a MATLAB’s
standard solver for ODEs ), and so on.

2. Mathematical Model

Here, the mathematical model of the SIR epidemic introduced in [36] is presented.
This model consists of the following three characteristics:

• S(t): susceptible individuals;
• I(t): infective individuals;
• R(t): recovered individuals.

The mathematical model of the SIR epidemic presented in [42] is related to rubella
disease in London. The model is introduced by a nonlinear differential equation system
as follows:

S′(t) = Nµ− µS(t)− Nβ
S(t)I(t)
1 + aI

,

I′(t) = Nβ
S(t)I(t)
1 + aI

− (µ + ν)I(t),

R′(t) = νI(t)− µR(t), (2)

S(0) = S0, I(0) = I0, R(0) = R0, t > 0, a > 0,

where

• β: The transmission rate;
• µ: The death rate;
• ν: The recovery rate;
• a: The inhibitory rate;
• N: The total population size;

and they are all positive.
The consecutive system of equations, if added together, clearly satisfies conservation

law, which implies that the population is constant. The population can be normalized to
one, since it is assumed to be constant:

S(t) + I(t) + R(t) = 1.

The above equation must be valid for any numerical method. The reproduction
number of system (2) is as follows:

R0 =
Nβ

(µ + ν)
,

the system (2) has two equilibrium points as follows:

• E∗0 = (1, 0, 0) : the disease-free equilibrium;
• E∗ = (S∗, I∗, R∗) : the endemic equilibrium,

where

E∗ = (S∗, I∗, R∗) =

(
R0µa + Nβ

R0(µa + Nβ)
,

µ(R0 − 1)
µa + Nβ

,
ν(R0 − 1)
µa + Nβ

)
.
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3. Construction of New Schemes

In this section, we propose a family of NSFD schemes for the system (2) in the
following form:

Sn+1 − Sn

ψ(h)
= µ− µ(γSn+1 + δSn)− Nβ(ηSn+1 + θSn)

In

1 + aIn ,

In+1 − In

ψ(h)
= Nβ(ηSn+1 + θSn)

In

1 + aIn − µ(γIn+1 + δIn)− ν(η In+1 + θ In), (3)

Rn+1 − Rn

ψ(h)
= ν(η In+1 + θ In)− µ(γRn+1 + δRn),

with γ + δ = 1, η + θ = 1 and

ψ(h) =
exp(µh)− 1

µ
, ψ(h) = h + O(h2).

Note that this scheme satisfies R′(t) + S′(t) + I′(t) = 0, as n → ∞. In addition, it
follows from (3) that

Sn+1 + Rn+1 + In+1 =
µψ(h) + (1− µδψ(h))(Sn + Rn + In)

1 + µγψ(h)
.

Thus, if Sn +Rn + In = 1 for all n ≥ 1 and, since, γ = 1− δ then Sn+1 +Rn+1 + In+1 =
1 for all n ≥ 1. Therefore, the conservation law property holds.

We have chosen two different formulas of (3), given as follows:

3.1. Scheme 1

Formula (4) is obtained by taking γ = 1, δ = 0, η = 1, θ = 0:

Sn+1 =
ψ(h)µ + Sn

1 + ψ(h)µ + ψ(h)NβIn

1+aIn

= F(Sn, In),

In+1 =

(
1 + ψ(h)Nβ

1+aIn F(Sn, In)
)

In

1 + (µ + ν)ψ(h)
= G(Sn, In), (4)

Rn+1 = 1− Sn+1 − In+1 =
ψ(h)νIn+1 + Rn

ψ(h)µ
.

3.2. Scheme 2

Formula (5) is obtained by taking γ = 2, δ = −1, η = 1, θ = 0:

Sn+1 =
ψ(h)µ + Sn(1 + ψ(h)µ)

1 + 2ψ(h)µ + ψ(h)Nβ In

1+aIn

= F̄(Sn, In),

In+1 =

(
1 + µψ(h) + Nβψ(h)

1+aIn F̄(Sn, In)
)

In

1 + 2ψ(h)µ + νψ(h)
= Ḡ(Sn, In), (5)

Rn+1 = 1− Sn+1 − In+1 =
(1 + µ)Rn + νψ(h)In+1

2µψ(h)
.
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4. Positivity

In this section, the positive property of the proposed methods in the previous section is
investigated. Positivity means that the non-negativity of initial data is preserved over time
in the approximate solution. It should be noted that the positive property of a numerical
method used to solve differential models related to population biology is very important
because the variables used in the subpopulation models can never be negative values (see,
for example, [43]).

Definition 1. A finite difference method is positive if

∀h > 0(step size), and y0 ∈ R+(initial condition),

the other solutions are also positive, that is, we have yk ∈ R+ for any k ∈ N.

Theorem 1. Equations (4) and (5) are positive.

Proof. Since the parameters B, N, ν, a and µ are positive, then the numerical schemes (4)
and (5) represent positive NSFD methods for any ψ(h) > 0 when the initial values S(0),
I(0) and R(0) are non-negative.

5. Elementary Stability

In this section, the stability properties of the proposed methods are investigated
and sufficient conditions to preserve this property of the equilibrium points of model (2)
are proposed. The finitedifference methods that have this stability property are called
elementary stable methods [44].

Definition 2. The finite difference method is called elementary stable, if for any value of the step
size h, its only equilibrium points Ē are those of the original differential system, the linear stability
properties of each Ē being the same for both the differential system and the discrete method.

Lemma 1. For the quadratic equation λ2 −Λλ + ω = 0, by using the well-known Jury condition,
both roots satisfy |λi| < 1, i = 1, 2 if the following conditions are satisfied:

• 1 + Λ + ω > 0,
• 1−Λ + ω > 0,
• ω < 1.

Theorem 2. Equations (4) and (5) are elementary stables.

Proof. In order to examine the convergence of schemes (4) and (5), it is enough to only
consider the first and second equations of (4) and (5). The equilibrium points of (4) are
exactly the equilibria E∗0 and E∗ of system (2). The Jacobian J of the Equation (4) has the
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form J(Sn, In) =

 ∂F
∂S

∂F
∂I

∂G
∂S

∂G
∂I

,

∂F
∂S

=
1

1 + ψ(h)(µ + NβIn

1+aIn )

∂F
∂I

= −
[ 1(

1 + ψ(h)
(
µ + NβIn

1+aIn

))2

](
(Sn + µψ(h))(

Nβψ(h)
1 + aIn −

aNβψ(h)In

(1 + In)2 )
)

,

∂G
∂S

=
( 1

1 + (µ + ν)ψ(h)

)(Nβψ(h)In

1 + aIn

)(∂F
∂S

)
=
( 1

1 + (µ + ν)ψ(h)

)(Nβψ(h)In

1 + aIn

)( 1

1 + ψ(h)(µ + NβIn

1+aIn )

)

∂G
∂I

=
( 1

1 + (µ + ν)ψ(h)

)[
1 +

Nβψ(h)
1 + aIn F(sn, In) +

Nβψ(h)In

1 + aIn

(∂F
∂I
)
− aNβψ(h)InF

(1 + aIn)2

]
,

=
( 1

1 + (µ + ν)ψ(h)

)[
1 +

Nβψ(h)
1 + aIn

( ψ(h)µ + Sn

1 + ψ(h)µ + ψ(h)NβIn

1+aIn

)

+
Nβψ(h)In

1 + aIn

(
−
[ 1(

1 + ψ(h)
(
µ + NβIn

1+aIn

))2

](
(Sn + µψ(h))(

Nβψ(h)
1 + aIn −

aNβψ(h)In

(1 + In)2 )
)
)

− aNβψ(h)In

(1 + aIn)2

( ψ(h)µ + Sn

1 + ψ(h)µ + ψ(h)NβIn

1+aIn

)]
,

substituting E∗0 in J(Sn, In) we obtain

J(E∗0 ) =


1

1 + ψ(h)µ
− NBψ(h)

1 + ψ(h)µ

0
1 + NBψ(h)

1 + (µ + ν)ψ(h)
,

,

from which

λ1 =
1

1 + ψ(h)µ
, λ2 =

1 + Nβψ(h)
1 + (µ + ν)ψ(h)

;

therefore, it is obvious that |λ1| < 1 always holds and ifR0 < 1, that is, NB < µ + ν, then
|λ2| < 1. Hence, the disease equilibrium is asymptotically stable ifR0 < 1 and otherwise
it will be unstable.

IfR0 > 1 system (2) has an endemic equilibrium point.
The Jacobian matrix of Equation (4) evaluated at the endemic equilibrium is

J(E∗) =


1
b − (c−d)

b2

e
f b

1
f

(
1 + (c− d)( 1

b −
e

b2 )
)
,
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where

b = 1 + ψ(h)(µ +
NBI∗

1 + aI∗
) > 1,

c = (S∗ + µψ(h))
NBψ(h)
1 + aI∗

> 0,

d = (S∗ + µψ(h))
aNBψ(h)I∗

(1 + aI∗)2 > 0,

f = 1 + (µ + ν)ψ(h) > 1

e =
NBψ(h)I∗

1 + aI∗
=

NBµψ(h)(R0 − 1)
R0µa + NB

> 0.

Eigenvalues of J(E∗) are roots of the quadratic equation λ2 −Λλ + ω = 0

Λ = TraceJ(E∗) =
b f + b2 + (c− d)(b− e)

b2 f
> 0

since c > d and b > e and, also,

ω = DetJ(E∗) =
b2 + (c− d)(b− e)

b3 f
+

e(c− d)
b3 f

=
b2 + (c− d)b

b3 f
> 0.

Therefore, the equilibrium E∗ is stable if and only if all conditions of Lemma 1 hold.
Since Λ and ω are positive, we have

1 + Λ + ω > 0. (6)

Since 1
b < 1 and

1
f
(1 +

(c− d)(b− e)
b2 ) <

1
f
(1 +

c− d
b

) <
1
f
(1 +

c
b
) < 1

we have

1−Λ + ω = (1− 1
b
)
(

1− 1
f
(1 +

(c− d)(b− e)
b2 )

)
+

e(c− d)
b3 f

> 0; (7)

also,

ω =
1

b f
+

c− d
b2 f

<
1

b f
+

c
b2 f

<
1

b f
+

c
b f

=
1 + c

b f
< 1. (8)

From (6)–(8) we see that the conditions of Lemma 1 hold. Thus, when R0 > 1, the
eigenvalues of J(E∗) are less than the unity in the modulus, regardless of the size of h.
Therefore dynamic consistence between the system (2) and Equation (4) is held around all
equilibria, which leads to the elementary stability of (4).

Similarly, the equilibrium points of (5) are the same equilibria of the original system.

The Jacobian J of (5) has the form J(Sn, In) =

 ∂F̄
∂S

∂F̄
∂I

∂Ḡ
∂S

∂Ḡ
∂I

, where
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∂F̄
∂S

=
1 + ψ(h)µ

1 + 2ψ(h)µ + ψ(h)NB In

1+aIn

∂F̄
∂I

= −
[ 1(

1 + ψ(h)
(
2µ + NBIn

1+aIn

))2

]((
Sn(1 + µψ(h)) + µψ(h)

)(NBψ(h)
1 + aIn −

aNBψ(h)In

(1 + aIn)2

))
,

∂Ḡ
∂S

=
NBψ(h) In

1+aIn
∂F̄
∂S

1 + 2ψ(h)µ + νψ(h)
=

NBψ(h) In

1+aIn (1 + ψ(h)µ)

(1 + 2ψ(h)µ + ψ(h)NB In

1+aIn )(1 + 2ψ(h)µ + νψ(h))

∂Ḡ
∂I

=
( 1

1 + (2µ + ν)ψ(h)

)[
1 + µψ(h) +

NBψ(h)
1 + aIn F̄(sn, In)− aNBψ(h)In

(1 + aIn)n F̄(sn, In) +
NBψ(h)In

1 + aIn

(∂F̄
∂I
)]

,

=
( 1

1 + (2µ + ν)ψ(h)

)[
1 + µψ(h) +

NBψ(h)
1 + aIn

(ψ(h)µ + Sn(1 + µψ(h))

1 + 2ψ(h)µ + ψ(h)NBIn

1+aIn

)

− aNBψ(h)In

(1 + aIn)2

(ψ(h)µ + Sn(1 + µψ(h))

1 + 2ψ(h)µ + ψ(h)NBIn

1+aIn

)

+
NBψ(h)In

1 + aIn

(
−
[ 1(

1 + ψ(h)
(
2µ + NBIn

1+aIn

))2

]((
Sn(1 + µψ(h)) + µψ(h)

)(NBψ(h)
1 + aIn −

aNBψ(h)In

(1 + aIn)2

))
.

]

Substituting E∗0 in J(Sn, In), we obtain

J(E∗0 ) =


1 + ψ(h)µ

1 + 2ψ(h)µ
−NBψ(h)
1 + 2ψ(h)µ

0
1 + ψ(h)µ + NBψ(h)
1 + 2ψ(h)µ + ψ(h)ν

,

from which

λ1 =
1 + ψ(h)µ

1 + 2ψ(h)µ
, λ2 =

1 + ψ(h)µ + NBψ(h)
1 + 2ψ(h)µ + ψ(h)ν

.

Therefore, it is clear that |λ1| < 1 always holds and if R0 < 1, that is, NB < µ + ν, then
|λ2| < 1. Hence, the disease equilibrium is asymptotically stable if R0 < 1; otherwise, it
will be unstable.

IfR0 > 1, system (2) has an endemic equilibrium point.
The Jacobian matrix of Equation (5) evaluated at the endemic equilibrium is

J(E∗) =


g
b − c−d

b2

eg
b f

1
f (g + (c− d)( 1

b −
e

b2 ))

,
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where

g = 1 + ψ(h)µ > 1,

b = 1 + 2ψ(h)µ + NBψ(h)
I∗

1 + aI∗
> 1,

c =
NBψ(h)
1 + aI∗

(
ψ(h)µ + S∗(1 + ψ(h)µ)

)
> 0

d =
aNBψ(h)I∗

(1 + aI∗)2

(
ψ(h)µ + S∗(1 + ψ(h)µ)

)
> 0

f = 1 + 2ψ(h)µ + ψ(h)ν > 1

e = NBψ(h)
I∗

1 + aI∗
> 0.

Eigenvalues of J(E∗) are roots of the quadratic equation λ2 −Λλ + ω = 0, where

Λ = TraceJ(E∗) =
gb f + gb2 + (c− d)(b− e)

f b2 > 0

since c− d > 0 and b− e > 0, and also,

ω = DetJ(E∗) =
b2g2 + g(c− d)(b− e)

b3 f
+

(c− d)eg
b3 f

=
g2b2 + (c− d)gb

b3 f
> 0.

Therefore, the equilibrium E∗ is stable if and only if all conditions of Lemma 1 hold.
Since Λ and ω are positive we have

1 + Λ + ω > 0. (9)

Since e
b < 1 and

1
f
(g +

(c− d)(b− e)
b2 ) <

1
f
(g +

c
b
) =

gb + c
f b

< 1

we have

1−Λ + ω = (1− g
b
)
(

1− 1
f
(g +

(c− d)(b− e)
b2 )

)
+

(c− d)eg
b3 f

> 0; (10)

also,

ω =
g2

b f
+

(c− d)g
b2 f

<
g2

b f
+

cg
b f

=
g(g + c)

b f
< 1 (11)

From (9)–(11), we see that the conditions of Lemma 1 holds. Then, the eigenvalues
of J(E∗) are less than the unity in the modulus, regardless of the size of h, when R0 > 1.
Therefore dynamic consistence between the system (2) and Equation (5) is held around all
equilibria, which leads to the elementary stability of (5).
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6. Numerical Results

In this section, we present some numerical results obtained by applying the new
methods. These results indicate the efficiency of the methods. Consider model (2) with
the parameters

µ = 0.04, ν = 24, NB = 123.

The epidemic model (2) has a disease free equilibrium point for R0 < 1 and an
endemic equilibrium point for R0 > 1. Figure 1 shows that, forR0 > 1, the new methods
converge to the endemic equilibrium point and produce positive results for all times, while
the ready-made MATLAB codes do not converge or sometimes produce negative values.
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Figure 1. Numerical solution provided by the new schemes and Matlab mathematical package with
parameter values and initial conditions: h = 0.01, S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 123, µ = 0.04,
ν = 24, a = 0.01.

Figure 2 shows that the new schemes provide good approximations and converge
to the endemic equilibrium. To see the influence of inhibitory constant (a), we show in
Figures 3 and 4 the numerical solutions of model (2) with h = 0.1 and initial value S(0) = 0.9,
I(0) = 0.05 and R(0) = 0.05 using different values of a. It is shown that all numerical
solutions obtained by the proposed NSFD schemes with a = 0.05, 1, 5, 10 are convergent
to the EE point. It can be seen that NSFD schemes with a great inhibitory constant have
better convergence to an endemic equilibrium point. In Figures 5 and 6, we used the same
parameters as above for µ and ν, but we choose NB = 23 so thatR0 = 0.9567. As can be
seen for each h, new schemes retain the positivity property, while the Euler method and
the RK2 method give negative values when using the SIR model. It should be noted that,
due to the very large numerical outputs at intervals larger than the range given in Figure 6,
the system is unable to display those values.
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Figure 2. Numerical solution provided by the new schemes with parameter values and initial
conditions: h = 0.01, S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 123, µ = 0.04, ν = 24, a = 0.01.
(a) Scheme 1; (b) Scheme 2.
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Figure 3. Numerical solutions provided by Scheme 1 for different values of inhibitory constant and
initial conditions: S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 123, µ = 0.04, ν = 24 and h = 0.1.
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Figure 4. Numerical solutions provided by Scheme 2 for different values of inhibitory constant and
initial conditions; S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 123, µ = 0.04, ν = 24 and h = 0.1.
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Figure 5. Numerical solution provided by the new schemes with initial conditions and parameter
values: h = 0.4, S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 23, µ = 0.04, ν = 24, a = 0.01. (a) Scheme 1;
(b) Scheme 2.
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Figure 6. Numerical solution provided by the Euler method and the RK2 method with parameter
values: h = 0.4, S0 = 0.9, I0 = 0.05, R0 = 0.05, NB = 23, µ = 0.04, ν = 24, a = 0.01. (a) Euler method;
(b) RK2 method.
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7. Conclusions

In this work, two NSFD methods were proposed to solve the SIR pandemic model. The
proposed model has two equilibrium points, which are dubbed disease free equilibrium
points, that is, E∗0 , in which caseR0 < 1, and the endemic equilibrium point E∗, wherein
R0 > 1. It is shown that the proposed methods preserve features such as the positivity
property, elementary stability and conservation law. By comparing the numerical results
obtained from the new methods and the Runge–Kutta methods, it was shown that the
NSFD numerical methods are made unconditionally stable by preserving conservation law
for R0 < 1. They are also convergent to the disease-free equilibrium point for any step
size. This behavior is also satisfied forR0 > 1. Moreover, the same behavior is obtained
forR0 > 1. It is also confirmed that the ready-made MATLAB codes do not converge to
the endemic equilibrium point. Therefore, it can be concluded that the new NSFD methods
preserve features of the SIR epidemic model.
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