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Abstract: Persistent homology enables fast and computable comparison of topological objects. We
give some instances of a recent extension of the theory of persistence, guaranteeing robustness and
computability for relevant data types, like simple graphs and digraphs. We focus on categorical
persistence functions that allow us to study in full generality strong kinds of connectedness—clique
communities, k-vertex, and k-edge connectedness—directly on simple graphs and strong connected-
ness in digraphs.

Keywords: categorical persistence function; connectedness; persistence diagram; poset; graph;
digraph
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1. Introduction

Persistent homology allows for swift and robust comparison of topological objects.
However, raw data are rarely endowed with a topological structure. Persistent homology
and topological persistence are by their nature bound to topological spaces and simplicial
complexes, so that, in persistent homology applications, data are mapped to topological
spaces or simplicial complexes through auxiliary constructions (e.g., [1–5]). Although these
constructions have been employed successfully in several domains (e.g., [6–10]), they un-
avoidably transform the information carried by the original data set. Moreover, in some
cases it is not possible to create such constructions directly, due to the lack of fundamental
properties. For instance, the blocks of a filtered graph do not form a simplicial complex
because blocks lack the hereditariness that is required by simplicial constructions. In par-
ticular, directed graphs generally present additional difficulties, although [11] overcomes
them elegantly, via a poset-based technique (an idea that we borrow and further develop
in this work). Thus, it would be advantageous to be able to use the tools of persistence
also if one is interested in graph-theoretical structures, which do not enjoy the hereditary
property necessary for building simplicial complexes. This paper aims to promote this
wider use of persistence in graphs.

Rank-based persistence [12] extends topological persistence to arbitrary categories
from an axiomatic perspective. In summary, the theory developed in [12] allows one to
compute the persistence of objects in arbitrary source categories (rather than topologi-
cal spaces) and consider any regular category as the target category, whereas classical
persistence is limited to vector spaces and sets.

We are well aware of greatly developed extensions of persistence beyond the topologi-
cal or simplicial categories. [13–18] widely extend the range of target categories. In par-
ticular, by giving the possibility to use integer coefficients for homology (thus admitting
torsion), these extensions can offer new perspectives to applications and theoretical de-
velopments. We are interested in extending the domain category, in the spirit of [19]. We
stick to the approach developed by [12], which is axiomatic, consequently providing swift
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conditions to verify that a function is a persistence function. See Section 2, in particular,
Definition 1.

Our main aim is to build on the aforementioned categorical generalization to allow
for more direct analysis of significant data types such as simple graphs and guarantee the
properties of stability and universality of the classical persistence framework. We hope
that the axiomatic foundation mentioned above will yield a tool agile enough to enable
the usage of persistence in applications so far not liable to immediate, direct topological
constructions (although a more elaborate one exists; see Remark 1).

With this aim in mind, we introduce the definition of weakly directed properties as
a way to easily build categorical persistence functions that describe graph-theoretical
concepts of connectivity, e.g., clique communities, k-vertex and k-edge connectedness in
graphs, and strong connectedness in digraphs. In more detail, in Section 2, we define
monic persistence functions and show how the persistence diagrams associated with
such functions can be described as multisets of points and half-lines, as in the classical
framework. Furthermore, we define the natural pseudodistance in this general context
and list the assumptions necessary to obtain tame filters. In Section 2.2, we introduce our
framework in the category of weakly directed posets. We define stable monic persistence
functions in this category and prove stability and universality. This construction allows us
to define weakly directed properties and describe the associated persistence functions.

In Section 3 (possibly the one of main interest for the application-oriented reader), we
show that clique communities, k-vertex, and k-edge connectedness in graphs, and strong
connectedness in digraphs are weakly directed properties, and thus yield persistence
functions, and persistence diagrams. Their stability and universality are discussed.

All constructions built through the proposed generalized persistence are discussed on
the weighted graph depicted in Figure 1. For completeness, in the same figure we compute
persistent Betti numbers of the example graph, seen as a simplicial complex.

Figure 1. A weighted graph (left), the corresponding filtration (above), and its persistent Betti
numbers functions of degree 0 (middle) and 1 (right).

2. Persistence via the Poset of Subobjects

We give concrete applications of the framework developed in [12], which defines the
notion of categorical persistence function ([12], Def. 3.2) in arbitrary categories. Unlike [12],
here we restrict ourselves to filtrations, rather than arbitrary (R,≤)-indexed diagrams.
In other words, given a category C, we will consider categorical persistence functions in
Cm, the subcategory of C where the only allowed morphisms are monomorphisms.
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Definition 1 ([12], Def. 3.2). A persistence function is a categorical persistence function on the
category (R,≤). It is a correspondence that maps each pair of real numbers u ≤ v, to an integer
p(u, v) such that, given u1 ≤ u2 ≤ v1 ≤ v2, the following inequalities hold.

1. p(u1, v1) ≤ p(u2, v1) and p(u2, v2) ≤ p(u2, v1), that is to say p is non-decreasing in the
first argument, and non-increasing in the second.

2. p(u2, v1)− p(u1, v1) ≤ p(u2, v2)− p(u1, v2).

Definition 2. Let C be an arbitrary category. A monic persistence function on C is a categorical
persistence function on Cm. It maps each inclusion u ↪→ v to an integer p(u, v), such that, given
u1 ↪→ u2 ↪→ v1 ↪→ v2, the following inequalities hold.

1. p(u1, v1) ≤ p(u2, v1) and p(u2, v2) ≤ p(u2, v1).
2. p(u2, v1)− p(u1, v1) ≤ p(u2, v2)− p(u1, v2).

A filtration F in C can naturally be seen as a functor from (R,≤) to Cm. Therefore,
by functoriality, a monic persistence function p on C and a filtration F in C induce a persis-
tence function pF. In turn, pF induces a persistence diagram DF as follows. By convention,
in the following definition we consider pF(u, v) = minx,y pF(x, y) whenever either u or v is
not finite.

Definition 3 ([12], Def. 3.13). Given u, v ∈ R∪ {−∞,+∞}, u < v, we define the multiplicity
of (u, v), denoted µ(u, v), as the minimum of the following expression over Iu, Iv disjoint connected
neighborhoods of u and v respectively:

pF(sup(Iu), inf(Iv))− pF(inf(Iu), inf(Iv))− pF(sup(Iu), sup(Iv)) + pF(inf(Iu), sup(Iv))

Whenever µ(u, v) > 0, we say (u, v) is a cornerpoint. The persistence diagram DF associated with
pF is the multiset of its corner points, each with its multiplicity, along with all diagonal points
(u, u), u ∈ R, with infinite multiplicity. A cornerpoint at infinity (u,+∞) is often (and here)
represented as the straight half-line x = u, y ≥ x.

It is then possible to extend to this setting the classical notion of bottleneck (formerly
matching) distance.

Definition 4 ([12], Def. 3.24). Let p be a monic persistence function and F1, F2 be filtrations in
Ct; let DF1,DF2 be the respective persistence diagrams. The bottleneck distance between DF1
and DF2 is defined as

d(DF1,DF2) = inf
β∈B

sup
(u,v)∈DF1

∥∥(u, v)− β
(
(u, v)

)∥∥
∞

where B be the collection of all bijections from DF1 to DF2.

Importantly, the appearance of persistence diagrams as the familiar multiset of points
and half-line segments is guaranteed by the following proposition, where pF, µ,DF are as
above and ∆∗ = {(x, y) ∈ R× (R∪ {+∞}) | x < y}.

Proposition 1. For pF and DF we have

pF(β, γ) = ∑
(u,v)∈∆∗ ,
u<β, v>γ

µ(u, v)

for every (β, γ) ∈ ∆∗ which is no discontinuity point of pF.

Proof. By applying ([12], Prop. 3.17) with α < ā and δ = +∞.
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This result implies that the discontinuity sets of pF are either vertical or horizontal
(possibly unbounded) segments with end-points in the corner points. This means that
persistence functions have the appearance of superimposed triangles, typical of persistent
Betti number functions.

Natural pseudodistance. It is possible to define the natural pseudodistance on Cm. In the
following, we will adopt some finiteness assumptions, to ensure stability of all persis-
tence functions we will consider. Note that, whenever we refer to categories such as
Set, Poset, Graph, Digraph, we always refer to the finite version—finite sets, finite posets,
and finite simple graphs and digraphs.

Finiteness assumptions. From now on, we assume that every object in C has only a finite
number of distinct subobjects (to ensure tameness in all constructions). Furthermore, we
will only consider filtrations F that admit a colimit F(∞) in Cm. As every object has only
a finite number of distinct subobjects, this means that F(x ≤ x′) is an isomorphism for
sufficiently large x, x′. This will allow us to define the natural pseudodistance [13,20,21].

Definition 5. Let F1, F2 be two filtrations in C. LetH be the (possibly empty) set of isomorphisms
between F1(∞) and F2(∞). Given an isomorphism H 3 φ : F1(∞) → F2(∞), we can consider
the set

Lφ = { h ∈ R≥0 | for all x ∈ R, F2(x− h) ⊆ φ(F1(x)) ⊆ F2(x + h) },

where the inclusion is among subobjects of F2(∞). The natural pseudodistance between F1 and
F2 is

δ(F1, F2) = inf
⋃

φ∈H
Lφ.

The natural pseudodistance is equal to the interleaving distance, when considering
F1, F2 as (R,≤)-indexed diagrams in Cm. By the universal property of colimits, a strong
interleaving induces an isomorphism F1(∞) ' F2(∞), which behaves correctly on sublevels.
Conversely, applying φ and its inverse on sublevels induces a strong interleaving.
Stability and universality For applications, a wished-for quality is stability. A categorical
persistence function p on C is said to be stable if, given filtrations F1, F2 in C, for the induced
pF1 , pF2 and the corresponding persistence diagrams DF1, DF2 the inequality

d(DF1,DF2) ≤ δ(F1, F2)

holds. Moreover, the bottleneck distance is said to be universal with respect to p, if it yields
the best possible lower bound for the natural pseudodistance, among the possible distances
between DF1 and DF2, for any F1, F2. See Proposition 5; see [13] for a general discussion
on universality.

2.1. Preliminaries on Posets

The first category we consider is WDPoset, the category of finite weakly directed posets.

Definition 6. A poset P is weakly directed if, whenever a, b ∈ P have a lower bound, they also
have an upper bound.

Stong [22] discusses the analogy between finite posets and finite T0 topological spaces.
The two categories are equivalent, and, therefore, it is possible to consider the homotopy
type of a finite poset. In particular, Stong shows a procedure to determine whether two
posets have the same homotopy type. For the sake of self-containment, we report here a
description of the procedure from [23].

Let P be a poset. An element p ∈ P is upbeat (resp. downbeat) if the set of all element
strictly greater (resp. lower) than p has a minimum (resp. maximum). The insertion or
deletion of an upbeat or downbeat point does not change the strong homotopy type of P.
The core of P, denoted core(P), is a deformation retract of P that is minimal; i.e., it contains
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neither upbeat nor downbeat elements. One can always reach core(P) by successively
deleting beat points from P.

Theorem 1 ([22], Thm. 4). Two finite posets are strongly homotopy equivalent if and only if they
have isomorphic cores.

We are now ready to show that there is a canonical homotopy equivalence between
weakly directed finite posets and finite sets.

Proposition 2. Let Free : Set → WDPoset be the free poset functor, i.e., the functor that asso-
ciates to a finite set S the weakly directed poset (S,=). Free admits a left adjoint M. Furthermore,
let

ε : M ◦ Free→ IdSet and η : IdWDPoset → Free ◦M

be the natural transformations associated to the adjunction. ε is a natural isomorphism, whereas η
is a natural homotopy equivalence.

Proof. M associates each weakly directed poset to the set of its maximal elements. This
mapping can be extended to a functor, as for each order-preserving map f : P→ P′, given
a maximal element l ∈ P, there is a unique maximal element l′ ∈ P′ with f (l) ≤ l′. Given
a set S, the maximal elements of the poset (S,=) are all elements of S, so ε is a natural
isomorphism. For a weak-directed poset P, the map ηP : P→ Free(M(P)) is a deformation
retract of P onto its core. To see this, starting from P, we can proceed by removing elements
that are maximal in P \M(P). If an elements is maximal in P \M(P), it is necessarily upbeat:
distinct maximal elements in P can have no lower bound. After iteratively removing all
elements in P \M(P), we obtain the desired deformation retract ηP : P→ Free(M(P)).

The functor M: WDPosetm → Set induces a monic persistence function on WDPoset,
by ([12], Prop. 3.6). Furthermore, such persistence function factors via a ranked category
with finite colimits, Set, and is therefore stable by ([12], Thm. 3.27).

Universality is generally not granted for stable persistence functions. We now follow
the logical line of Thm. 32 of [21] for proving the universality of the bottleneck (or matching)
distance among the lower bounds for the natural pseudodistance that can come from
distances between persistent block diagrams.

Let F be a filtration in WDPoset. If F(∞) has several maximal elements, then all
maximal elements arising in the filtration are bounded by one of them, so the construction
can be performed for each of the lower set of maximal points of F(∞).

Proposition 3. Let F, F′ be two filtrations in WDPoset; letDF, DF′ be the respective persistence
diagrams. Then there exist filtrations H, H′ such that

1. DF = DH, DF′ = DH′,
2. d

(
DH,DH′

)
= δ

(
H, H′

)
,

where d is the bottleneck distance between persistence diagrams. Therefore, d is universal with
respect to the monic persistence function induced by M.

Proof. There is at least one bijection γ between the multisets DF and DF′ which realizes
the distance d = d

(
DF,DF′

)
. Let p0 and p′0 be the multiplicities of the eldest cornerpoints

at infinity of DF, DF′, respectively, and p1, . . . , pm, p′1, . . . , p′m be the multiplicities of the
remaining cornerpoints (possibly at infinity). We consider also cornerpoints on the diagonal,
if they are needed to realize the matching distance. Up to relabeling the cornerpoints, we
can assume that the matching is given by pi 7→ p′i for i ∈ {0, . . . , m}. We denote xi, yi (resp.
x′i , y′i) the coordinates of the cornerpoint pi (resp. p′i). The distance d is then the maximum
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of the distance in the L∞ norm of corresponding points. We now construct new filtrations
of posets H, H′ as follows. See Figure 2 for a toy example.

H(x) = { pi | xi ≤ x }
pi < pj if j = 0 and yi ≤ x,

and
H′(x) =

{
p′i
∣∣ x′i ≤ x

}
p′i < p′j if j = 0 and y′i ≤ x.

Choosing the isomorphism H(∞) → H′(∞) given by pi 7→ p′i, we can show that the
pseudodistance between H and H′ is smaller or equal than d. By stability, it must be
equal.
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Figure 2. Two persistence diagrams DF (green), DF′ (red) and the Hasse diagrams of the correspond-
ing poset filtrations H, H′; edges are marked with the value at which the relation arises.

2.2. Weakly Directed Properties

Some of the most informative graph-theoretical concepts describe the local connec-
tivity of a graph from different viewpoints, e.g., considering the number of edges to
be removed to disconnect it. The following definitions express these kinds of stronger
connectivities that we will use as categorical persistence functions, e.g., connected and
biconnected components.

Definition 7. By a property in a category C we mean a class P ⊆ Obj(C) such that if an object
X belongs to P and object Y is C-isomorphic to X, then also Y belongs to P .To say that X has
property P means that X ∈ P .

Definition 8. Let C be a category and let P be a property. We call SP the functor Cm → Posetm
that associates to each object in C the poset of its subobjects that have property P . We say that the
property P is weakly directed if, for all X ∈ Obj(C), SP (X) is a weakly directed poset.

Proposition 4. Let C be a category, and let Cm be the subcategory of C where the only allowed
morphisms are monomorphisms. Let P be a weakly directed property on Obj(C). Then P induces a
stable categorical persistence function on Cm, which we denote pP .

Proof. We can consider the functor SP : Cm → WDPosetm. As WDPosetm is equipped
with a persistence function, this induces a persistence function on Cm by ([12], Prop.
3.3).

Unlike stability, the universality of pP is in general not guaranteed. However, the fol-
lowing condition is sufficient to ensure it.
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Proposition 5. Let P , pP , SP be as in Definition 8 and Proposition 4. Let us further assume that
there exists a functor T : WDPosetm → Cm such that M ◦ SP ◦ T is naturally isomorphic to
M. That is to say, for all Q ∈ Obj(WDPosetm), the maximal elements of SP (T(Q)) are in a
one-to-one correspondence with the maximal elements of Q, and this bijection is natural in P. Then
the bottleneck distance between persistence diagrams is universal with respect to pP .

Proof. Given two filtrations F, F′ in C, we can consider the filtrations of posets SP ◦ F
and SP ◦ F′. By Proposition 3, there are filtrations of weakly directed poset H, H′ with
the same persistence diagram, whose interleaving distance equals the bottleneck distance.
Then, T ◦ H and T ◦ H′ have the same persistence diagram as F, F′, and their interleaving
distance equals the bottleneck distance.

3. Non-Simplicial Graph Persistence

In what follows, we fix C = Graph and consequently Cm = Graphm is the subcate-
gory of Graph in which only graph monomorphisms are allowed. We now translate some
of the previous notions in terms of graphs.

Definition 9. By a property we mean a set P of graphs such that if a graph X belongs to P and
graph Y is isomorphic to X, then also Y belongs to P . If X ∈ P , we say that X has property P .

Definition 10. Let P be a property. We call SP the functor Graphm → Posetm that associates
to each graph in Graph the poset of its subgraphs that have property P . We say that the property
P is weakly directed if, for all graphs X, SP (X) is a weakly directed poset.

Remark 1. Topology is not really thrown out of the game. In fact, the nerve of the weakly directed
poset SP (X) is a simplicial complex. Let DP be the persistence diagram of an (R,≤)-indexed
graph; it coincides with one of the persistence modules obtained by composing a chain of functors:

(R,≤)→ Graphm
SP−→ Posetm

nerve−−→ Simplicial-Sets
H0−→ Vector-Spaces

Once more, we stress that our aim is to take the application-oriented researcher directly to the
diagram, bypassing this detour.

Remark 2. The previous notions extend in a natural way to the case of C = Digraph, the category
of directed graphs, discussed in Section 3.4.

We now define a functor from WDPosetm to Graphm, which will turn useful in the
next subsections.

Definition 11. Let n be a positive integer. Given a weakly directed poset Q, we can consider the
graph whose vertices are Q× {1, . . . , n}, where distinct vertices (v, i) and (w, j) are connected by
an edge if v and w are comparable in Q (see Figure 3 for an example of the constructions relative to
the filtration H of Figure 2 and n = 2, 3). This mapping induces a functor Tn : WDPosetm →
Graphm.

Remark 3. The functor Tn will be used to prove the universality of the bottleneck distance,
with respect to persistence functions obtained from clique communities, k-connectedness, k-edge-
connectedness, and strong connectedness. For each of those, one could find specific functors that
produce simpler graphs, i.e., with fewer edges. However, we prefer to show a unified construction
that works in a wide variety of cases.

3.1. Clique Communities

An example of weakly directed property comes from clique communities. We recall
the definition of clique community given in [24]. Given a graph G = (V, E), two of its k-
cliques (i.e., cliques of k vertices) are said to be adjacent if they share k− 1 vertices; a k−clique
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community is a maximal union of k-cliques such that any two of them are connected by a
sequence of k-cliques, where each k-clique of the sequence is adjacent to the following one.
This construction has been applied to network analysis [25–28] and to weighted graphs,
in the classical topological persistence paradigm, in [3]. Here we consider a weighted
graph as a filtration of graphs (where the weight of each vertex is the inf of the weights of
its incident edges).

p
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Figure 3. From the top: the inclusion of poset H(5) into poset H(∞) of Figure 2, the image under T2,
and the image under T3 (Definition 11).

Definition 12. A graph G belongs to ck if it is union of k-cliques, such that any two of them are
connected by a sequence of adjacent k-cliques.

Proposition 6. ck is a weakly directed property.

Proof. If two subgraphs G1, G2 ⊆ G are in ck, and there is a k-clique in G1 ∩ G2, then
G1 ∪ G2 is also in ck.

As a consequence, ck induces a stable persistence function pck on graph filtrations,
which we call persistent k-clique community number. In practice, given a graph filtration
F, the persistent k-clique community number pck (u, v) equals the number of k-clique
communities in F(v) that contain at least a k-clique when restricted to F(u).

Remark 4. Of course, the persistent 2-clique community number function of a weighted graph
(G, f ), such that no isolated vertices appear in the filtration, coincides with its persistent 0-Betti
number function.

An example of persistent 3-clique community number function can be seen in Figure 4.
We can associate to pck , via ([12], Def. 3.13), a persistent k-clique community diagram Dck ( f ).
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Figure 4. The weighted graph of Figure 1 (left), the corresponding filtration (above) and its 3-clique
community number function.

Proposition 7. The bottleneck distance is universal with respect to pck .

Proof. Let Tk be the functor introduced in Definition 11. Then M ◦ Sck ◦ Tk is naturally
isomorphic to M. By Proposition 5, the bottleneck distance is universal with respect to
pck .

Figure 5 shows the two weighted graphs which realize the natural pseudodistance
equal to the bottleneck distance between the persistence diagrams of Figure 2, when
the persistence function is pc2 . See the proof of Proposition 5 and the construction of
Definition 11 for the underlying ideas.

3.2. Blocks

We recall that a connected graph is k-vertex-connected if it has at least k vertices and
remains connected whenever fewer than k vertices are removed [29,30]. We say that a
maximal k-vertex-connected subgraph of a given graph G is a k-vertex-connected component.

Let us denote vk be the class of k-vertex-connected graphs. Since it is closed under
isomorphisms, it is a property.
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Figure 5. The weighted graphs whose natural pseudodistance equals the bottleneck distance of the
persistence diagrams of Figure 2, relative to the persistence function pc2 . Above (resp. below), the
weighted graph corresponding to the green (resp. red) persistence diagram and to the upper (resp.
lower) Hasse diagram of Figure 2.

Proposition 8. vk is a weakly directed property.

Proof. Let G1, G2 be k-vertex-connected subgraphs of a graph G, such that their intersection
G3 is k-vertex-connected. Let U be any set of vertices of G1 ∪ G2 with |U| < k. Then the
induced subgraphs G1 −U, G2 −U, G3 −U are connected and the mutual intersections
have at least one vertex. Since the union of connected graphs with nonempty intersection is
connected, also (G1 ∪ G2)−U is connected. Therefore, G1 ∪ G2 is k-vertex-connected.

Property vk induces a functor

Svk : Graphm → WDPosetm

and a stable monic persistence function pvk on graph filtrations, which we call persistent
k-block number. In practice, given a graph filtration F, the persistent k-block number
pck (u, v) equals the number of k-vertex-connected components in F(v) that contain at least
a k-vertex-connected component when restricted to F(u).

Furthermore, the bottleneck distance is universal with respect to the natural pseudodis-
tance. To prove universality, we consider the same functor Tn of Definition 11, and note
that M ◦ Svk ◦ Tk is naturally isomorphic to M.

An example of k-block number function (for k = 2) can be seen in Figure 6. We can
then associate to pvk , via ([12], Def. 3.13), a persistent block diagram Dvk ( f ) with all classical
features granted by the propositions of Section 2. A toy example is given in Figure 6.
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Figure 6. The weighted graph of Figure 1 (left), the corresponding filtration (above) and its 2-block
number function.

3.3. Edge-Blocks

We say that a connected graph is k-edge-connected if it has at least k edges and remains
connected whenever fewer than k edges are removed [30]. We say that a maximal k-edge-
connected subgraph of a given graph G is a k-edge-connected component.

Let us denote ek be the class of k-edge-connected graphs. Since it is closed under
isomorphisms, it is a property.

Proposition 9. ek is a weakly directed property.

Proof. Analogous to the proof of Proposition 8.

Property ek therefore it induces a functor

Sek : Graphm → WDPosetm

and a stable monic persistence function pek on graph filtrations, which we call persistent
k-edge-block number. In practice, given a graph filtration F, the persistent k-edge-block
number pck (u, v) equals the number of k-edge-connected components in F(v) that contain
at least a k-edge-connected component when restricted to F(u).

Furthermore, the bottleneck distance is universal with respect to the natural pseudodis-
tance. To prove universality, we consider the same functor Tn of Definition 11, and note
that M ◦ Sek ◦ Tk+1 is naturally isomorphic to M.

An example of persistent edge-block number function (for k = 2) can be seen in
Figure 7. We can associate to pek , via ([12], Def. 3.13), a persistent edge-block diagram Dek ( f ).
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Figure 7. The weighted graph of Figure 1 (left), the corresponding filtration (above) and its 2-edge-
block number function.

3.4. Strong Components in Digraphs

In this subsection, C = Digraph, the category of directed graphs and homomor-
phisms; Cm = Digraphm is its subcategory where only monomorphisms are allowed.
A directed graph is strongly connected if for any pair of vertices u, v there is a directed path
from u to v (and one from v to u) ([31], Section 3.4). A strong component of a digraph is a
maximal strongly connected subdigraph.

We denote s the class of strongly connected digraphs. Since it is closed under isomor-
phisms, it is a property.

Proposition 10. s is a weakly directed property.

Proof. Immediate, since the strong components induce a partition of the vertex set.

Hence, property s induces a functor

Ss : Digraphm → WDPosetm

and a stable monic persistence function ps on digraph filtrations, which we call persistent
strong component number. In practice, given a digraph filtration F, the persistent strong
component number ps(u, v) equals the number of strong components in F(v) that contain
at least a strong component when restricted to F(u).

There exists a functor ι : Graphm → Digraphm, which replaces every undirected
edge with a pair of directed edges with opposite orientations. The functor ι ◦ Tn (see
Definition 11), for any n, grants universality of the bottleneck distance. Figure 8 shows the
persistent strong component diagram on two orientations of the usual graph, differing only
on the edge with weight 2.
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Remark 5. The definitions of persistence functions of Sections 3.2 and 3.3 can easily be extended
to digraphs.
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Figure 8. Two orientations of the weighted graph of Figure 1, differing by the orientation of the edge
with weight 2. For each, the weighted digraph (left), the corresponding filtration (above) and its
persistent strong component number function.
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4. Conclusions and Perspectives

We built on a generalized theory of persistence, which no longer requires topological
mediations such as auxiliary simplicial constructions, or the usage of homology as the
functor of choice.

We gave a flexible definition—weakly directed property—for the construction of
generalized persistence functions, and we applied them to toy examples in the category of
weighted graphs. Therein, we discussed the stability and universality of the generalized
persistence functions built following our definitions and considering blocks, edge-blocks,
and clique communities.

This work is the combinatorial counterpart of the foundational results exposed in [12].
There, we focused on Abelian categories and categories of representations, aiming to extend
the persistence to objects relevant in theoretical physics or theoretical chemistry: Lie-group
representations, quiver representations, or representations of the category of cobordisms
(related to topological quantum field theory in [32]). Here, we focus on categories that
generally do not have any additive structure, but are of interest in several branches of
Machine Learning and Artificial Intelligence. Graphs, digraphs, and their connectivity
properties occupy a central role in these research fields, where networks are oftentimes
represented as weighted digraphs. These structures can be compared quantitatively via
stable categorical persistence functions, and possibly optimized by defining bottleneck-
distance-based loss functions. We hope that this work paves the road for new applications
of the persistence paradigm in various fields.

Finally, the posets considered here are homotopically discrete by Proposition 2. Prop-
erties leading to non homotopically discrete posets—with nontrivial higher homology
groups—might give rise to new graph invariants.
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