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Abstract: In this paper, we use the ARA transform to solve families of fractional differential equations.
New formulas about the ARA transform are presented and implemented in solving some applications.
New results related to the ARA integral transform of the Riemann-Liouville fractional integral and the
Caputo fractional derivative are obtained and the last one is implemented to create series solutions
for the target equations. The procedure proposed in this article is mainly based on some theorems of
particular solutions and the expansion coefficients of binomial series. In order to achieve the accuracy
and simplicity of the new method, some numerical examples are considered and solved. We obtain
the solutions of some families of fractional differential equations in a series form and we show how
these solutions lead to some important results that include generalizations of some classical methods.

Keywords: fractional derivative; fractional-order differential equations; Riemann-Liouville fractional
integrals; gamma function; ARA transform

1. Introduction

Fractional calculus is a field of mathematics that studies the theory and applications of
integral and derivatives of a non-integer order. It becomes a vibrant area for mathematicians
and scientists in their research because of its popularity and importance in modeling and
describing many phenomena in many areas including quantum mechanics, plasma physics,
electromagnetic theory and other different areas of science; see the books of Podlubny [1],
Miller and Ross [2] and Oldham [3] and the papers by Friedrich [4], Chen and Moore [5]
and Ahmad and Sivasundaram [6].

During the last decade, researchers have been interested in establishing and refin-
ing new methods to solve fractional differential equations such as the Adomian decom-
position method [7], the iteration method [8,9], residual power series [10], the finite-
difference method [11,12], the Laplace transform method [12–15] and the Homotopy analy-
sis method [16]. Some of these methods give the solution in a series form which converges
to the exact solution and other methods reduce the given equation into a simple one or
system of equations [17–20].

In order to produce this paper, we deal with the ARA transform [21], which is a
general form of the Laplace transform. In addition, the ARA transform is applicable for
some functions which can’t be defined in the case of Laplace transform.

Some important theorems related to the Laplace transform have been generalized and
constructed to the ARA transform.

New general formulas are established throughout applying the ARA transform on
both Riemann-Liouville fractional integral and Caputo fractional derivative. The last
one is implemented to solve and construct series solutions of some families of fractional
differential equations.

The article is organized as follows. In Section 2, we introduce some basic definitions
of fractional calculus and the ARA transform. Some properties of the ARA transform that
are needed in our work also are illustrated in Section 2. In Section 3, the ARA transform
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is implemented to obtain new formulas by applying the ARA transform on the Riemann-
Liouville fractional integral and the Caputo fractional derivative.

In Section 4, solutions of some families of fractional differential equations are intro-
duced and discussed with some applications.

2. Definitions and Properties

In this section, we present some basic definitions and properties of fractional calculus
theory and the ARA transform that are needed to construct the new formulas about the
ARA solution of the fractional differential equations.

Definition 1 [1]. The Riemann-Liouville fractional integral of order α > 0 of the function g(t) is
defined by:

Iα
t g(t) =

1
Γ(α)

t∫
a

(t− τ)α−1g(τ)dτ.

Definition 2 [1]. The Caputo fractional derivative of order α > 0 of the function g(t) is defined by:

Dα
t g(t) =

1
Γ(m− α)

t∫
0

g(m)(τ)

(t− τ)α+1−m dτ, m− 1 < α < m.

Recently, Saadeh et al. [21] introduced a new integral transform, called the ARA
transform, which is applied to solve ordinary and partial differential equations.

Definition 3 [21]. The ARA transform of order n of the continuous function g : (0, ∞)→ R ,
is defined by:

Gn[g(t)](s) = G(n, s) = s
∞∫

0

tn−1e−stg(t)dt, s > 0.

Definition 4. The binomial formula is written as:

(x + y)n =
n

∑
k=0

Cn
k xn−kyk,

where

Cn
k =

(
n
k

)
=

n!
(n− k)!k!

=
n(n− 1) . . . (n− k− 1)

k!
.

Definition 5. The Mittag-Leffler function (cf. [22,23]) is defined by:

Eγ,λ(z) =
∞

∑
j=0

zj

Γ(γj + λ)
, (z, γ, λ ∈ C, R(γ) > 0).

In the following we introduce some basic properties of the ARA transform [21] that
are essential in our research.

Property 1. (Existence of the ARA Transform)
If g(t) is a piecewise continuous function on every finite interval 0 ≤ t ≤ β and satisfies:∣∣∣tn−1g(t)

∣∣∣ ≤ Keβt,
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then the ARA transform exists for all s > β.

Property 2. (Linearity Property)
Let u(t) and v(t) be two functions in which the ARA transform exists. Then

Gn[αu(t) + βv(t)](s) = αGn[u(t)](s) + βGn[v(t)](s),

where α and β are nonzero constants.

Property 3. (Shifting in n—Domain)

Gn[tmg(t)](s) = Gn+m[g(t)](s).

Property 4. (The ARA Transform for Derivatives)

Gn

[
g(m)(t)

]
(s) = (−1)n−1s

dn−1

dsn−1

 G1

[
g(m)(t)

]
(s)

s

.

Property 5. (Convolution)

Gn[ f (t) ∗ h(t)](s) = (−1)n−1s
n−1

∑
j=0

Cn−1
j

(
G1[ f (t)](s)

s

)(j)
·
(
G1[h(t)](s)

s

)(n−1−j)

Property 6. The ARA transform of tα is given by:

Gn[tα](s) =
Γ(α + n)
sα+n−1 .

In the following arguments, we introduce the dualities between the ARA transform
and some well-known transforms.

• Duality to Laplace transform [24]

L[g(t)](s) = G(s) =
G1[g(t)](s)

s

and

L
[
tn−1 g(t)

]
(s) =

Gn[g(t)](s)
s

.

• Duality to Sumudu transform [25]

S[g(t)](u) = G(u) =
1
u

∞∫
0

exp
(
− t

u

)
g(t)dt.

Putting = 1
s , we get

S[g(t)]
(

1
s

)
= G

(
1
s

)
= G1[g(t)](s).
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• Duality to Shehu transform [26]

S[g(t)](s) = V(s, u) =
∞∫

0

exp
(
− st

u

)
g(t)dt.

Putting = 1, we get
sV(s, 1) = G1[g(t)](s)

and
s S
[
tn−1 g(t)

]
(s, 1) = Gn[g(t)](s).

3. The ARA Transform of Fractional Operators

In this section we present two basic theorems about the application of ARA transform
on the Riemann-Liouville fractional integral and the Caputo fractional derivative and
construct new formulas to solve the target equations.

Theorem 1. The ARA transform of the Riemann-Liouville fractional integral of order α > 0 of the
function g(t) is given by:

Gn[Iα
t g(t)](s) = (−1)n−1s

n−1

∑
j=0

Cn−1
j

(
G1[g(t)](s)

s

)(j)(
s−α

)(n−1−j),

where Cn−1
j is the binomial coefficient.

Proof of Theorem 1. The Riemann-Liouville fractional integral of the function g(t) can be
written as

Iα
t g(t) =

1
Γ(α)

(
g(t) ∗ tα−1

)
. (1)

Applying the ARA transform on both sides of Equation (1), to get

Gn[Iα
t g(t)](s) =

1
Γ(α)

Gn

[
g(t) ∗ tα−1

]
(s).

Using Property 5, we have

Gn[Iα
t g(t)](s) = 1

Γ(α)

(
(−1)n−1s

n−1
∑

j=0
Cn−1

j

(
G1[g(t)](s)

s

)(j) ( Γ(α)
sα

)(n−1−j)
)

= (−1)n−1s
n−1
∑

j=0
Cn−1

j

(
G1[g(t)](s)

s

)(j)
(s−α)

(n−1−j).

�

Theorem 2. The ARA transform of the Caputo fractional derivative of order α > 0 of the function
g(t) is given by:

Gn[Dα
t g(t)](s) =

1
Γ(m− α)

n

∑
j=1

(
n− 1
j− 1

)
Γ(n + m− j− α)

sn+m−j−α
Gj

[
g(m)(t)

]
(s),

for m − 1 < α ≤ m.
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Proof of Theorem 2. Applying the ARA transform on the Caputo fractional derivative of
the function g(t), we have:

Gn[Dα
t g(t)](s) = s

∞∫
0

e−sttn−1(Dα
t g(t))dt

= s
∞∫
0

e−sttn−1

(
1

Γ(m−α)

t∫
0

g(m)(ζ)

(t−ζ)α−m+1 dζ

)
dt.

Changing the order of integration, we get

Gn[Dα
t g(t)](s) = s

Γ(m−α)

∞∫
0

∞∫
ζ

e−sttn−1g(m)(ζ)

(t−ζ)α−m+1 dt dζ

= s
Γ(m−α)

∞∫
0

g(m)(ζ)
∞∫
ζ

e−sttn−1

(t−ζ)α−m+1 dt dζ.
(2)

Letting u = t− ζ in Equation (2) leads to

Gn[Dα
t g(t)](s) = s

Γ(m−α)

∞∫
0

g(m)(ζ)
∞∫
0

e−s(u+ζ)(u+ζ)n−1

uα−m+1 du dζ

= s
Γ(m−α)

∞∫
0

g(m)(ζ)e−sζ
∞∫
0

e−su (u + ζ)n−1 um−α−1dudζ
(3)

Using the binomial formula, Equation (3) can be written as

Gn[Dα
t g(t)](s) =

s
Γ(m− α)

∞∫
0

g(m)(ζ)e−sζ

∞∫
0

e−su
n−1

∑
j=0

(
n− 1

j

)
un+m−α−j−2 ζ jdu dζ

Thus,

Gn[Dα
t g(t)](s) =

1
Γ(m− α)

∞∫
0

g(m)(ζ)e−sζs
∞∫

0

e−su
n

∑
j=1

(
n− 1
j− 1

)
un+m−α−j−1 ζ j−1du dζ

From the definition of the ARA transform of order one G1[ ], we obtain

Gn[Dα
t g(t)](s) =

1
Γ(m− α)

∞∫
0

g(m)(ζ)e−sζG1

[
n

∑
j=1

(
n− 1
j− 1

)
un+m−α−j−1 ζ j−1

]
dζ.

Property 6 and the definition of the ARA transform yield

Gn[Dα
t g(t)](s) = 1

Γ(m−α)

∞∫
0

e−sζ g(m)(ζ)
n
∑

j=1

(
n− 1
j− 1

)
Γ(n+m−j−α)

sn+m−j−α−1 ζ j−1dζ

= 1
Γ(m−α)

n
∑

j=1

(
n− 1
j− 1

)
Γ(n+m−j−α)

sn+m−j−α−1

∞∫
0

e−sζζ j−1 g(m)(ζ) dζ

= 1
Γ(m−α)

n
∑

j=1

(
n− 1
j− 1

)
Γ(n+m−j−α)

sn+m−j−α Gj

[
g(m)(t)

]
(s).

This completes the proof. �

Remark 1. (Special Cases of Theorem 2)

G1[Dα
t g(t)](s) =

1
sm−α

G1

[
g(m)(t)

]
(s), m− 1 < α ≤ m. (4)

G2[Dα
t g(t)](s) = m−α

sm+1−α G1

[
g(m)(t)

]
(s) + 1

sm−α G2

[
g(m)(t)

]
(s),

m− 1 < α ≤ m.
(5)
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4. Solutions of Families of Fractional Differential Equations

Throughout this section, we derive three basic theorems to construct series solutions
of fractional differential equations of the first and second order. Mathematica software is
used to compute and simplify the results.

Theorem 3. The solution of the fractional differential equation

Dα
t g(t) + a g′(t) + b g(t) = 0, 1 < α ≤ 2 (6)

where a, b ∈ R, g(t) is a piecewise continuous function in every finite interval 0 ≤ t ≤ β in which
the ARA transform exists, with initial conditions

g(0) = c0 and g′(0) = c1 (7)

is given by

g(t) =
∞

∑
j=0

∞

∑
i=0

(−1)j+iΓ(j + i + 1)ajbi

Γ((α− 1)j + αi + 1)
t(α−1)j+αi

j!i!

(
c0

(
atα−1 + 1

)
+

c1 t
(α− 1)j + αi + 1

)
.

Proof of Theorem 3. Applying the ARA transform of second order G2[ ] on both sides of
Equation (6), we get:

G2[Dα
t g(t)](s) + aG2

[
g′(t)

]
(s) + b G2[g(t)](s) = 0

Using Equation (5) with m = 2,

2− α

s3−α
G1[g′′ (t)](s)−

1
s1−α

d
ds

(sG1[g(t)](s)) +
g(0)
s1−α

+ aG2
[

g′(t)
]
(s) + bG2[g(t)](s) = 0.

Using Property 4 with n = 2 for m = 1 and m = 0 respectively, and the initial conditions in (7)

2−α
s3−α G1[g′′ (t)](s) − 1

s1−α
d
ds (sG1[g(t)](s)) +

c0
s1−α − a s d

dsG1[g(t)](s)

−bs d
ds

(
G1[g(t)](s)

s

)
= 0.

Again, using Property 4 with n = 1 and m = 2, and the initial conditions in (7)

2−α
s3−α

(
s2G1[g(t)](s)− c0s2 − c1s

)
− 1

s1−α
d
ds (sG1[g(t)](s)) +

c0
s1−α

−a s d
dsG1[g(t)](s)− bs d

ds

(
G1[g(t)](s)

s

)
= 0

(8)

After simple computations, Equation (8) becomes

G ′1[g(t)](s)
(
− s

s1−α − a s− b
)
+ G1[g(t)](s)

(
2−α
s3−α s2 − 1

s1−α + b
s

)
+c0

(
−s2 2−α

s3−α + 1
s1−α

)
+ c1

(
−s 2−α

s3−α

)
= 0

G ′1[g(t)](s)(−sα − a s− b) + G1[g(t)](s)
(
(2− α)sα−1 − sα−1 + b s−1)

+c0(α− 1)sα−1 + c1(α− 2)sα−2 = 0

G ′1[g(t)](s) +G1[g(t)](s)
(
(2−α)sα−1−sα−1+b s−1

−sα−a s−b

)
+ c0(α−1)sα−1+c1(α−2)sα−2

−sα−a s−b = 0

G ′1[g(t)](s)− G1[g(t)](s)
(

(1− α)sα + b
sα+1 + a s2 + sb

)
− c0(α− 1)sα + c1(α− 2)sα−1

sα+1 + a s2 + bs
= 0. (9)
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Solving the ordinary differential Equation (9), we get:

G1[g(t)](s) =
c0(sα + a s)
sα + a s + b

+
c1 sα−1

sα + a s + b
. (10)

Now expand the term 1
sα+a s+b in the following form

1
sα+a s+b = s−1

sα−1+a+bs−1 = s−1

(sα−1+a)
(

1+ bs−1

sα−1+a

) = s−1

sα−1+a

∞
∑

i=0

(
−bs−1

sα−1+a

)i
=

∞
∑

i=0

(−b)is−i−1

(sα−1+a)
i+1

=
∞
∑

i=0

(−b)is−i−1s−αi−α+i+1

(1+a s1−α)
i+1 =

∞
∑

i=0

(−b)is−αi−α

(1+a s1−α)
i+1 =

∞
∑

i=0
(−b)is−αi−α

(
1

1+a s1−α

)i+1

=
∞
∑

i=0
(−b)is−αi−α

∞
∑

j=0

(
j + i

j

)(
−a s1−α

)j
=

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi−α

Thus, Equation (10) can be written as

G1[g(t)](s) = c0(sα + a s)
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi−α

+c1 sα−1
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi−α

= c0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi

+ac0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi−α+1

+c1
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(1−α)j−αi−1

(11)

Applying the inverse ARA transform of order 1 G−1
1 [ ] on Equation (11), we have

g(t) = c0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i

]
+a c0

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i+α−2

]
+c1

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i−1

]
= c0

(
atα−1 + 1

) ∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((α−1)j+αi+1)
t(α−1)j+αi

j!i!

+c1 t
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((α−1)j+αi+2)
t(α−1)j+αi

j!i!

g(t) =
∞

∑
j=0

∞

∑
i=0

(−1)j+iΓ(j + i + 1)ajbi

Γ((α− 1)j + αi + 1)
t(α−1)j+αi

j!i!

(
c0

(
atα−1 + 1

)
+

c1 t
(α− 1)j + αi + 1

)
.

�

Example 1. The fractional differential equation

D
3
2
t g(t) + 2g′(t) + g(t) = 0
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with initial conditions g(0) = 1 and g′(0) = 0, has the following solution

g(t) =
∞

∑
j=0

∞

∑
i=0

(−1)j+iΓ(j + i + 1)2jt
1
2 j+ 3

2 i

j!i!Γ
(

1
2 j + 3

2 i + 1
) (

2t
1
2 + 1

)
.

Putting α = 0 in Theorem 3 we get the following results.

Corollary 1. The solution of the fractional differential equation

Dα
t g(t) + bg(t) = 0, 1 < α ≤ 2,

where b ∈ R with the initial conditions g(0) = c0 and g′(0) = c1 is

g(t) =
∞
∑

i=0

(−1)ibitαi

Γ(αi+1)

(
c0 +

c1 t
α i+1

)
= c0

∞
∑

i=0

(−1)ibitαi

Γ(αi+1) + c1 t
∞
∑

i=0

(−1)ibitαi

Γ(αi+2)

= c0Eα,1(−btα) + c1 tEα,2(−btα).

Example 2. The fractional differential equation

Dα
t g(t) + g(t) = 0, 1 < α ≤ 2, (12)

with initial conditions g(0) = 1 and g′(0) = 1, has the following solution

g(t) =
∞
∑

i=0

(−1)itαi

Γ(αi+1) + t
∞
∑

i=0

(−1)itαi

Γ(αi+2)

= Eα,1(−tα) + tEα,2(−tα).

(13)

The exact solution of Equation (12) can be obtained at α = 2 as the following

g(t) = cost + sint. (14)

Table 1 shows the absolute error between the exact solution (14) and the solution
obtained in Equation (13) with α = 2.

Table 1. The absolute error at α = 2 for Example 2.

t Absolute Error

0 0
0.5 0
1 2.22045 × 10−16

1.5 2.22045 × 10−16

2 1.11022 × 10−16

2.5 1.11022 × 10−16

3 8.88178 × 10−16

3.5 2.22045 × 10−16

4 2.22045 × 10−16

Figure 1 illustrates the solution behavior of the fractional differential Equation (12) at
various values of α. Blue line: exact solution at α = 2, dashed line at α = 1.9, dotted line at
α = 1.8, dash. dotted line at α = 1.6, large dash line at α = 1.5.
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Figure 1. The solution behavior of Equation (12).

Corollary 2. The solution of the harmonic vibration equation [27]

Dα
t g(t) + w2g(t) = 0, 1 < α ≤ 2,

with the initial conditions g(0) = c0 and g′(0) = c1 is given by

g(t) = c0Eα,1

(
−w2tα

)
+ c1 tEα,2

(
−w2tα

)
.

Theorem 4. The solution of the fractional differential equation

g′′ (t) + a Dα
t g(t) + b g(t) = 0, 1 < α ≤ 2, (15)

where a, b ∈ R, g(t) is a piecewise continuous function in every finite interval 0 ≤ t ≤ β in which
the ARA transform exists, with initial conditions

g(0) = c0 and g′(0) = c1 (16)

is given by

g(t) =
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i+1)
t(2−α)j+2i

j!i!

(
c0 +

c1t
(2−α)j+2i+1

)
+

∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i−α+3)
t(2−α)j+2i−α+2

j!i!(
ac0 +

a c1t
(2−α)j+2i−α+3

)
.

Proof of Theorem 4. Applying the ARA integral transform of second order G2[ ] on both
sides of Equation (15), we get

G2[g′′ (t)](s) + aG2[Dα
t g(t)](s) + b G2[g(t)](s) = 0.

Using Equation (5) with m = 2,

G2[g′′ (t)](s) + a
(

2−α
s3−α G1[g′′ (t)](s) +

g(0)
s1−α −

G1[g(t)](s)
s1−α − sαG ′1[g(t)](s)

)
+b G2[g(t)](s) = 0
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Using Property 4 with n = 2 for m = 2 and m = 0 respectively, and the initial conditions
in (16), we get

c0s− s2G ′1[g(t)](s) −sG1[g(t)](s)

+a
(

2−α
s3−α G1[g′′ (t)](s) +

c0
s1−α −

G1[g(t)](s)
s1−α

−sαG ′1[g(t)](s)
)
+ bs d

ds

(
G1[g(t)](s)

s

)
= 0

Again, using Property 4 with n = 1 and m = 2, and the initial conditions in (16),

c0s− s2G ′1[g(t)](s)− sG1[g(t)](s) + a
(

2−α
s3−α

(
s2G1[g(t)](s)− s2c0 − s c1

)
+ g(0)

s1−α −
G1[g(t)](s)

s1−α − sαG ′1[g(t)](s)
)

+bs d
ds

(
G1[g(t)](s)

s

)
= 0.

(17)

After simple computations, Equation (17) can be written as

G ′1[g(t)](s) +G1[g(t)](s)
(

s−a sα−1+a α sα−1− b
s

s2+a sα+b

)
+

c0(−s+a sα−1−a α sα−1)+c1(2a sα−2−a α sα−2)
s2+a sα+b = 0

(18)

Solving the ordinary differential Equation (18), we get

G1[g(t)](s) = c0
s2 + a sα

s2 + a sα + b
+ c1

s + a sα−1

s2 + a sα + b
. (19)

Now, to get our target, we expand the term 1
s2+a sα+b as follows

1
s2+a sα+b = s−α

s2−α+a+bs−α = s−α

(s2−α+a)
(

1+ bs−α

s2−α+a

) = s−α

s2−α+a

∞
∑

i=0

(
−bs−α

s2−α+a

)i

=
∞
∑

i=0

(−b)is−αi−α

(s2−α+a)i+1 =
∞
∑

i=0

(−b)is−αi−α

(1+a sα−2)
i+1s(2−α)(i+1)

=
∞
∑

i=0

(−b)is−αi−α

(1+a sα−2)
i+1s2i+2−αi−α

=
∞
∑

i=0

(−b)is−2i−2

(1+a sα−2)
i+1 =

∞
∑

i=0
(−b)is−2i−2

∞
∑

j=0

(
j + i

j

)(
−a sα−2)j

=
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i−2

Thus, Equation (19) can be written as

G1[g(t)](s) = c0 s2
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i−2

+a c0 sα
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i−2

+c1s
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i−2

+a c1 sα−1
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i−2
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G1[g(t)](s) = c0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i

+a c0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i+α−2

+c1
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi sj(α−2)−2i−1

+a c1
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbi s(α−2)j−2i+α−1

(20)

Applying the inverse ARA transform G−1
1 [ ] on Equation (20), we have

g(t) = c0
∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i

]
+a c0

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i+α−2

]
+c1

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i−1

]
+a c1

∞
∑

j=0

∞
∑

i=0
(−1)j+i

(
j + i

j

)
ajbiG−1

1

[
s(α−2)j−2i+α−1

]

g(t) = c0
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i+1)
t(2−α)j+2i

j!i!

+ac0
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i−α+3)
t(2−α)j+2i−α+2

j!i!

+c1
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i+2)
t(2−α)j+2i+1

j!i!

+a c1
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i−α+4)
t(2−α)j+2i−α+3

j!i!

=
∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i+1)
t(2−α)j+2i

j!i!

(
c0 +

c1t
(2−α)j+2i+1

)
+

∞
∑

j=0

∞
∑

i=0

(−1)j+iΓ(j+i+1)ajbi

Γ((2−α)j+2i−α+3)
t(2−α)j+2i−α+2

j!i!

(
ac0 +

a c1t
(2−α)j+2i−α+3

)
�

Example 3. The fractional differential equation

g′′ (t) + 2D
3
2
t g(t) + 2g(t) = 0,

with initial conditions g(0) = 1 and g′(0) = 0 has the following series solution

g(t) =
∞

∑
j=0

∞

∑
i=0

(−1)j+iΓ(j + i + 1)2jt
1
2 j+2i

j!i!Γ
(

1
2 j + 2i + 1

) + 2
∞

∑
j=0

∞

∑
i=0

(−1)j+iΓ(j + i + 1)2jt
1
2 j+2i+ 1

2

j!i!Γ
(

1
2 j + 2i + 3

2

) .

Putting b = 0 in Theorem 2 we get the following result.

Corollary 3. The solution of the fractional differential equation of the form:

g′′ (t) + aDα
t g(t) = 0, 1 < α ≤ 2
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where a ∈ R, with initial conditions g(0) = c0 and g′(0) = c1 is

g(t) =
∞
∑

j=0

(−1)jajt(2−α)j

Γ((2−α)j+1)

(
c0 +

c1t
(2−α)j+1

)
+

∞
∑

j=0

(−1)jajt(2−α)j−α+2

Γ((2−α)j−α+3)

(
ac0 +

ac1t
(2−α)j−α+3

)
.

Theorem 5. The solution of the fractional differential equation of the form

Dα
t g(t)− b g(t) = 0, 0 < α ≤ 1, (21)

where b ∈ R, g(t) is a piecewise continuous function in every finite interval 0 ≤ t ≤ β in which
the ARA transform exists, with initial condition

g(0) = c0 (22)

is:

g(t) = c0

∞

∑
i=0

(btα)i

Γ(αi + 1)
.

Proof of Theorem 5. Applying the ARA transform of the second order G2[ ] on both sides
of Equation (21) we get

G2[Dα
t g(t)](s)− b G2[g(t)](s) = 0.

Using Equation (5) of Remark 1 with m = 1 and the initial condition (22)

sα−1(1− α)G1[g(t)](s)− c0sα−1(1− α)− sαG ′1[g(t)](s)− b G2[g(t)](s) = 0

Again, using Equation (4) with n = 2 and m = 0 we have

sα−1(1− α)G1[g(t)](s)− c0sα−1(1− α)− sαG ′1[g(t)](s)− b
G1[g(t)](s)

s
+ bG ′1[g(t)](s) = 0

G ′1[g(t)](s)(b− sα) + G1[g(t)](s)
(

sα−1(1− α)− b
s

)
− c0sα−1(1− α) = 0

G ′1[g(t)](s) +
(

sα−1(1− α)− b
s

b− sα

)
G1[g(t)](s)−

c0sα−1(1− α)

b− sα
= 0. (23)

Solving the ordinary differential Equation (23), we get

G1[g(t)](s) =
c0sα

sα − b
= c0

∞

∑
i=0

(
bs−α

)i
= c0

∞

∑
i=0

bis−αi. (24)

To get our result we apply the inverse ARA transform of order 1, G−1
1 [ ] of both sides

of Equation (24).

g(t) = c0

∞

∑
i=0

(btα)i

Γ(αi + 1)
= c0Eα,1(btα).

�

5. Conclusions

In this work a new technique has been developed for solving families of fractional
differential equations. We introduced new formulas using the ARA transform to achieve
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series solutions of differential equations with fractional order. A formula of the ARA
transform for Caputo fractional derivative was established and implemented to solve
examples and obtain new results. Three main theorems are presented, including the series
solution of some fractional differential equations of first and second orders. In future work,
we intend to solve partial differential equations and fractional integral equations using
new formulas combined with the ARA transform.

Author Contributions: Data curation, A.Q., R.S. and A.B.; formal analysis, R.S., A.Q. and A.B.;
investigation, A.B., R.S. and A.Q.; methodology, R.S., A.B. and A.Q.; project administration, A.Q., R.S.
and A.B.; resources, A.B., R.S. and A.Q.; writing—original draft, A.Q., R.S. and A.B.; writing—review
and editing, A.Q., R.S. and A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by the Deanship of Research in Zarqa University, Jordan.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the dear unknown referees and the editor
for their helpful suggestions, which improved the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; ISBN 0-1255-8840-2.
2. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley: New York, NY, USA,

1993; ISBN 0-4715-8884-9.
3. Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974.
4. Friedrich, C. Relaxation and retardation functions of the Max well model with fractional derivatives. Rheol. Acta 1991, 30, 151–158.

[CrossRef]
5. Chen, Y.Q.; Moore, K.L. Analytical stability bounded for a class of delayed fractional-order dynamic systems. Nonlinear Dyn.

2002, 29, 191–200. [CrossRef]
6. Ahmad, B.; Sivasundaram, S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional

differential equations. Nonlinear Anal. Hybrid Syst. 2009, 3, 251–258. [CrossRef]
7. Adomian, A. A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl.

1990, 21, 101–127. [CrossRef]
8. Inc, M. The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by

variational iteration method. J. Math. Anal. Appl. 2008, 345, 476–484. [CrossRef]
9. Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J.

Nonlinear Sci. Numer. Simul. 2006, 7, 27–34. [CrossRef]
10. Saadeh, R.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.; Din, U. Application of Fractional Residual Power Series Algorithm to Solve

Newell–Whitehead–Segel Equation of Fractional Order. Symmetry 2019, 11, 1431. [CrossRef]
11. Edwan, R.; Saadeh, R.; Hadid, S.; Al-Smadi, M.; Momani, S. Solving Time-Space-Fractional Cauchy Problem with Constant

Coefficients by Finite-Difference Method. In Computational Mathematics and Applications, Springer Proceedings in Mathematics;
Zeidan, D., Padhi, S., Burqan, A., Ueberholz, P., Eds.; Springer: Singapore, 2020; Volume 1, pp. 25–46.

12. Saadeh, R. Numerical solutions of fractional convection-diffusion equation using finite-difference and finite-volume schemes.
J. Math. Comput. Sci. 2021, 11, 7872.

13. Carpinteri, A.; Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997.
14. Kazem, S. Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 2013, 16, 3–11.
15. Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, A. New efficient technique using Laplace transforms and smooth expansions to

construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J. 2021. [CrossRef]
16. Das, S.; Gupta, P. Homotopy analysis method for solving fractional diffusion equation. Int. J. Comput. Math. 2011, 88, 578–588.

[CrossRef]
17. Maitama, S.; Zhao, W. Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and

integer order derivatives. Comput. Appl. Math. 2021, 40, 1–30. [CrossRef]
18. Maitama, S.; Zhao, W. Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences.

J. Appl. Math. Comput. Mech. 2021, 20, 71–82. [CrossRef]
19. Qazza, A.; Hatamleh, R.; Alodat, N. About the Solution Stability of Volterra Integral Equation with Random Kernel. Far East J.

Math. Sci. 2016, 100, 671–680. [CrossRef]
20. Qazza, A.; Hatamleh, R. The existence of a solution for semi-linear abstract differential equations with infinite B chains of the

characteristic sheaf. Int. J. Appl. Math. 2018, 31, 611–620. [CrossRef]

http://doi.org/10.1007/BF01134604
http://doi.org/10.1023/A:1016591006562
http://doi.org/10.1016/j.nahs.2009.01.008
http://doi.org/10.1016/0898-1221(91)90220-X
http://doi.org/10.1016/j.jmaa.2008.04.007
http://doi.org/10.1515/IJNSNS.2006.7.1.27
http://doi.org/10.3390/sym11121431
http://doi.org/10.1016/j.aej.2021.07.020
http://doi.org/10.1080/00207161003631901
http://doi.org/10.1007/s40314-021-01476-9
http://doi.org/10.17512/jamcm.2021.1.07
http://doi.org/10.17654/MS100050671
http://doi.org/10.12732/ijam.v31i5.7


Mathematics 2021, 9, 3039 14 of 14

21. Saadeh, R.; Qazza, A.; Burqan, A. A new integral transform: ARA transform and its properties and applications. Symmetry 2020, 12, 925.
[CrossRef]

22. Mittag-Leffleri, G. Sur La Nouvelle Fonction Ea(x); Comptes Rendus de l’Académie des Sciences: Paris, France, 1903.
23. Tomovski, Z.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators

and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2011, 21, 797–814. [CrossRef]
24. Widder, D.V. The Laplace Transform; Princeton University Press: London, UK, 1946.
25. Watugula, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems.

Int. J. Math. Edu. Sci. Technol. 1993, 24, 35–43. [CrossRef]
26. Maitama, S.; Zhao, W. New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving

differential equations. Int. J. Anal. Appl. 2019, 17, 167–190.
27. Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena.

In Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997.

http://doi.org/10.3390/sym12060925
http://doi.org/10.1080/10652461003675737
http://doi.org/10.1080/0020739930240105

	Introduction 
	Definitions and Properties 
	The ARA Transform of Fractional Operators 
	Solutions of Families of Fractional Differential Equations 
	Conclusions 
	References

