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Abstract: A device that performs its intended function only once is referred to as a one-shot de-
vice. Actual lifetimes of such kind of devices under test cannot be observed, and they are either
left-censored or right-censored. In addition, one-shot devices often consist of multiple components
that could cause the failure of the device. The components are coupled together in the manufacturing
process or assembly, resulting in the failure modes possessing latent heterogeneity and dependence.
In this paper, we develop an efficient expectation–maximization algorithm for determining the
maximum likelihood estimates of model parameters, on the basis of one-shot device test data with
multiple failure modes under a constant-stress accelerated life-test, with the dependent components
having exponential lifetime distributions under gamma frailty that facilitates an easily understand-
able interpretation. The maximum likelihood estimate and confidence intervals for the mean lifetime
of k-out-of-M structured one-shot device under normal operating conditions are also discussed.
The performance of the proposed inferential methods is finally evaluated through Monte Carlo
simulations. Three examples including Class-H failure modes data, mice data from ED01 experiment,
and simulated data with four failure modes are used to illustrate the proposed inferential methods.

Keywords: gamma frailty; accelerated life-tests; one-shot devices; dependent failure modes; k-out-of-
M system; expectation–maximization algorithm

1. Introduction

A one-shot device is a device that is destroyed after its use, and so the device intends
to perform its function only once. In the analysis of one-shot device, we will not observe
the actual lifetimes since we will only observe whether the device succeeded or failed at
the inspection time; consequently, only the corresponding binary data will be observed.
This inevitably would result in less precise inference about the reliability characteristics
of such devices. We thus face a unique challenge in developing reliability analysis, be-
cause the lifetime information collected from life-tests on such one-shot devices is limited.
If a successful test occurs, it implies that the lifetime is larger than the inspection time,
which leads to right-censoring. On the other hand, if a test results in a failure, then the
corresponding lifetime is smaller than the inspection time, thus leading to left-censoring.
Hence, all lifetimes are either left-censored or right-censored. One-shot device test data
arise naturally from destructive tests in which devices can be inspected/tested only once.
One-shot device test data frequently occur in reliability studies. Many researchers have de-
veloped various statistical methods for analyzing such completely censored data in diverse
applications, such as military weapons [1], automobile airbags, fuel injectors, missiles [2],
fire extinguishers [3], electro-explosive devices [4], and grease-based magnetorheological
fluids [5].
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Due to intense global competition and increased customer expectations, products with
long lifespans are expected. This poses a challenge for experiments that aim to capture the
lifetime characteristics of such products accurately in a short period of time. To save time
and money, one usually adopts accelerated life-tests (ATLs) in such situations by applying
elevated stress levels to shorten products’ lives. An application of an accelerated life model
to the data obtained would then enable one to estimate the lifetime characteristics under
normal operating conditions. For this reason, ATLs are commonly used in many reliability
studies in practice. Interested readers may refer to [6,7] for elaborate details on statistical
methodology for ATLs. However, analysis of one-shot device test data collected from
ATLs presents difficulty due to the complex likelihood function and heavy censored data.
This challenging computational problem can be handled by some efficient computational
methods, such as expectation–maximization (EM) algorithms, and then applying them
to censored data for several popular lifetime distributions, such as exponential, Weibull,
and gamma. Extensive simulation studies carried out show that the EM algorithm is quite
stable in finding the maximum likelihood estimates (MLEs) of model parameters in the
presence of heavy censoring in the data. For an overview and analysis of one-shot devices,
one may refer to the recent book by Balakrishnan et al. [8].

Past research has focused on one-shot device test data without accounting for different
failure modes. One can observe a malfunctioned device but is not concerned about which
components contributed to the malfunctioning of the device. However, in practice, modern
devices/systems are often complex and have multiple components, and so data on devices
with multiple failure modes can be obtained from life-tests. In this regard, many researchers
have studied k-out-of-n systems in the past few decades (see [9–11]), which contain series and
parallel systems when k = 1 and k = n, respectively. Recently, Cheng and Elsayed [12–15]
considered systems with one-shot units, while Zhang et al. [16] studied rolling ball bearing
data with three failure modes, namely, inner ring failure, outer ring failure, and ball failure.
The existing EM algorithm cannot evaluate the relative risk of each failure mode. In this
regard, competing-risks models [17,18] have often been considered for analyzing reliability
data with multiple failure modes. Balakrishnan et al. [19] presented competing-risks models
for analyzing one-shot device test data with failure modes for Weibull lifetime distributions.
However, in these studies, the considered models assume independence between failure
modes. However, components of devices/systems are coupled together in the manufacturing
process or assembly, and so the components within the device may have association, leading
to data with latent heterogeneity and dependence. Then, an invalid independence assump-
tion can lead to unreliable analysis and imprecise failure prediction. When a model with
independence assumption is used for data with dependence, the dependence can seriously
bias the estimate of reliability of the device, and so models with independence assumption
will therefore be unsuitable for analyzing one-shot device test data with correlated failure
modes.

Furthermore, competing-risks models generally require observing the root cause of
the failure. If more than one malfunctioned component can be observed during inspection,
then these models may not be suitable for modeling the data that contain multiple failure
modes. For instance, crash sensors, inflators, and compressed gas are essential components
in car airbag systems. An airbag fails to deploy when any of the components cannot
perform their function properly.

In an airbag deployment test, the actual failure times of the components cannot be
measured or recorded. An experimenter can only record whether the test is successful
or not. If an airbag gets deployed during a crash, then we know that all the components
were functional at the time of the crash, and so the lifetimes of all the components are
larger than the time of the crash (right-censored observation). However, if an airbag fails
to deploy, then there was at least one malfunctioned component during the crash. If the
malfunctioned component(s) can be found after test, then the corresponding component
lifetime(s) was(were) smaller than the time of the crash (left-censored observation). Figure 1



Mathematics 2021, 9, 3032 3 of 24

depicts the component lifetimes in an automobile airbag system under a successful crash
test (left) and a failed crash test with two malfunctioned components (right).

Figure 1. Component lifetimes in an automobile airbag system under (a) a successful crash test and
(b) a failed crash test with two malfunctioned components.

To model the dependence between multiple failure modes, three approaches currently
prevail in reliability studies. The first approach models times to failure modes by well-
known multivariate distributions, such as multivariate exponential models, Marshall–
Olkin bivariate Weibull models, and multivariate log-normal models; see [20]. The second
approach uses copula functions to connect univariate marginal distributions to form a
multivariate joint distribution [21]. The flexibility of this approach would allow one to
capture dependence among the failure modes through a copula function involving just
one parameter. Many copula models have been used in the construction of multivariate
distributions for reliability studies [22]. In particular, Ling et al. [23] recently investigated
one-shot device test data under two popular copula models and demonstrated that one-
shot devices with positively dependent failure modes result in longer lifetimes than those
with independent failure modes. The third approach, drawn from the area of survival
analysis, uses frailty models to capture correlated failure modes. Frailty describes the
influence of common, but unobservable covariates, on the hazard function as a random
effect in a model, and so frailty models facilitate an easily understandable interpretation,
as compared to the first two approaches. Liu [24] and Tseng et al. [25] considered frailty
models for modeling data with latent heterogeneity and dependence for ATL plans and
warranty prediction. To the best of our knowledge, no published work until now has
examined the use of frailty models for one-shot device test data with multiple correlated
failure modes.

The rest of this paper is organized as follows. Section 2 presents one-shot device test
data with multiple failure modes collected from a constant-stress ALT (CSALT). Section 3
introduces the gamma frailty model with exponential component lifetime distributions as
well as some useful lifetime characteristics of k-out-of-M structured one-shot devices, such as
the reliability and mean lifetime. Section 4 develops an efficient EM algorithm for finding the
MLEs of model parameters. Next, in Section 5, the information matrix and the asymptotic
variance of the MLEs are derived. Section 6 presents two simulation methods for generating
dependent component lifetimes and the results of extensive Monte Carlo simulation studies
concerning the performance of the developed inferential methods in terms of bias and root
mean square error and coverage probability and average width of 95% confidence intervals.
Three illustrative examples are presented in Section 7 to demonstrate the usefulness of the
proposed model and the methods of inference developed here. Finally, some concluding
remarks and a few problems of further interest are mentioned in Section 8.

2. One-Shot Device Test Data with Multiple Failure Modes

Let us now consider one-shot devices with M components, Ω = {1, 2, . . . , M}, under
a CSALT with I higher-than-normal stress conditions. For i = 1, 2, . . . , I, Ki devices are
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placed on test at stress level si and tested at inspection time τi. Let P(Ω) be the power set
of Ω, representing the set of all possible combinations of failure modes (malfunctioned
components). Note that the total number of possible combinations is |P(Ω)| = 2M. Let
ni,X denote the number of devices with the set of malfunctioned components X, so that
∑X∈P(Ω) ni,X = Ki. For instance, if there are M = 3 components, then Ω = {1, 2, 3}
and P(Ω) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, Ω}, where X = ∅ indicates that no
malfunctioned components are present, while X = {1, 3}, for example, indicates that
components 1 and 3 have malfunctioned. Table 1 presents the form of one-shot device test
data with M = 3 failure modes under a CSALT with I higher-than-normal stress conditions.
For notational convenience, let us use z = {xi, τi, ni,X , i = 1, 2, . . . , I, X ∈ P(Ω)} to denote
the observed data.

Table 1. Form of one-shot device test data with M = 3 failure modes, Ω = {1, 2, 3}.

Test Str. Insp. Number of Devices with the Set of Malfunctioned Components
grp. lvl. Time ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} Ω

1 s1 τ1 n1,∅ n1,{1} n1,{2} n1,{3} n1,{1,2} n1,{1,3} n1,{2,3} n1,Ω
2 s2 τ2 n2,∅ n2,{1} n2,{2} n2,{3} n2,{1,2} n2,{1,3} n2,{2,3} n2,Ω
...

...
...

...
...

...
...

...
...

...
...

I sI τI nI,∅ nI,{1} nI,{2} nI,{3} nI,{1,2} nI,{1,3} nI,{2,3} nI,Ω

3. Exponential Lifetime Distributions with Gamma Frailty

Let Ti,j,m denote the failure time of the m-th component of the j-th device in the i-th
group, for i = 1, 2, . . . , I, j = 1, 2, . . . , Ki, and m = 1, 2, . . . , M. We now assume that, condi-
tioned on a latent (unobserved) frailty γi,j > 0, Ti,j,m follows an exponential distribution
with rate parameter γi,jλi,m > 0. The conditional cumulative distribution function (cdf)
and probability density function (pdf) are then given by

FTi,j,m(t|γi,j) = P(Ti,j,m ≤ t|γi,j) = 1− exp(−γi,jλi,mt),

and
fTi,j,m(t|γi,j) = γi,jλi,m exp(−γi,jλi,mt),

for t > 0. The corresponding conditional survival function is

RTi,j,m(t|γi,j) = 1− FTi,j,m(t|γi,j) = exp(−γi,jλi,mt), t > 0.

We now assume that λi,m = exp(am0 + am1si) links the failure rate of the m-th com-
ponent with stress level si. In the above formulation, the frailties γ’s are assumed to be
common among all the components within the same device but are different for different
devices and follow a gamma distribution with scale parameter β > 0 and shape parameter
1/β > 0. The pdf of γ is then

fγ(y) =
1

Γ
(

1
β

)
β

1
β

y
1
β−1 exp

(
− y

β

)
, y > 0, β > 0.

Note that, to make the model identifiable [24], the mean of the frailty is 1, and the
variance is β. Later on, some constraints on β will get imposed based on the mean and
variance of the lifetimes of components.
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For a device in the i-th test group, conditioned on γ, the failure times of those M com-
ponents are independent, with the joint survival function of (Ti,1, Ti,2, . . . , Ti,M) given by

RTi,1,Ti,2,...,Ti,M (t1, t2, . . . , tM) = P

( ⋂
m∈Ω

{Ti,m > tm}
)

=
∫ ∞

0
RTi,1(t1|y)RTi,2(t2|y) · · · RTi,M (tM|y) fγ(y)dy

=

(
1 + β

M

∑
m=1

λi,mtm

)− 1
β

. (1)

As the conditional survival function is RTi,m(t|γi,j) = (exp(−λi,mt))γi,j , we may in-
terpret that the frailty γ represents a random proportionality factor by which the hazard
functions of the failure times of the components get modified and describes latent hetero-
geneity across devices as well as dependence between M components within each device
arising from common environment/operation.

The joint (unconditional) pdf of (Ti,1, Ti,2, . . . , Ti,M) is readily obtained from (1) to be

fTi,1,Ti,2,...,Ti,M (t1, t2, . . . , tM) =
∂MFTi,1,Ti,2,...,Ti,M (t1, t2, . . . , tM)

∂t1∂t2 · · · ∂tM

= (−1)M ∂MRTi,1,Ti,2,...,Ti,M (t1, t2, . . . , tM)

∂t1∂t2 · · · ∂tM

=

(
M

∏
m=1

λi,m

)(
M−1

∏
m=1

(1 + mβ)

)(
1 + β

M

∑
m=1

λi,mtm

)−( 1
β +M

)
.

In addition, from (1), we readily find

FTi,m(t) = P(Ti,m ≤ t) = P(Ti,1 > 0, · · · , Ti,m ≤ t, · · · , Ti,M > 0)

= 1− (1 + βλi,mt)−
1
β , t > 0, (2)

which is a Lomax (or Pareto Type II) distribution with scale parameter (βλi,m)
−1 and shape

parameter 1/β (see [26,27]). Its mean and variance are, respectively, given by

µTi,m =
1

λi,m(1− β)
, (β < 1), and σ2

Ti,m
=

1

λ2
i,m(1− β)2(1− 2β)

,
(

β <
1
2

)
.

Thus, there are constraints on β based on the assumption of existence of mean and
variance. Next, we observe that, when β 6= 0, P(

⋂
m∈Ω{Ti,m > tm}) 6= ∏M

m=1 P(Ti,m > tm),
indicating that the failure times of the components are dependent. Finally, the joint survival
function in (1) can be rewritten in the form

P

( ⋂
m∈Ω

{Ti,m > tm}
)

=

(
M

∑
m=1

(RTi,m(tm))
−β −M + 1

)− 1
β

, (3)

which is the so-called Clayton survival copula. Its Kendall’s tau is τ = β/(β + 2), which
indicates that a large value of β means stronger dependence between the components.
Many studies have shown this connection between the gamma frailty model and the
Clayton survival copula (see [24,28]). It is of interest to note here that the mean lifetime of
the component, µTi,m , is increasing with β, revealing that strong dependence between the
components results in a larger mean lifetime of the component.
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On the other hand, when β tends to zero, we have

FTi,m(t) = P(Ti,m ≤ t) = 1− exp(−λi,mt)

and

RTi,1,Ti,2,...,Ti,M (t1, t2, . . . , tM) = exp

(
−

M

∑
m=1

λi,mtm

)
=

M

∏
m=1

RTi,m(tm),

where RTi,m(t) = 1− FTi,m(t) is the reliability function of Ti,m, which corresponds to the
case when the M components are independent. It also indicates that when β tends to zero,
the variance of the frailty tends to zero, so that the frailties of all devices are simply equal
to one. Consequently, the failure times of the components become independent.

Suppose X is the set of malfunctioned components in a device. Then, let Xc denote
the complement of X, representing the set of functioning components in the device, with
X ∪ Xc = Ω, X ∩ Xc = ∅, and |X| denoting the number of malfunctioned components in
the device. Let us further define

gi(X, t) = P

( ⋂
m∈X
{Ti,m > t}

)
=

(
1 +

(
β ∑

m∈X
λi,m

)
t

)− 1
β

, and gi(∅, t) = 1.

Then, by inclusion–exclusion principle, the probability of observing X at time t is
given by

Pi(X, t) = P

( ⋂
m∈X
{Ti,m ≤ t},

⋂
k∈Xc

{Ti,k > t}
)

=
∫ ∞

0
∏

m∈X
FTi,m(t) ∏

k∈Xc
RTi,k (t) fγ(y)dy

= ∑
Y∈P(X)

(−1)|Y|gi({Y, Xc}, t).

If we consider a device with M components, of which k components have malfunc-
tioned, let us use Xk for the set of any k malfunctioned components found in the device,
and W = {Y, Xc}. As |Xc| = M− k, we can see that |W| ranges from M− k to M. Suppose
|W| = n, where M− k ≤ n ≤ M, with the corresponding |Y| = n−M + k. Then, there
are ( n

n−M+k) = ( n
M−k) repetitions of W for the device with k malfunctioned components.

Hence, the probability that k malfunctioned components are found in the device is

Pi(Xk, t) = ∑
{W∈Xk}

∑
Y∈P(W)

(−1)|Y|gi({Y, Wc}, t) =
M

∑
n=M−k

(−1)n−M+k
(

n
M− k

)
∑

X∈Xn

gi(X, t).

Kuo et al. [9] defined a k-out-of-n system as a system of n components that functions
if and only if at least k of the components work. Therefore, for a k-out-of-M structured
device in the i-th group, the reliability of the device at time t is given by

Ri,k(t) =
M−k

∑
d=0

Pi(Xd, t) =
M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn

gi(X, t).

An illustration of this expression for a device with 2-out-of-4 structure is presented in
Appendix A. Furthermore, the mean lifetime of such a device at stress level si is given by

µi,k =
∫ ∞

0
Ri,k(t)dt =

M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn

(
(1− β) ∑

m∈X
λi,m

)−1

=
1

1− β

M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn

(
∑

m∈X
λi,m

)−1

. (4)
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It is worth noting that the mean lifetime increases when the dependence (β) between
the components in the device increases. Besides, this is a general expression of the mean
lifetime for devices with components that are non-identical and dependent under the
Clayton survival copula with Lomax distribution.

4. EM Algorithm for MLEs

For a one-shot device with M components, let am = (am0, am1) be the vector of model
parameters for the rate parameter of the exponential distribution for the m-th failure mode
and β be the model parameter for the frailty term. Then, θ = (a1, a2, . . . , aM, β) represents
the vector of 2M + 1 model parameters. It should be mentioned that a large number of
components in the device would result in a high-dimensional vector of model parameters
to be estimated, which may pose problems in finding accurate MLEs of model parameters.
As a result, the estimators of some lifetime characteristics, for example, mean lifetime and
reliability, may also face loss of precision. The observed log-likelihood function based on
z = {xi, τi, ni,X , i = 1, 2, . . . , I, X ∈ P(Ω)} is then given by

`(θ) =
I

∑
i=1

∑
X∈P(Ω)

ni,X ln(Pi(X, τi)) + constant. (5)

The EM algorithm [29] uses the observed data to iteratively compute the conditional
expectation of the complete log-likelihood to provide imputed values (E-step) and then
maximizes the conditional expectation of the complete log-likelihood to obtain updates of
estimates (M-step). These two steps continue until convergence is reached to the desired
level of accuracy. This technique is quite useful for finding the MLEs in the presence
of missing data. We, therefore, utilize this technique to develop here an efficient EM
algorithm for finding the MLEs from (5). For one-shot device test data, in a conventional
EM algorithm, only the failure times of components are treated as missing data. The
corresponding complete log-likelihood, with the joint (unconditional) densities, is

`unc

I

∑
i=1

Ki

∑
j=1

ln( fTi,1,Ti,2,...,Ti,M (ti,j,1, ti,j,2, . . . , ti,j,M)) + constant

=
I

∑
i=1

Ki

∑
j=1

[
M

∑
m=1

ln(λi,m) +
M−1

∑
m=1

ln(1 + mβ)−
(

1
β
+ M

)
ln

(
1 + β

M

∑
m=1

λi,mti,j,m

)]
+ constant.

In the M-step, given the current estimate θ(h), we update to get the estimate θ(h+1)

by maximizing the conditional expectation of the complete log-likelihood, for which the
first-order derivatives of the conditional expectation with respect to the model parameters
are set to zero. The required first-order derivatives are

∂E
θ(h)

[`unc(θ)|z]
∂am0

=
I

∑
i=1

Ki

(
1− λi,m(1 + Mβ)E

θ(h)

[
Ti,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
])

, (6)

∂E
θ(h)

[`unc(θ)|z]
∂am1

=
I

∑
i=1

Kisi

(
1− λi,m(1 + Mβ)E

θ(h)

[
Ti,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
])

, (7)

for m = 1, 2, . . . , M, and

∂E
θ(h)

[`unc(θ)|z]
∂β

=

(
I

∑
i=1

Ki

)(
M−1

∑
m=1

m
1 + mβ

)
+

I

∑
i=1

Ki
β2 E

θ(h)

[
ln

(
1 + β

M

∑
m=1

λi,mTi,m

)∣∣∣∣∣z
]

−
I

∑
i=1

Ki

(
1
β
+ M

)
E

θ(h)

[
∑M

m=1 λi,mTi,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
]

. (8)
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These need three conditional expectations, which involve multiple integrals. We
therefore partition the set of components in a device into three sets, namely, the set of the
m-th component itself, {m}, the set of malfunctioned components at time τi (excluding
{m}), X−m, and the set of functioning components at time τi (excluding {m}), Xc

−m. Then,
we perform integration with respect to the lifetimes corresponding to X−m, then followed
by Xc

−m, and finally with respect to {m}. In this manner, these conditional expectations
are obtained. Now, let wi(X) = 1 + β ∑m∈X λi,mτi, where X is the set of malfunctioned
components in a device in the i-th test group. If m ∈ X,

E
θ(h)

[
Ti,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
]
=

∑Y∈P(X/{m})(−1)|Y|
[

wi({Xc ,Y})

(wi({Xc ,Y}))
1+ 1

β

− wi({Xc ,Y,m})+λi,mτi

(wi({Xc ,Y,m}))
1+ 1

β

]
Pi(X, τi)λi,m(Mβ + 1)

.

Conversely, if m ∈ Xc,

E
θ(h)

[
Ti,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
]
=

∑Y∈P(X)(−1)|Y| wi({Xc ,Y})+λi,mτi

(wi({Xc ,Y}))
1+ 1

β

Pi(X, τi)λi,m(Mβ + 1)
.

In addition,

E
θ(h)

[
∑M

m=1 λi,mTi,m

1 + β ∑M
m=1 λi,mTi,m

∣∣∣∣∣z
]
=

1
β

1−
∑Y∈P(X)(−1)|Y|(wi({Xc, Y}))−

(
1+ 1

β

)
Pi(X, τi)(Mβ + 1)

,

and

E
θ(h)

[
ln

(
1 + β

M

∑
m=1

λi,mTi,m

)∣∣∣∣∣z
]

=
1

Pi(X, τi)
∑

Y∈P(X)

(−1)|Y|wi({Xc, Y})
(

ln(wi({Xc, Y})) +
M

∏
m=1

(
M−m +

1
β

)−1
)

.

In a more general EM framework, the failure time for each component in the device as
well as the frailty for each device could be treated as latent variables. Then, by assuming
first that they are observed, the complete log-likelihood is given by

`c =
I

∑
i=1

Ki

∑
j=1

(
M

∑
m=1

ln( fTi,m(ti,j,m|γi,j))

)
+ ln( fγ(γi,j)) + constant

=
I

∑
i=1

Ki

∑
j=1

[
M

∑
m=1

ln(λi,m)− γi,j

M

∑
m=1

λi,mti,j,m +

(
M +

1
β
− 1
)

ln(γi,j)−
γi,j

β

]

−
(

I

∑
i=1

Ki

)[
ln
(

Γ
(

1
β

))
+

1
β

ln(β)

]
+ constant.

In the M-step, the first-order derivatives of the conditional expectation, E
θ(h)

[`c(θ)|z],
with respect to the model parameters are obtained as follows:

∂E
θ(h)

[`c(θ)|z]
∂am0

=
I

∑
i=1

Ki

(
1− λi,mE

θ(h)
[γTi,m|z]

)
, (9)

∂E
θ(h)

[`c(θ)|z]
∂am1

=
I

∑
i=1

Kisi

(
1− λi,mE

θ(h)
[γTi,m|z]

)
, (10)
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for m = 1, 2, . . . , M, and

∂E
θ(h)

[`c(θ)|z]
∂β

=
∑I

i=1 Ki

β2

(
E

θ(h)
[γ|z]− E

θ(h)
[ln(γ)|z] + ln(β) + Ψ

(
1
β

)
− 1
)

, (11)

where Ψ(·) is the digamma function.
In this setup, although there is no closed-form solution for this maximization problem,

we can separately update a(h+1)
1 , a(h+1)

2 , . . . , a(h+1)
M and β(h+1), instead of updating these

2M + 1 model parameters simultaneously. The maximization problem for the original
vector of 2M + 1 model parameters in the M-step simplifies to M + 1 sub-maximization
problems for a vector of at most two model parameters, which makes the M-step more
efficient and stable during the updating process.

This approach also requires three conditional expectations in the E-step, namely,
E

θ(h)
[γ|z], E

θ(h)
[ln(γ)|z] and E

θ(h)
[γTi,m|z], which are simple and have explicit forms. First,

we have∫ ∞

0
γ exp(−φγ) fγ(γ)dγ =

∫ ∞

0

1

Γ
(

1
β

)
β

1
β

γ
1
β exp

{
−γ

(
1
β
+ φ

)}
dγ = (1 + βφ)

−
(

1
β +1

)

and ∫ ∞

0
ln(γ) exp(−φγ) fγ(γ)dγ = (1 + βφ)

−
(

1
β

){
Ψ
(

1
β

)
− ln

(
1
β
+ φ

)}
.

Suppose X is the set of malfunctioned components in a device in the i-th group. Let
us now define

gi,u(X) = (wi(X))
−
(

1
β +u

)
=

(
1 + β ∑

m∈X
λi,mτi

)−( 1
β +u

)

and

hi(X) = Ψ
(

1
β

)
− ln

(
1
β
+ τi ∑

m∈X
λi,m

)
.

Thence, we obtain

E
θ(h)

[γ|X] =

∫ ∞
0 γ ∏k∈X FTi,k (τi|γ)∏l∈Xc RTi,l (τi|γ) fγ(γ)dγ

Pi(X, τi)

=

∫ ∞
0 ∏k∈X FTi,k (τi|γ)∏l∈Xc RTi,l (τi|γ) 1

Γ
(

1
β

)
β

1
β

γ
1
β exp

(
− γ

β

)
dγ

Pi(X, τi)

=
∑Y∈P(X)(−1)|Y|gi,1({Y, Xc})
∑Y∈P(X)(−1)|Y|gi,0({Y, Xc})

, (12)

E
θ(h)

[ln(γ)|X] =
∑Y∈P(X)(−1)|Y|gi,0({Y, Xc})hi({Y, Xc})

∑Y∈P(X)(−1)|Y|gi,0({Y, Xc})
. (13)

Now, there are two cases for E
θ(h)

[γTi,m|X]. If m ∈ Xc,

E
θ(h)

[γTi,m|X] =

∫ ∞
0

∫ ∞
τi

γtm fTi,m(tm|γ)dtm ∏k∈X FTi,k (τi|γ)∏l∈Xc/{m} RTi,l (τi|γ) fγ(γ)dγ

Pi(X, τi)

=
1

λi,m
+ τiEθ(h)

[γ|X]. (14)
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On the other hand, if m ∈ X,

E
θ(h)

[γTi,m|X] =

∫ ∞
0

∫ τi
0 γtm fTi,m(tm|γ)dtm ∏k∈X/{m} FTi,k (τi|γ)∏l∈Xc RTi,l (τi|γ) fγ(γ)dγ

Pi(X, τi)

=
1

λi,m
− τi

E
θ(h)

[γ|X/{m}]Pi(X/{m}, τi)

Pi(X, τi)
. (15)

Now, a general EM algorithm in this setup can be stated as follows.
Suppose θ(h) = (a(h)1 , a(h)2 , . . . , a(h)M , β(h)) is given in the h-th step of iteration. Then:

S1: In the E-step, find the three conditional expectations from (12)–(15);
S2: In the M-step, using the above conditional expectations and optimization tools:

(a) Update the estimate a(h+1)
m from (9) and (10), for m = 1, 2, . . . , M;

(b) Set β(h+1) = 0.5 exp(− exp(−b)) and update the estimate β(h+1) from (11) by
solving for b such that β(h+1) is bounded between 0 and 0.5;

S3: Repeat S1 and S2 until convergence is reached to the desired level of accuracy, with
the current θ(h+1) as the MLE of the model parameter, denoted by θ̂.

The flowchart of EM algorithm is presented in Figure 2.

Figure 2. The flowchart of EM algorithm to obtain the MLE of the model parameter θ̂ with the
desired level of accuracy ε.

5. Interval Estimation

In the preceding section, we have presented a general EM algorithm for finding the
MLE of model parameter, θ̂. Here, we present the asymptotic confidence intervals for model
parameter, θ, which will be useful for making inference about the model parameter based
on one-shot device test data, when the sample size is sufficiently large. The asymptotic
confidence intervals need the asymptotic variance-covariance matrix of the MLE of model
parameter, V(θ̂), which is given by the inverse of the observed information matrix of the
MLE, I(θ̂). Under the EM framework, the observed information matrix can be obtained by
using the missing information principle [30]. In one-shot device test data, wherein all the
lifetimes are censored, the observed information matrix is

I(θ̂) = −E
[

∂2`(θ)

∂θ∂θ′

]
θ=θ̂

=
I

∑
i=1

∑
X∈P(Ω)

Ki

Pi(X, τi; θ̂)

(
∂Pi(X, τi; θ̂)

∂θ

)(
∂Pi(X, τi; θ̂)

∂θ′

)
,
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where

∂Pi(X, τi; θ̂)

∂am0
= τiλ̂i,m ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β̂ ∑
k∈{Y,Xc}

λ̂i,kτi

− 1
β̂
−1

,

∂Pi(X, τi; θ̂)

∂am1
= τiλ̂i,msi ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β̂ ∑
k∈{Y,Xc}

λ̂i,kτi

− 1
β̂
−1

,

∂Pi(X, τi; θ̂)

∂β
= ∑

Y∈P(X)

(−1)|Y|

β̂2

1 + β̂ ∑
m∈{Y,Xc}

λ̂i,mτi

− 1
β̂

×

ln

1 + β̂ ∑
m∈{Y,Xc}

λ̂i,mτi

− β̂τi ∑m∈{Y,Xc} λ̂i,m

1 + β̂ ∑m∈{Y,Xc} λ̂i,m

,

with I(m ∈ {Y, Xc}) denoting an indicator function that takes the value 1 if m ∈ {Y, Xc}
and takes the value 0 if m /∈ {Y, Xc}. The derivation of the first-order derivatives is
presented in detail in Appendix B. Thence, the 100(1− δ)% asymptotic confidence interval
(ACI) for the model parameter θ is given by(

θ̂ − z1−δ/2se(θ), θ̂ + z1−δ/2se(θ)
)
,

where se(θ) is the standard error of the MLE, θ̂, which is the corresponding diagonal entry

of
√

V(θ̂), and z1−δ/2 is the upper δ/2-th quantile of the standard normal distribution. It is
worth noting that β is always in the interval from 0 to 0.5 for the finite mean and variance.
Therefore, the confidence interval should be bounded within this interval.

Apart from the model parameter θ = (a10, a11, . . . , aM0, aM1, β), asymptotic confidence
intervals for the system mean lifetime at normal operating condition s0 are more useful
for engineers and reliability practitioners in practice. First, we compute the first-order
derivatives of the mean lifetime of a k-out-of-M system at s0 (µ0,k) with respect to the
model parameters (a10, a11, . . . , aM0, aM1, β), which are given by

∂µ0,k

∂am0
= − λ0,m

1− β

M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn,m

(
∑
r∈X

λ0,r

)−2

,

∂µ0,k

∂am1
= −λ0,ms0

1− β

M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn,m

(
∑
r∈X

λ0,r

)−2

,

∂µ0,k

∂β
=

1
(1− β)2

M

∑
n=k

(
n−k

∑
d=0

(−1)d
(

n
d

))
∑

X∈Xn

(
∑
r∈X

λ0,r

)−1

,

where λ0,m = exp(am0 + am1s0) and Xn,m is the set of any n malfunctioned components
(including the m-th component) found in the device, for m = 1, 2, . . . , M. We can then obtain
the standard error of the system mean lifetime by using delta method [31], which is given

by se(µ) =
√

PµV(θ̂)PT
µ , where Pµ =

(
∂µ0,k
∂a10

, ∂µ0,k
∂a11

, . . . , ∂µ0,k
∂aM0

, ∂µ0,k
∂aM1

, ∂µ0,k
∂β

)
is the vector of the

first-order derivatives of the system mean lifetime. Thence, the 100(1− δ)% asymptotic
confidence interval for the mean lifetime µ0,k is given by

(µ̂0,k − z1−δ/2se(µ), µ̂0,k + z1−δ/2se(µ)).

It is worth noting that the system mean lifetime is non-negative. The lower bound of
the interval may be truncated as 0. On the other hand, Balakrishnan and Ling [31] observed
that the distribution of the MLE of mean lifetime is usually skewed when the sample size is
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small, and a log-transformation was suggested for constructing confidence intervals for the
mean lifetime to ensure positive lower bound. The 100(1− δ)% transformed confidence
interval (TCI) for the mean lifetime µ0,k is then given by(

µ̂0,k exp
(
−z1−δ/2se(µ)

µ̂0,k

)
, µ̂0,k exp

(
z1−δ/2se(µ)

µ̂0,k

))
.

6. Simulation Study

In this section, we perform a Monte Carlo simulation study first to verify the formula
for the mean lifetime of a k-out-of-M structured device. Next, the performance of the
developed inferential methods for different degrees of dependence and different sample
sizes is evaluated, in terms of bias, root mean square error (RMSE), and coverage probability
(CP) and average width (AW) of 95% ACI and TCI. Finally, a power analysis is carried out
for comparing the performance of the ACI method and the likelihood ratio test (LRT) for
testing the hypothesis of independence of components within devices.

Here, we present two simulation methods for generating component lifetimes under
Clayton survival copula with Lomax distributions and consider one-shot devices with
M = 4 components. The lifetimes of the components are assumed to follow Clayton
survival copula with Lomax distributions with the joint survival function in (3). We
set (a10, a11) = (−6, 0.05), (a20, a21) = (−6.5, 0.06), (a30, a31) = (−7, 0.07), (a40, a41) =
(−8, 0.08), and s0 = 25, so that the corresponding failure rates are (λ1, λ2, λ3, λ4) =
(0.0086, 0.00673, 0.0052, 0.0024). In addition, β ∈ {0.1, 0.3, 0.4} is taken to represent different
degrees of dependence between the components in the device.

6.1. Simulation by Using Copula

We consider the conditional sampling method [32,33] to generate the lifetimes of the
components for 100, 000 devices. For this purpose, we assume that (U1, U2, U3, U4) have
the joint survival Clayton survival copula of the form

C̄(u1, u2, u3, u4) = P(U1 > u1, U2 > u2, U3 > u3, U4 > u4)

= (u−β
1 + u−β

2 + u−β
3 + u−β

4 − 3)−
1
β .

It then follows that the conditional survival function of U2, given U1 = u1, is

v2 = P(U2 > u2|U1 = u1) =
∂C̄(u1, u2, 1, 1)

∂u1
= {1− uβ

1 (1− u2)
−β}1− β+1

β . (16)

Similarly, for m = 3 and 4, we find

vm =P(Um > um|U1 = u1, U2 = u2, . . . , Um−1 = um−1) =

∂m−1C̄(u1,u2,...,um ,1,...,1)
∂u1∂u2···∂um−1

∂m−1C̄(u1,u2,...,um−1,1,...,1)
∂u1∂u2···∂um−1

=

{
u−β

1 + u−β
2 + · · ·+ u−β

m −m + 1

u−β
1 + u−β

2 + · · ·+ u−β
m−1 −m + 2

}− 1+(m−1)β
β

. (17)

Then, the algorithm for the generation of lifetimes of the components is as follows:

S1: Generate u1, v2, v3, and v4 from the standard uniform distribution U(0, 1);

S2: From (16), compute u2 =

{
1− (1− v2)

− β
β+1 u−β

1

}− 1
β

;
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S3: From (17), for m = 3 and 4, compute

um =

{(
v
− β

(m−1)β+1
m − 1

)
m−1

∑
j=1

u−β
j − (m− 2)v

− β
(m−1)β+1

m + (m− 1)

}− 1
β

;

S4: Finally, from (2), for m = 1, 2, 3, and 4, compute tm = u−β
m −1
βλm

.

6.2. Simulation by Using Frailty

In addition, the simulation can be done in another way by using frailty. We first
consider the common frailty from the gamma distribution. When the frailty is given,
we then use the conditional independence to simulate the component lifetimes, as the
conditional survival function is RTi,m(t|γi,j) = (exp(−λi,mt))γi,j = exp

(
−λi,mγi,jt

)
, for

m = 1, 2, . . . , M, and the component lifetimes are conditionally independent. The algorithm
of the generation of lifetimes of the components then is as follows:

S1: Generate the frailty γ from the gamma distribution with scale parameter β > 0 and
shape parameter 1/β > 0;

S2: Generate u1, u2, u3, and u4 from the standard uniform distribution U(0, 1);

S3: Finally, compute tm = − ln(1−um)
γλm

.

For these two simulation methods, we arrange the lifetimes of the components in
ascending order, denoted by t[1] ≤ t[2] ≤ t[3] ≤ t[4]. Then, the lifetime of the k-out-of-4
structured device is t[5−k], for k = 1, 2, 3, 4.

Table 2 shows the empirical mean lifetimes of the k-out-of-4 structured devices ob-
tained from the simulation method by using frailty are quite close to the theoretical mean
lifetimes computed from (4) for all degrees of dependence considered. This reveals that
the formula in (4) is accurate for computing the mean lifetime of the k-out-of-M structured
devices. More importantly, the simulation method by using frailty is more convenient,
efficient, and accurate than using copula to generate dependent component lifetimes.

Table 2. The empirical mean lifetimes of k-out-of-4 structured devices obtained from the simulation
methods by using copula (C) and frailty (F) and the theoretical mean lifetimes computed from (4) for
k ∈ {1, 2, 3, 4}.

Dependence Mean Lifetime k = 1 k = 2 k = 3 k = 4

β = 0.1 Empirical (C) 555.3440 232.2293 116.5498 48.1355
Empirical (F) 556.7529 232.3021 116.5790 48.1404
Theoretical 556.9071 231.8686 116.4822 48.0669

β = 0.3 Empirical (C) 711.6244 297.2964 149.4031 62.0487
Empirical (F) 716.3950 298.7292 149.7724 61.9213
Theoretical 716.0235 298.1167 149.7629 61.8003

β = 0.4 Empirical (C) 829.6855 345.3503 173.2962 71.9890
Empirical (F) 835.3608 347.8029 174.7234 72.1004
Theoretical 835.3608 347.8029 174.7234 72.1004

Next, we consider the same setting of model parameters and evaluate the performance
of the developed inferential methods for various sample sizes K ∈ {30, 50, 100}. The setup
of CSALTs with two inspection times and three stress levels for one-shot devices is as
detailed in Table 3. The results obtained from the simulation study, based on 1,000 Monte
Carlo simulations, are presented in Tables 4–8. The MLEs of model parameters based on
the EM algorithm were obtained by terminating when ||θ(h) − θ(h+1)|| < 1× 10−5. From
Tables 4–6, we observe that the bias of the MLEs of model parameters are all small and
that the RMSE decreases when the sample size gets larger. For the ACIs, the coverage
probabilities maintain the nominal level of 95%, while the average width of the intervals
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becomes smaller when the sample size increases. Thus, all the proposed inferential methods
perform quite satisfactorily.

Table 3. The setting of CSALTs with two inspection times and three stress levels for one-shot devices.

Test Group Stress Level Inspection Time Number of Test Devices

1 s1 = 35 τ1 = 10 K1 = K
2 s2 = 35 τ2 = 20 K2 = K
3 s3 = 45 τ3 = 10 K3 = K
4 s4 = 45 τ4 = 20 K4 = K
5 s5 = 55 τ5 = 10 K5 = K
6 s6 = 55 τ6 = 20 K6 = K

Table 4. Values of bias, root mean square error (RMSE) of the MLEs, and coverage probability (CP) and average width (AW)
of 95% ACI for the model parameters for various sample sizes in the case of low dependence (β = 0.1).

a10 a11 a20 a21 a30 a31 a40 a41 β

K Measure −6 0.05 −6.5 0.06 −7 0.07 −8 0.08 0.1

30 BIAS −0.067 0.001 −0.063 0.001 −0.056 0.001 −0.164 0.003 0.022
RMSE 0.885 0.018 0.918 0.019 0.966 0.020 1.242 0.025 0.107

CP 0.944 0.953 0.951 0.952 0.958 0.957 0.954 0.959 0.993
AW 3.436 0.072 3.570 0.074 3.715 0.076 4.834 0.097 0.489

50 BIAS −0.012 0.000 −0.038 0.001 −0.083 0.002 −0.071 0.001 0.009
RMSE 0.682 0.014 0.723 0.015 0.738 0.015 0.954 0.019 0.083

CP 0.946 0.947 0.946 0.947 0.957 0.961 0.949 0.948 0.989
AW 2.629 0.055 2.742 0.057 2.870 0.059 3.692 0.074 0.372

100 BIAS −0.016 0.000 −0.033 0.001 0.001 0.000 −0.031 0.000 0.005
RMSE 0.493 0.010 0.497 0.010 0.531 0.011 0.668 0.013 0.059

CP 0.942 0.942 0.949 0.944 0.940 0.942 0.954 0.955 0.987
AW 1.854 0.039 1.931 0.040 2.004 0.041 2.591 0.052 0.261

Table 5. Values of bias, root mean square error (RMSE) of the MLEs, and coverage probability (CP) and average width (AW)
of 95% ACI for the model parameters for various sample sizes in the case of moderate dependence (β = 0.3).

a10 a11 a20 a21 a30 a31 a40 a41 β

K Measure −6 0.05 −6.5 0.06 −7 0.07 −8 0.08 0.3

30 BIAS −0.052 0.001 −0.104 0.002 −0.102 0.002 −0.074 0.001 0.011
RMSE 0.906 0.019 0.980 0.020 1.021 0.021 1.233 0.025 0.155

CP 0.956 0.958 0.954 0.948 0.949 0.950 0.965 0.961 0.944
AW 3.571 0.075 3.712 0.077 3.870 0.080 4.912 0.099 0.617

50 BIAS −0.025 0.000 −0.018 0.000 −0.062 0.001 −0.096 0.002 0.006
RMSE 0.694 0.014 0.739 0.015 0.779 0.016 1.005 0.020 0.126

CP 0.960 0.963 0.955 0.962 0.948 0.947 0.945 0.944 0.928
AW 2.749 0.058 2.853 0.059 2.975 0.061 3.796 0.077 0.476

100 BIAS −0.013 0.000 −0.002 0.000 −0.037 0.001 −0.030 0.000 0.002
RMSE 0.507 0.011 0.524 0.011 0.550 0.011 0.679 0.014 0.084

CP 0.947 0.944 0.946 0.951 0.951 0.954 0.948 0.946 0.946
AW 1.937 0.041 2.007 0.042 2.092 0.043 2.649 0.054 0.334
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Table 6. Values of bias, root mean square error (RMSE) of the MLEs, and coverage probability (CP) and average width (AW)
of 95% ACI for the model parameters for various sample sizes in the case of high dependence (β = 0.4).

a10 a11 a20 a21 a30 a31 a40 a41 β

K Measure −6 0.05 −6.5 0.06 −7 0.07 −8 0.08 0.4

30 BIAS −0.150 0.003 −0.033 0.001 −0.106 0.002 −0.185 0.003 0.000
RMSE 0.958 0.020 0.986 0.021 1.020 0.021 1.322 0.027 0.176

CP 0.956 0.950 0.944 0.949 0.949 0.956 0.954 0.953 0.930
AW 3.658 0.077 3.755 0.078 3.921 0.081 5.009 0.101 0.676

50 BIAS −0.091 0.002 −0.047 0.001 −0.039 0.001 −0.103 0.002 0.009
RMSE 0.730 0.015 0.743 0.015 0.736 0.015 1.005 0.020 0.136

CP 0.953 0.952 0.951 0.950 0.960 0.958 0.956 0.951 0.946
AW 2.821 0.059 2.911 0.061 3.021 0.062 3.833 0.077 0.529

100 BIAS −0.007 0.000 −0.035 0.001 −0.033 0.001 −0.026 0.000 0.004
RMSE 0.494 0.010 0.530 0.011 0.558 0.012 0.686 0.014 0.095

CP 0.957 0.959 0.949 0.945 0.940 0.942 0.953 0.951 0.956
AW 1.972 0.041 2.052 0.043 2.130 0.044 2.680 0.054 0.371

Table 7. Values of bias and root mean square error (RMSE) of MLE of µ0,k at normal operating condition s0 = 25 for various
sample sizes and various degrees of dependence.

β = 0.1 β = 0.3

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
K µ0,k 556 231 116 48.07 716 298 149 61.80

30 BIAS 246 37.54 9.41 1.76 288 52.23 14.90 3.98
RMSE 634 94.33 37.96 14.72 1544 451 183 53.64

50 BIAS 126 21.87 5.38 0.79 209 39.50 12.15 3.18
RMSE 319 68.93 29.75 11.72 547 152 71.18 27.81

100 BIAS 57.05 9.36 2.13 0.23 81.73 16.07 4.54 1.00
RMSE 180 41.57 18.77 7.61 260 67.38 31.43 12.68

β = 0.4
k = 1 k = 2 k = 3 k = 4

K µ0,k 835 347 174 72.10

30 BIAS 530 107 36.20 10.83
RMSE 4366 1058 500 201

50 BIAS 297 65.54 24.64 8.19
RMSE 896 240 113 45.50

100 BIAS 110 25.74 8.92 2.64
RMSE 332 98.25 46.90 19.05

Tables 7 and 8 show that large sample sizes are required for (i) devices with parallel
structure (small k) and (ii) components with high dependence (large β); also, the inferential
methods for the mean lifetime of the device at normal operating condition perform well
in the case of low dependence (small β) and the sample size being sufficiently large or in
the case of components with moderate dependence but the device being in series structure
(large k). If we wish to estimate the mean lifetime of devices in which components have
moderate or even high dependence and are placed in parallel, a larger number of devices are
needed for constant-stress accelerated life-testing. Table 8 further presents the performance
of the 95% ACI and TCI for the mean lifetime of the device. We observe that the coverage
probability is deflated (below 95%) when K ≤ 50, β ≥ 0.3 and k ≥ 3. Thus, we can conclude
that the ACIs generally work well when the sample size is large, or the components are
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close to independent (β is small), or the components are placed in parallel (k is small). Not
surprisingly, the log-transformation provides an appealing adjustment on the confidence
intervals, and the TCIs consequently maintain the nominal level of 95% for all considered
cases.

Table 8. Values of coverage probability (CP) and average width (AW) of 95% ACI and TCI for µ0,k at normal operating
condition s0 = 25 for various sample sizes and various degrees of dependence.

ACI TCI
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

β = 0.1 µ0,k 556 231 116 48.07 556 231 116 48.07

30 CP 0.969 0.977 0.959 0.943 0.980 0.966 0.967 0.958
AW 1903 349 148 59.15 2664 376 158 62.90

50 CP 0.952 0.96 0.946 0.941 0.962 0.961 0.961 0.955
AW 1038 237 107 43.64 1169 247 111 45.14

100 CP 0.967 0.969 0.962 0.950 0.963 0.960 0.961 0.954
AW 617 156 73.27 30.11 647 159 74.44 30.60

β = 0.3 µ0,k 716 298 149 61.80 716 298 149 61.80

30 CP 0.954 0.944 0.916 0.902 0.981 0.968 0.956 0.940
AW 2339 557 242 96.09 3053 624 268 106

50 CP 0.941 0.941 0.92 0.907 0.960 0.960 0.952 0.942
AW 1454 379 173 70.08 1664 402 183 74.03

100 CP 0.957 0.957 0.947 0.948 0.960 0.965 0.951 0.951
AW 905 249 118 48.54 958 256 121 49.79

β = 0.4 µ0,k 835 347 174 72.10 835 347 174 72.10

30 CP 0.954 0.949 0.931 0.908 0.972 0.966 0.963 0.954
AW 3124 689 301 118 4335 785 339 133

50 CP 0.943 0.942 0.923 0.906 0.965 0.966 0.954 0.955
AW 1822 485 223 90.08 2128 523 239 96.51

100 CP 0.938 0.942 0.924 0.922 0.964 0.964 0.957 0.950
AW 1084 323 154 63.15 1155 335 159 65.28

From a practical viewpoint, it will be of great interest to test whether the component
lifetimes in a device are independent. Suppose the level of significance δ is fixed. As the
component lifetimes are not independent when β > 0, it is reasonable to consider one-sided
confidence interval. In this case, the decision is simply whether the lower bound of the
confidence interval, that is β̂− z1−δse(β), is greater than zero or not. If the lower bound is
greater than zero, we can conclude that the component lifetimes are not independent. Apart
from this asymptotic confidence interval method, the LRT can also be used for testing
this hypothesis of independence. The observed log-likelihood function for the frailty
model with correlation based on data z is as presented in (5). As the independence model
corresponds to the case β = 0, the observed log-likelihood function for the independence
model based on data z is given by

`ind(θ) =
I

∑
i=1

∑
X∈P(Ω)

ni,X ∑
m∈X

ln
(

FTi,m(τi)
)

.

Thence, the LRT statistic for testing independence based on the frailty model can be
given as

ΛLRT = −2(`ind(θ̂ind)− `(θ̂)), (18)
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where θ̂ and θ̂ind are the MLEs of model parameter θ for the frailty and independence mod-
els, respectively. As β = 0 lies on the boundary of the parameter space and the difference in
the numbers of unknown model parameters between the frailty and independence models
is 1, according to [34], the asymptotic null distribution of the LRT statistic can be approxi-
mated by a mixture of chi-square distributions, that is, P(ΛLRT ≤ λ) = 0.5 + 0.5P(χ2

1 ≤ λ),
where χ2

1 is the chi-square random variable with 1 degree of freedom. We can then conclude
that the component lifetimes are not independent when P(ΛLRT ≤ λ̂) > 1− δ, where λ̂
is calculated from (18) by using the MLEs of model parameters for the frailty and inde-
pendence models. Table 9 presents the power comparison for testing the hypothesis of
independence among the components in the device between the ACI and LRT methods for
several sample sizes and various degrees of dependence, at δ = 0.05 level of significance,
based on 1,000 Monte Carlo simulations. The results show that the LRT outperforms the
ACI method for identifying the dependence between components when the component
lifetimes are indeed dependent, but the LRT does possess a higher probability of type I
error when the component lifetimes are indeed independent and the sample size is not
sufficiently large.

Table 9. Power of detection of dependence by using ACI and LRT for various sample sizes and
various degrees of dependence, at δ = 0.05 level of significance.

LRT ACI
K β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0 β = 0.1 β = 0.3 β = 0.4

30 0.259 0.419 0.836 0.909 0.030 0.161 0.661 0.805
50 0.100 0.343 0.918 0.986 0.031 0.225 0.862 0.969
100 0.061 0.491 0.996 1.000 0.039 0.433 0.991 1.000

7. Illustrative Examples
7.1. Class-H Failure Mode Data

Let us first consider the Class-H failure modes data [6], in the form of one-shot device
test data with two failure modes (Turn [T] and Ground [G]). The original data includes
the failure times (in hours) for the failure modes of motorettes tested at temperatures
of 374, 428, 464, and 500° F. In actual use, each motorette may be inspected once at a
pre-specified time, in which case the modified data do become a one-shot device test data
with two failure modes, and the corresponding data are as presented in Table 10. Table 11
presents the MLEs of model parameters as well as the 95% ACIs. In addition, the mean
lifetimes of devices with series and parallel structures at the normal operating condition
s0 = 356° F are estimated to be 2245 h and 39,885 h, respectively. On the other hand, under
the independence model, the estimates of the corresponding mean lifetimes turn out to be
1122 h and 19,942 h. These do show that the independence assumption results in seriously
underestimating the mean lifetimes at the normal operating condition. The Class H failure
modes dataset contains two failure modes but the sample size is quite small, and the ACI
for β further shows that the correlation between these two failure modes is not significant.

Table 10. Modified Class-H failure modes data [6], with Ω = {T, G}.

i si τi n∅ n{T} n{G} nΩ

1 374 8000 0 1 0 4
2 374 10,000 1 4 0 0
3 428 2500 1 2 0 2
4 428 3000 2 0 0 3
5 464 1600 3 1 1 0
6 464 1800 0 4 0 1
7 500 800 2 0 2 1
8 500 1500 1 1 3 0
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Table 11. MLEs, lower (LCI), and upper (UCI) bounds of the 95% ACI for the modified Class H
failure modes data in Table 10.

a10 a11 a20 a21 β

MLE −4.9897 −0.0058 −16.4365 0.0183 0.5
LCI −13.9192 −0.0249 −21.6720 0.0065 0
UCI 3.9397 0.0131 −11.2010 0.0301 0.5

7.2. Mice Tumor Toxicological Data

We next consider ED01 data presented in [35]. These tumor toxicological data present
the numbers of deaths and sacrifices with and without bladder tumors on 671 mice at
each of three inspection times. Each of those mice was either in a control group or an
experimental group with high dose level of the known carcinogen 2-AAF. We can treat the
death (D) and the appearance of bladder tumors (T) as two failure modes, Ω = {D, T},
and the exact death time and the onset time of the tumor of each mouse are either right-
or left-censored. Tables 12 and 13 present the ED01 data and the connections between the
outcomes and the censoring in the ED01 data, respectively. The MLEs of model parameters
and the corresponding 90% and 95% ACIs are presented in Table 14. The 90% ACI for β
reveals that a high dose of the chemical induces an early onset of bladder tumors. Besides,
there is a positive correlation between the onset time of bladder tumor and the death time.
We may therefore conclude that the chemical would not result in an early death, but it
would induce an early onset of bladder tumors which would cause a high risk of death.

Table 12. ED01 data on the numbers of deaths and sacrifices with and without bladder tumors, with
Ω = {D, T}.

i si (in ppm) τi (in months) n∅ n{T} n{D} nΩ

1 0 12 23 0 3 3
2 0 18 156 0 9 1
3 0 33 134 1 49 8
4 150 12 22 0 7 6
5 150 18 73 35 4 12
6 150 33 64 38 3 20

Table 13. Connections between the outcomes of mice data and the censoring in ED01 data.

Outcome X Death Time Tumor Onset Time

Sacrifice without Tumor ∅ Right censored Right censored
Sacrifice with Tumor {T} Right censored Left censored
Death without Tumor {D} Left censored Right censored

Death with Tumor {D, T} Left censored Left censored

Table 14. MLEs and the 90% and 95% confidence intervals obtained for ED01 data.

Bladder Tumor Death
a10 a11 a20 a21 β

MLE −6.5873 0.0193 −4.7037 8.6631× 10−5 0.5

90% CI (−7.0487, −6.1259) (0.0160, 0.0227) (−4.9134, −4.4940) (−0.0020, 0.0021) (0.0553, 0.5)

95% CI (−7.1370, −6.0376) (0.0153, 0.0234) (−4.9536, −4.4538) (−0.0024, 0.0025) (0, 0.5)
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7.3. Simulated Data

To illustrate the EM algorithm for data with more than two failure modes, we now con-
sider a simulated one-shot device test data with M = 4 failure modes presented in Table 15.
The simulated data is generated with model parameters (a10, a11) = (−6, 0.05), (a20, a21) =
(−6.5, 0.06), (a30, a31) = (−7, 0.07), (a40, a41) = (−8, 0.08), and β = 0.3. A comparison
of the MLEs obtained by the use of EM algorithm and by the general optimization tool,
“optim()” in R, is first made. We chose the initial values of the model parameters to
be (a(0)10 , a(0)11 , a(0)20 , a(0)21 , a(0)30 , a(0)31 , a(0)40 , a(0)41 ) = (−5.95, 0.01,−6.59, 0.14,−7.05, 0.2,−7.87, 0.04)
and considered β(0) ∈ {0.2, 0.3, 0.4} to evaluate the robustness of these two methods.
Table 16 presents the values of MLEs and the computational times for various choices of
β(0) as an initial value, which do reveal the EM algorithm to be quite robust and efficient
timewise in determining the MLEs. In addition, we obtained β̂ = 0.5172 and 0.6046 by
using “optim()” when β(0) was set to be 0.2 and 0.4, respectively. Clearly, these estimates
are out of the range of [0, 0.5] for β. In addition, the 95% ACIs for the model parameters are
presented in Table 17, which do show that the component lifetimes are not independent.
Moreover, the estimates of the mean lifetimes of k-out-of-4 structured devices at the normal
operating condition s0 = 25 are 437.053, 213.861, 112.827, and 47.808 for k = 1, 2, 3, 4,
respectively. Under the independence assumption, the estimates of the corresponding
mean lifetimes turn out to be 325.329, 159.140, 83.972, and 35.586. Here again, we observe
that the independence assumption for the components in the device results in severely
underestimating the mean lifetimes at the normal operating condition.

Table 15. One-shot device test data with M = 4 failure modes, with Ω = {1, 2, 3, 4}.

(i, si, τi)
(1,35,10) (2,35,20) (3,45,10) (4,45,20) (5,55,10) (6,55,20)

n∅ 69 41 45 28 38 11
n{1} 8 8 12 9 11 11
n{2} 6 11 13 10 8 5
n{3} 6 12 11 6 8 7
n{4} 4 4 8 7 3 5

n{1,2} 0 4 0 11 5 8
n{1,3} 4 2 2 6 6 3
n{1,4} 1 3 3 3 3 3
n{2,3} 1 5 4 6 3 9
n{2,4} 0 0 0 0 3 0
n{3,4} 0 5 1 5 5 8

n{1,2,3} 0 2 0 1 4 9
n{1,2,4} 0 1 0 1 1 0
n{1,3,4} 1 2 0 3 0 6
n{2,3,4} 0 0 1 1 2 5

nΩ 0 0 0 3 0 10

Table 16. MLEs obtained by the EM algorithm and “optim()” in R and the corresponding computational times for various
choices of β(0) as an initial value.

β(0) = 0.2 β(0) = 0.3 β(0) = 0.4
EM Optim EM Optim EM Optim

â10 −6.0460 −4.6923 −6.0460 −5.5797 −6.0460 −5.9529
â11 0.0501 0.0210 0.0501 0.0408 0.0501 0.0460
â20 −6.2758 −6.3717 −6.2758 −6.3401 −6.2758 −5.8591
â21 0.0521 0.0551 0.0521 0.0539 0.0521 0.0524
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Table 16. Cont.

β(0) = 0.2 β(0) = 0.3 β(0) = 0.4
EM Optim EM Optim EM Optim

â30 −6.0921 −7.7454 −6.0921 −7.9611 −6.0921 −7.8888
â31 0.0521 0.0858 0.0521 0.0905 0.0521 0.0905
â40 −6.7194 −6.9059 −6.7194 −7.7412 −6.7194 −7.6397
â41 0.0533 0.0566 0.0533 0.0742 0.0533 0.0719
β̂ 0.2557 0.5172 0.2557 0.3345 0.2558 0.6046

Computational Time (sec) 18.47 32.22 18.66 32.50 17.82 32.64

Table 17. MLEs, lower (LCI), and upper (UCI) bounds of the 95% confidence intervals for the one-shot device test data with
M = 4 failure modes and the mean lifetimes.

Model Parameters

a10 a11 a20 a21 a30 a31 a40 a41 β

MLE −6.0459 0.0500 −6.2757 0.0521 −6.0921 0.0521 −6.7194 0.0532 0.2557
LCI −7.0163 0.0298 −7.3003 0.0308 −7.0502 0.0321 −7.9199 0.0284 0.0931
UCI −5.0756 0.0703 −5.2512 0.0734 −5.1340 0.0721 −5.5189 0.0780 0.4183

Mean lifetimes of k−out−of−4 structured devices at s0 = 25

k = 1 k = 2 k = 3 k = 4

MLE 437.053 213.861 112.827 47.808
ACI (261.958, 612.188) (138.808, 288.934) (73.690, 151.975) (31.229, 64.392)
TCI (292.788, 652.463) (150.565, 303.793) (79.758, 159.623) (33.799, 67.631)

8. Concluding Remarks

In this paper, we have developed an efficient EM algorithm that provides a stable and
robust method for finding the MLEs of model parameters for a k-out-of-M structured one-
shot device with dependent components having exponential lifetime distribution under
gamma frailty to capture the dependence. This is indeed identical to the Clayton survival
copula with Lomax lifetime distribution, based on one-shot device test data with multiple
failure modes collected from a CSALT. The mean lifetime of k-out-of-M structured devices
has also been derived explicitly. The extensive Monte Carlo simulation studies carried
out show that the developed inferential methods all perform very well for various sample
sizes and different degrees of dependence. The illustrative examples also demonstrate that
the developed EM algorithm is less sensitive to the choice of initial values, compared to
the common optimization tool, “optim” in R. The R codes that implement the proposed
methodologies can be available from the first author upon request.

It is important to note that component lifetimes are often assumed to be independent
and identical in reliability literature though often not realistic in many practical situations.
However, this wrong assumption may result in a serious bias in the estimation of lifetime
characteristics such as mean lifetime. In this study, the expression derived for the mean
lifetime is a general result for devices with components that are non-identical and depen-
dent due to the common gamma frailty. The illustrative examples show that, when the
model with independence assumption is wrongly assumed for analyzing data when the
components in the device are dependent, a significant bias results in the estimate of the
mean lifetime of the device.

Furthermore, it will be of great interest to find similar connections between other
frailty and copula models and to develop similar results for one-shot devices with more
flexible lifetime distributions for components such as Weibull and gamma. In most cases,
the failure rates of components are greater than their initial failure rates. The exponential
distribution with a constant failure rate becomes very restrictive in practice. Both Weibull
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and gamma distributions can model components with increasing and decreasing failure
rates and contain the exponential lifetime distribution as a special case. Thus, they are
popular in reliability and survival studies. We can also consider the development of optimal
designs for one-shot device in the considered scenario under some cost and efficiency
constraints. In line with [36], an efficient CSALT plan is designed for one-shot devices by
obtaining the inspection frequency, the number of inspections at each test group, and the
number of devices allocated for testing in order to minimize the asymptotic variance of the
MLE of a lifetime characteristic under budget and time constraints. Moreover, several frailty
models can be considered to model the dependence between the components, namely
generalized gamma frailty, positive stable frailty, and inverse Gaussian frailty. When many
frailty models are available for capturing the dependence between components, it is natural
to select the best model for a given dataset in a statistical investigation. We are currently
working on these problems and hope to report the findings in a future paper.
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Appendix A

Suppose a device consists of M = 4 components and the set of malfunctioned compo-
nents is X = {1, 2}. Then, Xc = {3, 4} and P(X) = {∅, {1}, {2}, {1, 2}}. The probability
of observing X at time t is

Pi(X, t) = P(Ti,1 ≤ t, Ti,2 ≤ t, Ti,3 > t, Ti,4 > t)

= P(Ti,3 > t, Ti,4 > t)− P((Ti,1 ≤ t, Ti,2 ≤ t)c, Ti,3 > t, Ti,4 > t)

= gi({3, 4}, t)− [gi({1, 3, 4}, t) + gi({2, 3, 4}, t)− gi({1, 2, 3, 4}, t)]

= gi({3, 4}, t)− gi({1, 3, 4}, t)− gi({2, 3, 4}, t) + gi({1, 2, 3, 4}, t)

= (1 + β(λi,3 + λi,4)t)
− 1

β − (1 + β(λi,1 + λi,3 + λi,4)t)
− 1

β

− (1 + β(λi,2 + λi,3 + λi,4)t)
− 1

β + (1 + β(λi,1 + λi,2 + λi,3 + λi,4)t)
− 1

β .

The probability that k = 2 malfunctioned components are found in the device is

Pi(X2, t) = gi({3, 4}, t)− gi({1, 3, 4}, t)− gi({2, 3, 4}, t) + gi({1, 2, 3, 4}, t)

+ gi({2, 4}, t)− gi({1, 2, 4}, t)− gi({2, 3, 4}, t) + gi({1, 2, 3, 4}, t)

+ gi({1, 4}, t)− gi({1, 2, 4}, t)− gi({1, 3, 4}, t) + gi({1, 2, 3, 4}, t)

+ gi({2, 3}, t)− gi({1, 2, 3}, t)− gi({2, 3, 4}, t) + gi({1, 2, 3, 4}, t)

+ gi({1, 3}, t)− gi({1, 2, 3}, t)− gi({1, 3, 4}, t) + gi({1, 2, 3, 4}, t)

+ gi({1, 2}, t)− gi({1, 2, 3}, t)− gi({1, 2, 4}, t) + gi({1, 2, 3, 4}, t)

=

(
2
2

)
∑

X∈X2

gi(X, t)−
(

3
2

)
∑

X∈X3

gi(X, t) +
(

4
2

)
∑

X∈X4

gi(X, t).

Thence, the reliability of a 2-out-of-4 structured device in the i-th group at time t is

Ri,2(t) = Pi(X0, t) + Pi(X1, t) + Pi(X2, t)

=

(
4
4

)
∑

X∈X4

gi(X, t) +

[(
3
3

)
∑

X∈X3

gi(X, t)−
(

3
2

)
∑

X∈X4

gi(X, t)

]

+

[(
2
2

)
∑

X∈X2

gi(X, t)−
(

3
2

)
∑

X∈X3

gi(X, t) +
(

4
2

)
∑

X∈X4

gi(X, t)

]

=

(
2
0

)
∑

X∈X2

gi(X, t) +
((

3
0

)
−
(

3
1

))
∑

X∈X3

gi(X, t)

+

((
4
0

)
−
(

4
1

)
+

(
4
2

))
∑

X∈X4

gi(X, t)

= ∑
X∈X2

gi(X, t)− 2 ∑
X∈X3

gi(X, t) + 3 ∑
X∈X4

gi(X, t).
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Appendix B

We have

∂Pi(X, τi; θ)

∂am0
= ∑

Y∈P(X)

(−1)|Y|
∂gi({Y, Xc}, τi))

∂am0

= ∑
Y∈P(X)

(−1)|Y|
∂
(

1 + β ∑k∈{Y,Xc} λi,kτi

)− 1
β

∂am0

= τiλi,m ∑
Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β ∑
k∈{Y,Xc}

λi,kτi

− 1
β−1

,

where I(m ∈ {Y, Xc}) is an indicator function that takes value 1 if m ∈ {Y, Xc} and takes
value 0 if m /∈ {Y, Xc}. Hence,

∂Pi(X, τi; θ̂)

∂am0
= τiλ̂i,m ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β̂ ∑
k∈{Y,Xc}

λ̂i,kτi

− 1
β̂
−1

.

Similarly,

∂Pi(X, τi; θ̂)

∂am1
= τiλ̂i,msi ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β̂ ∑
k∈{Y,Xc}

λ̂i,kτi

− 1
β̂
−1

,

∂Pi(X, τi; θ̂)

∂β
= ∑

Y∈P(X)

(−1)|Y|

β̂2

1 + β̂ ∑
m∈{Y,Xc}

λ̂i,mτi

− 1
β̂

×

ln

1 + β̂ ∑
m∈{Y,Xc}

λ̂i,mτi

− β̂τi ∑m∈{Y,Xc} λ̂i,m

1 + β̂ ∑m∈{Y,Xc} λ̂i,m

.
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