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Abstract: Remaining useful life (RUL) prediction of key components is an important influencing
factor in making accurate maintenance decisions for mechanical systems. With the rapid development
of deep learning (DL) techniques, the research on RUL prediction based on the data-driven model is
increasingly widespread. Compared with the conventional convolution neural networks (CNNs), the
multi-scale CNNs can extract different-scale feature information, which exhibits a better performance
in the RUL prediction. However, the existing multi-scale CNNs employ multiple convolution kernels
with different sizes to construct the network framework. There are two main shortcomings of
this approach: (1) the convolution operation based on multiple size convolution kernels requires
enormous computation and has a low operational efficiency, which severely restricts its application in
practical engineering. (2) The convolutional layer with a large size convolution kernel needs a mass of
weight parameters, leading to a dramatic increase in the network training time and making it prone to
overfitting in the case of small datasets. To address the above issues, a multi-scale dilated convolution
network (MsDCN) is proposed for RUL prediction in this article. The MsDCN adopts a new multi-
scale dilation convolution fusion unit (MsDCFU), in which the multi-scale network framework is
composed of convolution operations with different dilated factors. This effectively expands the
range of receptive field (RF) for the convolution kernel without an additional computational burden.
Moreover, the MsDCFU employs the depthwise separable convolution (DSC) to further improve the
operational efficiency of the prognostics model. Finally, the proposed method was validated with
the accelerated degradation test data of rolling element bearings (REBs). The experimental results
demonstrate that the proposed MSDCN has a higher RUL prediction accuracy compared to some
typical CNNs and better operational efficiency than the existing multi-scale CNNs based on different
convolution kernel sizes.

Keywords: remaining useful life; deep learning; rolling element bearing; multi-scale feature fusion;
dilated convolution

1. Introduction

With the development of industrial science and engineering maintenance, the level of
automation and complexity of mechanical equipment (ME) has been increasing. Under
the comprehensive interaction of internal and external factors, the performance and health
status of mechanical components would inevitably degrade. When the degradation reaches
a certain extent, equipment will suffer serious failure, resulting in irreparable economic
losses and a waste of resources [1].

In the context of the continuous development of Industry 4.0 and the Internet of
Things, prognostic and health management (PHM) technology has been widely used
for fault diagnosis studies of ME key parts. Rolling element bearing (REB) is the one of
principal factor determining the state of health of rotating machinery. The remaining useful
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life (RUL) prediction can identify damage and defects of the REB as early as possible to
avoid equipment damage and personnel casualties [2]. Therefore, bearing RUL prediction
is of great significance.

Generally, the RUL prediction paradigm includes three kinds of methods: model-
based, experience-based, and data-driven approaches [3]. The use of general model-
based or experience-based approaches depends on a deep understanding of system-failure
physics and requires complete knowledge of the dynamics to construct model equations.
Due to the complexity of the mechanical system structure, it is difficult to be accurately
applied in the practical engineering system. In contrast, the data-driven approach is
primarily being prepared on the basis of sensor data, and it requires less knowledge of
inherent system failure mechanisms. Failure regularity of the REB can be identified more
accurately by data analysis only. This has led to many data-driven approaches being
put forward in recent years, such as artificial neural network (NN) [4], support vector
machine (SVM) [5], k-nearest neighbor (KNN) [6], hidden Markov modes [7], etc. Liu
et al. [8] proposed an RUL prediction model based on multiple health state assessments
and then predicted the RUL of REB using the SVM. Zheng [9] extracted the useful features
by the empirical mode decomposition (EMD) and estimated the bearing’s current state
using the RUL prediction model based on the KNN classifier. Ail et al. [10] adopted
the ANN to construct an RUL prediction model for pump bearings, which has good
properties for analyzing time-domain signals. Although the above studies had a certain
degree of successful RUL prediction, most of them need complicated signal processing
techniques and some prior knowledge to extract feature information. Moreover, these
models are all shallow network architectures. In realistic applications, they are inapplicable
to automatic analysis and feature extraction for big data due to requiring a large amount of
prior knowledge.

Deep learning (DL) technology can construct a deeper nonlinear network structure,
achieving the approximation of complicated functions and characterization of the analyzed
data. Therefore, DL is increasingly attractive in the data-driven prognostics model. A deep
neural network (DNN) based on DL can automatically mine feature information from
input raw data by stacking multilayer neural networks, which overcomes the dependence
on signal processing technology and expert knowledge, and has obvious advantages
in analyzing big data [11,12]. In recent years, a growing amount of studies have been
dedicated to constructing a DNN-based RUL prediction model, leading to the emergence
of prognostics models utilizing different types of networks. Deep belief network (DBN),
auto-encoder network (AEN), recurrent neural network (RNN), and convolution neural
network (CNN) are mainstream architectures in DL. Deutsch et al. [13] proposed a DBN-
based prognostics model for RUL prediction of rotating components, which was validated
through gear tests and bearing run-to-failure tests. DBN and AEN are time-consuming
because their training processes contain too many weight parameters. Long short-term
memory (LSTM), as an improvement of the RNN, is good at extracting the sequential
nature of the temporal signal. Hinchi et al. [14] presented an end-to-end framework for
REB RUL estimation based on convolutional and LSTM recurrent units. Chu et al. [15]
constructed an integrated network model with CNN and LSTM to extract signal features
and estimate the RUL of bearing. The LSTM is based on a serial computing system, which
leads to low operational efficiency and limits its application in engineering.

Among the above DNNs, CNNs have shown a remarkable ability in extracting fea-
tures information from the condition monitoring data. CNN can effectively reduce the
computational burden in the training process because it utilizes a local receptive field and
weight-sharing strategies to decrease the number of weight parameters [16]. Ren et al. [17]
adopted a CNN-based network model with 13 convolution layers to predict REB RUL,
in which the spectrum-principal-energy vector was used to extract signal eigenvectors
to input the network. Li et al. [18] combined short-time Fourier transform (STFT) and
CNN to acquire the RUL of REB, where raw vibration signals are pre-processed with the
STFT to extract time-frequency features and used as the input eigenvectors. Although
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CNN-based prognostics models exhibit promising prognostic performance, there remain
the following shortcomings:

(1) Traditional CNNs have a fixed convolution kernel size for each convolution layer
in the network. The ability to extract features for CNN would decline significantly
under a strong noise environment because the specific scale convolution kernel can
only learn feature information of the corresponding scale.

(2) Numerous multi-scale CNN models [12,16,19] have been proposed recently to extract
different-scale feature information. Even though these models improve the learning
ability of the network, the existing multi-scale networks’ frameworks are all based on
different sizes of convolution kernels. A multi-scale convolution framework based on
multiple size convolution kernels requires more convolution operations, much greater
computation, and a mass of weight parameters. A low operation speed severely
restricts its application in engineering applications.

(3) A complex network architecture that contains too many convolution layers is not
appropriate for prognostic prediction. The increase in network depth does not further
improve the network performance effectively [20], and the network training time
increases dramatically. In addition, too deep of a network structure can easily result
in overfitting in the case of small datasets.

To tackle the above problems, a one-dimensional (1D) end-to-end multi-scale deep
CNN model for RUL prediction was proposed in this study, and the sketch map of the
proposed method is shown in Figure 1. The monitoring 1D data can be directly fed into
the proposed network without any pre-processing operations. It does not require complex
signal processing techniques, increasing the commodity and applicability of the proposed
model largely. The proposed multi-scale dilated convolution network (MsDCN) adopts
a novel multi-scale dilated convolution fusion unit (MsDCFU) instead of the traditional
multiple convolution kernels with different sizes. The MsDCFU can extract different-scale
feature information using diverse size dilation factors to expand the receptive field of
the convolution kernel, almost without additional computational burden. In addition,
depthwise separable convolution (DSC) was employed to replace the standard convolution
in the proposed model to further reduce the network parameters and the computation
cost. The rest of the article is structured as follows. The standard convolution, dilation
convolution, and DSC theory are described in Section 2. The proposed MsDCFU and multi-
scale model framework are described in detail in Section 3. Experiment and comparison
analyses are illustrated in Section 4. Conclusions are composed in Section 5.
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2. Preliminaries
2.1. Convolutional Neural Network (CNN)

CNN, as a kind of feedforward neural network, mainly consists of multiple convo-
lutional layers, pooling layers, and fully connected (FC) layers. In addition, the batch
normalization (BN) layer and the activation layer are also important parts of CNN. CNN
adopts the strategy of the local receptive field and weight sharing, with high training
efficiency and fewer network parameters, thus making it widely used in image recognition,
speech processing, and other fields [21].

The convolution layer is the most important part of the CNN, which extracts the
learned features to the next layer by performing local convolutional operations on the
output features of the network in the previous layer. This process can be described by
this formula:

y = f (W ∗ x + b) (1)

where x is the input of the convolution layer, y denotes the convolution layer output result,
W is the weight parameter, and b is the bias of the convolution kernel. f () denotes the
activation function, which is used to enhance the nonlinear expression ability of learned
features. The rectified linear unit (ReLU) is the most widely used nonlinear mapping
activation function. It not only accelerates the convergence of the model but also makes the
network easier to optimize in the process of back-propagation learning.

The pooling layer is usually added after the convolution layer, which can compress
the feature map size, reduce the dimension of spatial features, and simplify the network’s
complexity. The most common pooling methods contain average pooling, max pooling,
L2-norm pooling, and global average pooling (GAP). GAP is used to calculate the mean
value of each channel feature map, which is often used before the FC layer. The BN layer
is arranged between the convolution layer and the activation layer to reduce the shift of
internal covariance and to accelerate the training process of multilayered networks. The FC
layer is located at the end of the entire CNN and acts as a classifier by using the softmax
function to classify the learned feature information with minimum cross-entropy loss as
the objective function.

2.2. Dilated Convolution

Traditional CNNs normally use standard convolution operations, in which the dilation
factor is fixed, usually d = 1, which denotes that there is no interval between the convolution
kernel and the elements of the feature map during the convolution process. The range of
the receptive field in the convolution operation for the dilation factor d = 1 corresponds to
the size of the convolution kernel. The convolution operation for the standard convolution
with dilation factor d = 1 is illustrated in Figure 2a. From the figure, the range of receptive
field is 3 × 3, which is the same size as the convolution kernel.

Dilated convolution is defined as a convolution operation with different degrees of
spacing between the elements of the feature map when the dilation factor is set to d > 1.
Yu et al. [22] proposed a dilated convolution neural network for image segmentation and
validated that the dilated convolution can increase the receptive field of CNN without
introducing additional parameters. Zhang et al. [23] constructed a compressed dense block,
where dilated convolution is introduced to obtain a large receptive field without reducing
the loss of feature information. Wei et al. [24] designed a generic classification network
equipped with dilated convolutional blocks of different dilation factors. Generally, the
receptive field of the dilation convolution is larger than the standard convolution (d = 1).
The convolution operation of the dilated convolution with dilation factor d = 2 is displayed
in Figure 2b. It can be seen that the range of the receptive field is 5 × 5. Comparing the two
figures, it can be found that although convolution kernel size is the same in the standard
convolution and dilated convolution, the latter has a larger receptive field range during the
convolution process, and thus it can extract larger-scale feature information. Different scales
of dilation factors can extract feature information at different scales, and with increasing
dilation factors, the range of the corresponding receptive field range increases significantly.
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It should be further noted that the dilated convolution utilizes an increase in the dilation
factor to increase the range of the receptive field. Therefore, it does not bring an increase in
the number of extra parameters and computation in the convolution operation compared
to the standard convolution operation.
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2.3. Depthwise Separable Convolution (DSC)

During the standard convolution operation, the convolution kernels are convoluted
with the feature map of each channel separately, and the output features are obtained by
linear superposition of the convolution results. The standard convolution process is shown
in Figure 3, in which the input feature map dimension is N × N × 3, the output feature map
dimension is M × M × 2, and the convolution kernel dimension is set up as D × D × 3 × 2.
It can be seen from the figure that both the number of channels for the input features and
the convolution are taken into account simultaneously in the standard convolution process.
The number of parameters in the standard convolution operation is as follows:

Qstandard = D × D × 3 × 2 (2)
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The DSC operation includes a sequence of depthwise convolution (DWConv) and
1 × 1 pointwise convolution (PWConv) [25], which are shown in Figure 4a,b, respectively.
The number of convolution kernels is the same as the number of input feature channels in
the DWConv, and the convolution kernels only perform the convolution operation with the
corresponding channel input features; thus, the number of output feature channels is the
same as the number of input feature channels. PWConv has the same convolution process
as the standard convolution operation but uses a size of 1 × 1 convolution operation.
Compared to standard convolution, DSC can greatly reduce the size of the network and
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learn representative features faster and more accurately. More detail about the DSC
operation process can be found in ref. [26]. The convolution area is considered first in
the DSC, followed by the channels of the input features through which the separation
of channels and convolution areas is achieved. The number of parameters in the DSC
operation is:

QDSC = D × D × 3 + 3 × 1 (3)

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 18 
 

 

the corresponding channel input features; thus, the number of output feature channels is 
the same as the number of input feature channels. PWConv has the same convolution 
process as the standard convolution operation but uses a size of 1 × 1 convolution opera-
tion. Compared to standard convolution, DSC can greatly reduce the size of the network 
and learn representative features faster and more accurately. More detail about the DSC 
operation process can be found in ref. [26]. The convolution area is considered first in the 
DSC, followed by the channels of the input features through which the separation of chan-
nels and convolution areas is achieved. The number of parameters in the DSC operation 
is: 

3 3 1DSCQ D D= × × + ×  (3)

Comparing Equations (2) and (3), the number of parameters for the DSC is much less 
than that of standard convolution. When the number of convolution kernels or the num-
ber of feature map channels increases dramatically, the reduction in the number of pa-
rameters for the DSC will be considerable. Moreover, Howard et al. [27] further demon-
strated that DSC also requires much less computation than the standard convolution, and 
its operation is more highly efficient. 

(a) 

1 3D D× × ×

3N N× ×
3M M× ×

 
(b) 

3M M× × 1 1 3 2× × × 2M M× ×  

Figure 4. Depthwise separable convolution: (a) DWCnov and (b) PWConv. 

3. Multi-Scale Dilated Convolution Network (MsDCN) 
3.1. Multi-Scale Dilated Convolution Fusion Unit (MsDCFU) 

The vibration signal of rotating machinery is a typical nonlinear and non-smooth sig-
nal. The signal components are very complex, and the feature information is distributed 
in separate frequency bands, so extracting multi-scale feature information can better pre-
dict the evolution law of mechanical equipment service state. Jia et al. [28] confirmed 
through their study that the convolution layer of CNN is equivalent to a band-pass filter, 
and the feature information of different frequency bands in the signal can be extracted by 
setting the relevant parameters of the convolution layer. The receptive field range of the 
convolution kernel varies, and the scale of the feature information extracted in the convo-
lution operation varies. A larger receptive field can obtain larger-scale feature information 
in the signal, while a smaller receptive field reflects detailed feature information. As a 
consequence, some multi-scale CNN models based on different sizes of convolution ker-
nels have been proposed recently [16,18,19] to enhance the CNNs’ feature information 
mining capability. Deng et al. [16] designed a multi-scale feature fusion block based on 
four different convolution sizes 1 × 1, 3 × 3, 5 × 5 and 7 × 7, which can learn different-scale 

Figure 4. Depthwise separable convolution: (a) DWCnov and (b) PWConv.

Comparing Equations (2) and (3), the number of parameters for the DSC is much less
than that of standard convolution. When the number of convolution kernels or the number
of feature map channels increases dramatically, the reduction in the number of parameters
for the DSC will be considerable. Moreover, Howard et al. [27] further demonstrated that
DSC also requires much less computation than the standard convolution, and its operation
is more highly efficient.

3. Multi-Scale Dilated Convolution Network (MsDCN)
3.1. Multi-Scale Dilated Convolution Fusion Unit (MsDCFU)

The vibration signal of rotating machinery is a typical nonlinear and non-smooth
signal. The signal components are very complex, and the feature information is distributed
in separate frequency bands, so extracting multi-scale feature information can better pre-
dict the evolution law of mechanical equipment service state. Jia et al. [28] confirmed
through their study that the convolution layer of CNN is equivalent to a band-pass filter,
and the feature information of different frequency bands in the signal can be extracted
by setting the relevant parameters of the convolution layer. The receptive field range of
the convolution kernel varies, and the scale of the feature information extracted in the
convolution operation varies. A larger receptive field can obtain larger-scale feature infor-
mation in the signal, while a smaller receptive field reflects detailed feature information.
As a consequence, some multi-scale CNN models based on different sizes of convolution
kernels have been proposed recently [16,18,19] to enhance the CNNs’ feature information
mining capability. Deng et al. [16] designed a multi-scale feature fusion block based on four
different convolution sizes 1 × 1, 3 × 3, 5 × 5 and 7 × 7, which can learn different-scale
feature information. Li et al. [19] also proposed a multi-scale block consisting of three
different convolutional kernel sizes of 10 × 1, 15 × 1, and 20 × 1, which can learn the
mapping relationship more accurately.

Both changing the size of the convolution kernel and the dilation factor can increase
the receptive field range in the convolution operation, but the former will lead to an increase
in the number of network parameters and a decrease in the calculating efficiency, while
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the latter can effectively expand the receptive range with little change in the amount of
the convolution operation. Inspired by this, a new multi-scale CNN prognostic model
whose convolution layer has different ranges of receptive fields is proposed to extract the
feature information of the temporal signal with different scales, achieving the purpose
of improving the prediction performance of the network. Unlike most existing studies
that construct multi-scale network models by setting different convolution kernel sizes,
this study designed a MsDCFU by fusing multiple convolution operations with different
dilation factors, whose structure is depicted in Figure 5.
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The proposed method adopts a residual block connection structure, including a cross-
layer identity mapping connection and a main connection consisting of multiple multi-scale
dilated convolution operations. The residual block structure effectively solves the problem
of gradient vanishing when the depth of the network increases, having a higher network
training speed and easier model parameter optimization. The proposed method achieves
the extraction and fusion of multi-scale feature information within the residual block,
taking into account the advantages of cross-layer identify mapping and multi-scale feature
extraction. In the proposed MsDCFU, the input data are first carried out with four different
scales of d = 1, 2, 3, and 4 dilated convolution operations to extract feature information with
different receptive field ranges in the temporal signal. Different-scale feature information
is fused into a new feature map through the concatenate operation, and then the multi-
scale dilated convolution with different dilation factors and concatenating operations are
performed again. Finally, a max-pooling operation with step = 2 and size = 1 × 5 is used to
reduce the feature map dimension and further extract more essential feature information.
To improve the generalization ability and the convergence speed of the network, both BN
and ReLU are employed before the DSC operation. In addition, a 1 × 1 DSC is adopted in
the identity mapping connection of the residual block to ensure that feature dimensions at
the input and output of the residual block are the same. It should be pointed out that the
size of the convolution kernels for the DSC in the proposed method is 1 × 5. A thorough
comparative analysis of the influence of the convolution kernel size on the RUL prediction
performance of the network model is conducted in the experimental section.

3.2. Architecture of MsDCN

The structure of the proposed MsDCN is illustrated in Figure 6. The input of the
network is a 1D vibration signal. The first layer of the network is a standard convolution
layer, and, after that, three MsDCFUs are connected. The number of the MsDCFU affects
the prediction performance and operational efficiency of the model. Too many MsDCFUs
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will lead to a deeper network layer and poor training results; too few MsDCFUs will
result in deficient feature-learning capabilities. Therefore, we made a further comparative
analysis on the influence of the MsDCFU number in the experimental section. It should be
noted that the max pooling layer is removed in the third MsDCFU in order not to make
the input data dimension too small. Then, the feature map information is processed by
the GAP and dropout layer (dropout rate = 0.5), alleviating the effect of the over-fitting
problem. Finally, the proposed model applies the FC layer to output the prediction result
of the REB RUL. The detailed network parameters for the proposed model are presented
in Table 1. In addition, the L2 regularization technique is used to alleviate overfitting
of the network model, and the Adam algorithm is employed to adaptively optimize the
network parameters.
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Figure 6. Architecture of the proposed MsDCN.

Table 1. Parameter setting of network.

Layer Type Kernel Size/Stride Dilation Rate d Kernels Number/Sum Padding

Standard convolution Conv [1 × 49]/8 1 64/64 Yes
Maxpooling [1 × 5]/1 Yes

MDCFU1
DSC [1 × 5]/1 1/2/3/4 16/64 Yes
DSC [1 × 5]/1 1/2/3/4 16/64 Yes

Maxpooling [1 × 3]/2 Yes

MDCFU2
DSC [1 × 5]/1 1/2/3/4 16/64 Yes
DSC [1 × 5]/1 1/2/3/4 16/64 Yes

Maxpooling [1 × 5]/2 Yes

MDCFU3
DSC [1 × 5]/1 1/2/3/4 32/128 Yes
DSC [1 × 5]/1 1/2/3/4 32/128 Yes

3.3. Sample Signal Processing and Label Generation

Before being input to the prognostics model, the signal samples need to be normalized
and time-window embedded. The data signal is normalized as follows:

xnorm =
x − µ

δ
(4)

where xnorm is the normalized signal, and µ and δ are the mean value and standard
deviation of the original signal, respectively.

Wang et al. [29] demonstrated that the prediction performance of data-driven prog-
nostics models based on DNNs can be improved drastically by embedding window infor-
mation into the input data in the RUL prediction. Therefore, a fixed-size time window is
incorporated into the model input data according to the time window embedding strategy.
A fixed-size time window is selected as a time step to concatenate the measured signal after
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normalization into a high-dimensional vector, and then the vector is fed to the model as an
input. Assuming that time step t = 3, the process of time window embedding is displayed
in Figure 7. The input vector acquired by the time step embedding can be illustrated
as follows:

xj
input = (xj

norm, xj+1
norm, · · · , xj+t−1

norm ) (5)

where j is the sequence number of input data, and t is the time step. In this study, many
comparative analyses of the model prognostics performance for different time step sizes
were performed according to the literature [25], and they finally took t = 5.
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There is considerable randomness in the accelerated aging test of bearings, and the
actual lifetime range is very wide. Hence, it is necessary to normalize the labels of bearing
whole lifetime samples to be within the range of [0, 1], then using the normalized RUL
results as the output labels of the network model. The RUL result normalization process is
formulated as:

yi,j =
N − j
N − 1

(6)

where i = 1, 2, . . . , 7, N is the total number of samples in the i-th whole life bearing test,
and j represents the sequence number of the i-th whole life bearing test. The discrep-
ancies between different RUL values of each bearing are minimized by normalizing the
lifetime labels of different bearings, which facilitates the network model gradient descent
optimization solution.

4. Experimental Verification
4.1. Data Descriptions

The experimental data are from the PHM 2012 Challenge dataset, which was collected
at the accelerated aging test rig PRONOSTIA [30]. The structure of the test rig is shown in
Figure 8. A synchronous motor and an assembly of two pulleys were applied for the tested
bearing speed regulating. The load generated by the pneumatic jack is transmitted in the
radial direction of the bearing through the force transmission device. Two accelerometers
of type 3035B DYTRAN were mounted horizontally and vertically on the tested bearing to
acquire the whole-life vibration signals. The sampling frequency of the data was 25.6 kHz,
and the data was recorded every 10s, with each acquisition time being 0.1 s. There were
three working conditions for the tested bearing in the test, and the detailed information of
the experiments can be found in ref. [31]. In this study, we mainly analyzed the bearing
degradation process when the load was 4000 N and the rotating speed was 1800 r/min.
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In this condition, seven whole-life bearing tests were conducted, which are divided into
bearing 1_1 to bearing 1_7. Bearing 1_3 data were chosen to be the testing set, and the rest
composed the training set.
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Since the tested bearing was subjected to the radial load, the radial vibration signal
collected by the accelerometer was taken as input to the network model. The time-domain
waveform of the whole life-cycle for the tested bearing 1_3 is shown in Figure 9. It can be
seen from the figure that the waveform amplitudes of the radial vibration signals are small
and relatively smooth in the early test phase, which indicates that the bearing is operating
in a healthy state. As the experiments progressed, the amplitude of the collected vibration
signal waveform gradually increased, indicating that the normal operating condition of the
bearing had begun to change and that a relatively minor failure has occurred. At the end
of the experimental procedure, the amplitude of the signal waveform increased sharply,
which indicates that the failure of the bearing had become very evident and that the bearing
had failed.
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Figure 9. Whole life-cycle time domain waveform of bearing 1_3.

4.2. Experimental Study

The scoring function (SF) and the root mean square error (RMSE) are two commonly
used evaluation indexes in the field of PHM and were chosen to quantitatively evaluate
the prediction performance in the experiment. SF is from the 2008 Prognostics and Health
Management Data Challenge. The smaller the absolute error value is, the lower the SF
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value is, and the RMSE has the same characteristic. The experimental test was repeated
10 times to reduce the impact of randomness.

In this case study, two main hyperparameters that may affect the prediction perfor-
mance of the proposed model were first investigated in detail: they were the number of the
MsDCFUs and the size of the convolution kernels. Then, the proposed MsDCN network
was compared with five state-of-the-art prognostics models to show its accuracy and ra-
pidity. As analyzed in the above section, more MsDCFUs will result in a deeper network
structure, which aggravates the calculation burden. Moreover, the limited training dataset
may lead to over-fitting during network training as the network depth increases. When the
convolution kernel size is taken as 1 × 5 by default, the number of MsDCFUs is set to be
2, 3, 4, and 5 respectively. The proposed models based on different MsDCFUs numbers
were applied to the RUL estimation of bearing. The 2-D histograms of the SF values and
RMSE values of the tested bearing for different numbers of MsDCFUs are displayed in
Figure 10. It can be seen that when the number of MsDCFUs was set to 3, both the SF value
and the RMSE value were minimal. Then, the training time and model parameters based
on different numbers of MsDCFUs were calculated and presented in Table 2. It is clear that
with the increase of in the number of MsDCFUs, the model parameters and training time
increased significantly. To achieve a good trade-off between the calculating cost and RUL
prediction accuracy, the number of the MsDCFUs was finally chosen to be 3.
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Figure 10. Evaluation indexes based on different MsDCFU numbers: (a) RMSE and (b) SF.

Table 2. Comparison of model parameters and training time with different MsDCFU numbers.

MsDCFU Number 2 3 4 5

Training time/s 23,374 23,886 24,979 25,958
Total model parameters 57,537 73,153 112,321 168,129

The convolution kernel size is another key hyperparameter in the proposed MsDCFU,
and it directly affects the dimension of features extracted in the DSC operation. For
investigating this influence, the DSC operations with different kernel sizes in the proposed
MsDCFU were applied to estimate the RUL prediction of bearing. When the number of
MsDCFUs was taken as 3 by default, the convolution kernel size was set to be 1 × 3, 1 × 5,
1 × 7, and 1 × 9, respectively. Figure 11 shows the 2-D histograms of the SF values and
RMSE values for the RUL estimation of the tested bearing, and the corresponding training
time and model parameters are given in Table 3. It can be observed that the SF value and
the RMSE value were largest when the convolution kernel size was set to 1 × 3, which
indicates that the accuracy of the RUL estimation was relatively poor. The accuracy of the
RUL prediction results was closer for the other three convolution sizes. As the size of the
convolution kernel increased, the model was significantly more computationally intensive.
Therefore, it can be observed in Table 3 that the model training time and the number of
parameters increased significantly with the increase in the convolution kernel size, and the
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network operation efficiency decreased markedly. By the trade-off between accuracy and
efficiency, the convolution kernel size in the MSDCFU was finally selected as 1 × 5.
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Figure 11. Evaluation indexes based on different convolution kernel sizes: (a) RMSE and (b) SF.

Table 3. Comparison of model parameters and training time with different convolution kernel sizes.

Convolution Kernel Size 1 × 3 1 × 5 1 × 7 1 × 9

Training time/s 23,527 23,886 24,188 24,490
Total model parameters 69,568 73,153 76,737 80,321

When the model hyperparameters were determined, the proposed network model
was used to predict the RUL of bearing 1_3, and the RUL prediction result is shown in
Figure 12. As can be seen from the figure, the predicted value of RUL fluctuates slightly
with the actual RUL, and the RUL predicted result accurately reflects the degradation
process of the lifetime for the bearing 1_3.
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Figure 12. RUL prediction result of bearing 1_3 using the proposed method.

Two existing common prognostics models ResNets [32] and convolutional LSTM
(CLSTM) [33], and two state-of-the-art multi-scale CNN prognostics models, including
multi-scale deep convolutional neural network (MS-DCNN) [19] and multi-scale deep
residual network (MS-DRN) [16], were utilized to estimate the bearing RUL for the com-
parison analysis. Figure 13 displays the RUL prediction results of the above four com-
parison methods, and Figure 14 summarizes their evaluation indexes for RUL estimation.
Figure 13 displays the RUL prediction results of the above four comparison methods,
and Figure 14 presents specific SF values and RMSE values of the RUL prediction re-
sults. Comparing Figures 12 and 13, it was found that the RUL prediction values by the
proposed method agree well with the actual RUL values, which can achieve relatively
accurate bearing RUL prediction. Among the four comparison methods, the prediction
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values of ResNets deviate the most from the actual RUL values, which indicates that the
ResNets approach is difficult to achieve an accurate RUL prediction result. The remaining
three methods were relatively accurate in the early stages of RUL prediction, while more
significant deviations were observed in the later stages. Among the above five methods,
the SF value and the RMSE value of the proposed method were the lowest. It can be
concluded that the RUL prediction accuracy of the proposed method was superior to the
four comparison approaches.
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Figure 13. RUL prediction results of bearing1_3 for four prognostics approaches: (a) ResNets; (b) CLSTM; (c) MS-DCNN;
and (d) MS-DRN.
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To further show the superiority of the proposed method in operation efficiency, Table 4
exhibits the total model parameters and operation times of MS-DCNN, MS-DRN, and the
proposed method. It can be seen that the total model parameters of the proposed method
were reduced by 96.1% and 36.6% compared to the MS-DCNN method and the MS-DRN
method, respectively. The training time and the testing time of the proposed method were
greatly reduced, while the operation efficiency was significantly improved.

Table 4. Prediction performance comparison of the proposed method and the other two multi-scale
CNN-based prognostics models.

Method Total Model Parameters
Operation Time/s

Training Testing

MS-DCNN 1,864,833 56,574 13
MS-DRN 113,889 46,748 12

Proposed method 73,153 23,886 7

5. Conclusions

Compared with traditional CNN, multi-scale CNN can extract feature information
of different scales. Therefore, the multi-scale CNN-based prognostics model has greatly
improved learning capability and has a better performance in remaining useful life (RUL)
prediction. However, the existing multi-scale CNNs are all based on different sizes of
convolution kernels, which need more convolution operations and a mass of weight
parameters. This leads to low computational efficiency and is difficult to be widely used in
engineering applications. To address the issue, a one-dimensional (1D) end-to-end multi-
scale dilated convolution network (MsDCN) for RUL prediction of REB was presented in
this study. The innovations of the proposed prognostics model are summarized as follows.
(1) Different from the traditional multi-scale CNN framework, a new multi-scale dilation
convolution fusion unit (MsDCFU) was adopted in the proposed method. The MsDCFU
can extract multi-scale feature information using different dilated factors and can expand
the receptive field (RF) of the convolution kernel with no additional computational burden.
(2) The standard convolution was replaced by the depthwise separable convolution (DSC)
in the MsDCFU, which further reduces the total number of model parameters and improves
the efficiency of the operations. The proposed method was experimentally validated by
using the PHM 2012 Challenge dataset for the accelerated degradation of REBs. Some
state-of-the-art prognostics models were also analyzed for comparison with the proposed
method in this studdy. The experimental results indicate that the proposed method has a
higher RUL prediction accuracy compared to typical CNNs and is strikingly more efficient
than the existing multi-scale CNNs based on different convolution kernel sizes.

Although a good bearing RUL prediction result was achieved by the proposed MsDCN
approach, there are still a few shortcomings in its application, including the issue of
adaptive optimization of network hyperparameters and the quantification of uncertainty
in the RUL prediction result. To adaptively optimize the network hyperparameters, a
promising work is to design a new loss objective function during the process of network
model training according to the characteristics of RUL prediction. Simultaneously, this
can be combined with some adaptive optimization algorithms, such as the particle swarm
optimization and the whale optimization algorithm, to automatically determine reasonable
network hyperparameters. As for quantification of uncertainty in the RUL prediction, on
the one hand, multi-sensor data are used to improve the robustness of RUL prediction.
Different sensor data contain different degrees of degradation information, some of which
may be sensitive to the degradation of the machine, but others may not. Analyzing multiple
sensor data can extract more accurate degradation features. On the other hand, a new
health indicator is constructed to characterize the damage degree of machinery. A suitable
health indicator is expected to quantitatively analyze the RUL prediction result. It still
needs further research to obtain more accurate and robust RUL prediction results.
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