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Abstract: This paper deals with the study of the existence of positive solutions for a class of nonlin-
ear higher-order fractional differential equations in which the nonlinear term contains multi-term
lower-order derivatives. By reducing the order of the highest derivative, the higher-order frac-
tional differential equation is transformed into a lower-order fractional differential equation. Then,
combining with the properties of left-sided Riemann–Liouville integral operators, we obtain the exis-
tence of the positive solutions of fractional differential equations utilizing some weaker conditions.
Furthermore, some examples are given to demonstrate the validity of our main results.
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1. Introduction

The fractional differential equation has a broad application background, so it has
received attention and interest from the majority of researchers and has been rapidly
developed. At the same time, its applications in science and engineering are gradually
expanding, and in recent decades, its application fields have come to include fluid mechan-
ics, genetic epidemiology [1], viscoelastic mechanics [2], neural fractional models [3], and
electrochemistry [4]. For other applications of fractional differential equations, we refer the
reader to [5–12]. For example, in [8], there is a fractional derivative relaxation–vibration
equation: dpu(t)

dtp + Bu(t) = f (t)(1 < p ≤ 2). This model can be used to describe the slow
stress relaxation of memorization instead of Newton’s sticky pot of integral derivative in
the standard model because the fractional derivative contains the time convolution integral
that can describe the memorization process.

Many studies of fractional calculus and fractional differential equations have involved
different derivatives such as Riemann–Liouville, Erdelyi–Kober, Weyl–Riesz, Caputo,
Hadamard and Grunwald–Letnikov. In the realm of fractional differential equations, the
Caputo derivative and Riemann–Liouville ones are used the most. Fractional differential
equations with various initial or boundary value conditions have been widely discussed,
meanwhile, a variety of techniques have been applied to obtain the existence of solutions,
uniqueness, multiplicity, etc. In all studies of higher-order differential equations that
depend on lower-order derivatives of either integer or fractional order, there is a limitation,
i.e., the difference between the highest derivative and adjacent lower-order derivative is
greater than or equal to 1 (see [13–24]).

Due to the inherent difficulties in the fractional calculus, to the best of our knowledge,
if only the left (or right) Riemann–Liouville fractional derivatives are involved, the most
feasible approach to study the existence of solutions of a boundary value problem is to
convert it into a fixed point problem for an appropriate operator. This idea has been widely
used by many researchers, for a small sample of such work, as can be seen in [25–31] and
the references therein for more comments and citations.

In the study of higher-order differential equations of integer order, it has been pos-
sible to make this difference between the order of the differential equation and adjacent
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lower-order derivative equal to 1, as can be seen in [32–35]. For example, in [32], the
author studied the singular boundary value problems of the nth-order ordinary differential
equation with all derivative terms:{

x(n)(t) + f (t, x(t), x′(t), x′′(t), ..., x(i)(t), ..., x(n−1)(t)) = 0, t ∈ (0, 1),
x(i)(0) = 0, i = 0, 1, 2, ..., n− 2, x(n−1)(1) = 0,

where f : (0, 1)× (0, ∞)n → R+ is continuous with R+ = [0, ∞). A necessary and sufficient
condition for the existence of Cn−1[0, 1] positive solutions was given by constructing lower
and upper solutions and with the comparison theorem.

In this respect, Liouville–Caputo-type fractional differential equations have also made
progress similar to that of integral order ordinary differential equations, as can be seen
in [13–16]. Yang in [13] investigated the nonlinear differential equation of fractional order:{ CDα

0+u(t) = f (t, u(t), u′(t), t ∈ (0, 1), 1 < α ≤ 2,
u(0) + u′(0) = 0, u(1) + u′(1) = 0.

By means of Schauder’s fixed point theorem and an extension of Krasnoselskii’s fixed
point theorem in a cone, some results on the existence of positive solutions were obtained.

As for Riemann–Liouville-type fractional differential equations, the current result
is that the difference between the highest derivative and the adjacent lower derivative
is greater than or equal to 1, as can be seen in [17–24]. For example, in [17], applying
Schauder’s fixed point theorem and upper and lower solutions method, Zhang established
the existence of positive solutions to a singular higher-order fractional differential equation
involving fractional derivatives:{

−Dαx(t) = λ f (x(t), Dµ1 x(t), Dµ2 x(t), · · ·, Dµn−1 x(t)), 0 < t < 1,
x(0) = 0, Dµi x(0) = 0, Dµx(1) = ∑

p−2
j=1 ajDµx(ξ j), 1 ≤ i ≤ n− 1,

where Dα is the standard Riemann–Liouville derivative, n ≥ 3, n ∈ N, n − 1 < α ≤
n, n− l − 1 < α− µl < n− l (l = 1, 2, · · ·, n− 2), µ− µn−1 > 0, 1 < α− µn−1 ≤ 2, α− µ >

1, aj ∈ [0,+∞), 0 < ξ1 < ξ2 < · · · < ξp−2 < 1, 0 < ∑
p−2
j=1 ajξ

α−µ−1
j < 1, f : (0,+∞)n → R+

is continuous.
By using the properties of the Green function, the fixed point index theory and the

Banach contraction mapping principle based on some available operators, in [18], Wang
et al. obtained the existence of positive solutions and a unique positive solution of the
fractional differential equation:

Dγ
0+x(t) + f (t, x(t), Dα

0+x(t), Dβ
0+x(t)) = 0, 0 < t < 1,

x(j)(0) = 0, Dβ
0+x(0) = 0, j = 0, 1, · · ·, n− 3,

Dβ
0+x(1) = a1

∫ 1
0 p1(s)Dβ

0+x(s)dA1(s) + a2
∫ η

0 p2(s)Dβ
0+x(s)dA2(s) + a3 ∑∞

i=1 µiD
β
0+x(ζi),

where Dγ, Dα, Dβ denote the Riemann–Liouville fractional derivative, 0 < α < n− 2 ≤ β <
n− 1, γ− β > 1, β− α ≥ 1, aj, µi ≥ 0, 0 < η < ζ1 < ζ2 < · · · < 1, 1− a3 ∑∞

i=1 µiζ
δ−1
i > 0,

p1, p2 ∈ C(0, 1) ∩ L1(0, 1) are nonnegative,
∫ 1

0 p1(s)u(s)dA1(s),
∫ 1

0 p2(s)u(s)dA2(s) denote
the Riemann–Stieltjes integrals, A1, A2 : [0, 1]→ R are the function of bounded variation,
f : [0, 1]×R+ ×R+ ×R+ → R+ is continuous.

By means of the Guo–Krasnoselskii fixed point theorem, under sublinearity conditions,
Ref. [19] investigated the existence of at least one positive solution of the following initial
value problem with the higher-order Riemann–Liouville-type fractional differential equation:{

Dqu(t) = f (t, u(t), Dq−1u(t)) = 0, (q > 2),
u(0) = 0, Dq−iu(0) = 0, i = 1, 2, · · ·, n− 1,
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where Dq represents the standard Riemann–Liouville fractional derivative, f (t, x, y) =
g(t) f1(x, y), g ∈ L1([0, 1],R∗+), f1(0, 0) 6= 0, f1 ∈ C(R+ × R,R+) and f1 is a convex,
nonnegative function, decreasing according to each of its variables.

Motivated by the previously mentioned works, we will establish the following higher-
order fractional boundary value problems:

Dδ
0+u(t) + f (t, u(t), Dδ1

0+u(t), Dδ2
0+u(t), · · ·, Dδn−1

0+ u(t), Dδn
0+u(t)) = 0, 0 < t < 1,

u(0) = Dα1
0+u(0) = · · · = Dαn−2

0+ u(0) = 0,
Dαn−1

0+ u(1) = ϕ[Dαn−2
0+ u(t)],

(1)

where Dδ
0+, Dδi

0+ (i = 1, 2, ..., n), D
αj
0+ (j = 1, 2, .., n− 1) represent the standard Riemann–

Liouville fractional derivatives. f : (0, 1]× (R+)n ×R → R+ with R+ = [0, ∞). n− 1 <
δ ≤ n, n is a positive integer (n ≥ 3). The parameters and function ϕ of the problem satisfy
the following conditions:

(C1). 0 = δ0 < δ1 < δ2 < · · · < δn−2 ≤ αn−2 ≤ n− 2 < δn−1 ≤ n− 1 < δn < δ ≤ n,
n − 3 − i < αn−2 − αi ≤ n − 2 − i (i = 1, 2, ..., n − 3), 0 < δ− αn−1 ≤ 1 < δ − δn−1 <
δ − αn−2 ≤ 2,4 = Γ(δ − αn−2) − Γ(δ − αn−1)ϕ[tδ−αn−2−1] > 0, ϕ : C[0, 1) → R is a
nondecreasing linear function and ϕ[0] ≥ 0.

There are various forms of nonlocal boundary conditions, such as multi-point bound-
ary value, infinite point boundary value and integral boundary value:

ϕ[u] =
m

∑
i=1

βiu(ηi), βi > 0, i = 1, 2, ..., m, 0 ≤ η1 < η2 < · · · < ηm ≤ 1,

ϕ[u] =
∞

∑
i=1

ρiu(ξi), ρi > 0, i = 1, 2, ..., 0 ≤ ξ1 < ξ2 < · · · ≤ 1,

or:

ϕ[u] =
∫ 1

0
ψ(s)u(s)ds, ψ ≥ 0.

Apart from these conditions, the function ϕ of the BVP (1) represents a wider range of
other conditions.

To simplify our statement, in the sequel, we refer to C := C[0, 1] the classical space
of continuous functions defined on [0, 1], endowed with the classical uniform norm
‖x‖0 = max

t∈[0,1]
|x(t)| and to Cε := Cε[0, 1] the set of continuous functions x on (0, 1] such that

t → t1−εx(t) is continuous on [0,1], endowed with the norm ‖x‖ε = max
t∈[0,1]

|t1−εx(t)|(0 <

ε < 1). The set Lm := Lm[0, 1] is the classical Lebesgue space of m-integrable functions on
[0,1], endowed with its usual norm ‖x‖Lm = (

∫ 1
0 |x(t)|

mdt)
1
m , (1 ≤ m < ∞). Lm

ε := Lm
ε [0, 1]

is the set of functions x on (0, 1] such that t → t1−εx(t) belongs to Lm, and its norm is
expressed by ‖x‖Lm

ε
= (
∫ 1

0 |t
1−εx(t)|mdt)

1
m , (1 ≤ m < ∞, 0 < ε < 1). In particular, function

spaces Lp, Lp
δ−δn

will be used in this article, where p satisfies:
(C2). 0 < 1

p < min{δ− δn−1 − 1, δ− δn}, 1
p + 1

q = 1.
Comparing the problem (1) to the aforementioned papers, the highlights of our results

lie in the following aspects. First, the nonlinear term f contains a series of lower derivatives,
especially the lower derivative Dδn

0+ which satisfies 0 < δ− δn < 1. In previous studies,
there was only a relationship such as δ− δn−1 ≥ 1. However, we allow n− 1 < δn < δ ≤ n,
which fills in a gap in previous research. Second, some of the lower derivatives in the
nonlinear term simply require that 0 < δ1 < δ2 < · · · < δn−2 ≤ n− 2, however, previous
studies have required that n − k − 1 < δ − δk ≤ n − k (k = 1, 2, ..., n − 2). Hence, our
equation is more extensive. Third, the boundary condition is more general, as it can be
not only a multi-point/infinite-point boundary value, but also an integral boundary value,
etc. Fourth, in most of the previous literature, the integral operator maps the continuous
function space C, or the Lp space to the continuous function space. A better result was
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obtained in this paper, i.e., the integral operator can map space Lp
δ−δn

to the space of
weighted continuous functions. This property help us to obtain the existence of solutions
under weaker conditions.

The goal of our research is to propose new existence criteria for the positive solutions
of the BVP (1) under weaker conditions. In addition, we studied the uniqueness result
for (1).

The remaining part of the paper is organized as follows. In Section 2, we recall some
basic properties and introduce some new lemmas which will be used later. Properties of
Green’s function are obtained in Section 3. The main results are presented in Section 4.
In Section 5, some examples are given to demonstrate the application of our main result.
Section 6 is our conclusions section.

2. Preliminaries

We begin this section with some fundamental facts of the fractional calculus theory,
which are used throughout the paper:

Lemma 1 ([9,36]). Let α ≥ β > 0, supposing that Dα
0+u(t) is integrable on [0,1], then:

Iβ
0+Dα

0+u(t) = Dα−β
0+ u(t)−

n

∑
i=1

Dα−i
0+ u(t)|t=0

Γ(1 + β− i)
tβ−i, t ∈ [0, 1], 0 ≤ n− 1 ≤ α < n.

Lemma 2 ([9,36]). When β > α > 0, h ∈ L[0, 1], then:

(1) Iα
0+ Iβ

0+h(t) = Iβ
0+ Iα

0+h(t) = Iα+β
0+ h(t);

(2) Dα
0+ Iβ

0+h(t) = Iβ−α
0+ h(t);

(3) Dα
0+tβ = Γ(β+1)

Γ(β+1−α)
tβ−α, β > −1, β > α− 1, t > 0.

Now, we define a modified problem of problem (1) as follows:{
−Dδ−αn−2

0+ v(t) = f (t, Iαn−2
0+ v(t), · · ·, Iαn−2−δn−2

0+ v(t), Dδn−1−αn−2
0+ v(t), Dδn−αn−2

0+ v(t)),
v(0) = 0, Dαn−1−αn−2

0+ v(1) = ϕ[v(t)],
(2)

Lemma 3. Let v(t) = Dαn−2
0+ u(t), then we can transform problem (1) into problem (2). In other

words, if v ∈ C[0, 1] is a positive solution of problem (2), then the function u(t) = Iαn−2
0+ v(t) is the

positive solution of problem (1).

Proof of Lemma 3. By the definition of the Riemann–Liouville fractional derivative and
Lemma 1, we obtain u(t) = Iαn−2

0+ v(t) + d1tαn−2−1 + · · ·+ dn−2tαn−2−n+2. Combining with
the condition u(0) = Dα1

0+u(0) = · · · = Dαn−3
0+ u(0) = 0 and n− 3− i < αn−2 − αi ≤ n−

2− i (i = 1, 2, ..., n− 3), we have di = 0 (i = 1, 2, ..., n− 2), then we obtain u(t) = Iαn−2
0+ v(t).

Again, by Lemma 2, we have:

Dδ
0+u(t) =

dn

dtn In−δ
0+ u(t) =

dn

dtn In−δ
0+ Iαn−2

0+ v(t) =
dn

dtn In−δ+αn−2
0+ v(t) = Dδ−αn−2

0+ v(t), (3)

Dδi
0+u(t) = Dδi

0+ Iαn−2
0+ v(t) = Iαn−2−δi

0+ v(t), i = 1, 2, ..., n− 2, (4)

Dδn−1
0+ u(t) =

dn−1

dtn−1 In−1−δn−1
0+ Iαn−2

0+ v(t) =
dn−1

dtn−1 In−1−(δn−1−αn−2)
0+ v(t) = Dδn−1−αn−2

0+ v(t), (5)

Dδn
0+u(t) =

dn

dtn In−δn
0+ Iαn−2

0+ v(t) =
dn

dtn In−(δn−αn−2)
0+ v(t) = Dδn−αn−2

0+ v(t), (6)

Dαn−1
0+ u(t) = Dαn−1

0+ Iαn−2
0+ v(t) = Dαn−1−αn−2

0+ v(t). (7)
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It is obvious that the conditions v(0) = Dαn−2
0+ u(0) = 0 as well as Dαn−1−αn−2

0+ v(1) =
ϕ[v(t)] hold. Hence, problem (1) is transformed into problem (2).

Now, suppose v ∈ C[0, 1] is a positive solution of problem (2), let u(t) = Iαn−2
0+ v(t),

then u(t) ≥ 0, t ∈ [0, 1]. From (3)–(6), we have:

Dδ
0+u(t) + f (t, u(t), Dδ1

0+u(t), Dδ2
0+u(t), · · ·, Dδn

0+u(t))

=Dδ−αn−2
0+ v(t) + f (t, Iαn−2

0+ v(t), · · ·, Iαn−2−δn−2
0+ v(t), Dδn−1−αn−2

0+ v(t), Dδn−αn−2
0+ v(t)) = 0,

we also obtain u(0) = Dα1
0+u(0) = · · · = Dαn−2

0+ u(0) = 0 from the representation u(t) =

Iαn−2
0+ v(t) and the condition v(0) = 0 in problem (2). Combining with the condition

Dαn−1−αn−2
0+ v(1) = ϕ[v(t)] and (7), we know that Dαn−1

0+ u(1) = ϕ[Dαn−2
0+ u(t)], which means

that the function u(t) = Iαn−2
0+ v(t) is a solution of problem (1).

We then introduce the properties of integral operators which are going to play a very
important role in the subsequent proofs of the main results.

Lemma 4. Suppose that (C1), (C2) hold, integral operators Iδ−αn−2
0+ : Lp

δ−δn
→ C and Iδ−δn−1

0+ :
Lp

δ−δn
→ C are continuous.

Proof of Lemma 4. For all h ∈ Lp
δ−δn

, we will show that Iδ−αn−2
0+ h ∈ C. Let 0 ≤ t1 < t2 ≤ 1 :

|Iδ−αn−2
0+ h(t2)− Iδ−αn−2

0+ h(t1)|

≤ 1
Γ(δ− αn−2)

[∫ t1

0
((t2 − s)δ−αn−2−1 − (t1 − s)δ−αn−2−1)|h(s)|ds

+
∫ t2

t1

(t2 − s)δ−αn−2−1|h(s)|ds
]

(8)

≤
‖h‖Lp

δ−δn

Γ(δ− αn−2)

[(∫ t1

0
((t2 − s)(δ−αn−2−1)q − (t1 − s)(δ−αn−2−1)q)s(δ−δn−1)qds

) 1
q

+

(∫ t2

t1

(t2 − s)(δ−αn−2−1)qs(δ−δn−1)qds
) 1

q
]
(q =

p
p− 1

).

Since 0 < 1
p < δ − δn < 1, we have 0 < (δ − δn − 1)q + 1 < 1, then the second

right-hand side term in the above inequality (8) has the following estimate:

(∫ t2

t1

(t2 − s)(δ−αn−2−1)qs(δ−δn−1)qds
) 1

q

≤
(∫ t2

t1

(t2 − s)(δ−αn−2−1)q(s− t1)
(δ−δn−1)qds

) 1
q

(9)

=[(t2 − t1)
((δ−αn−2−1+δ−δn−1)q+1) 1

qB((δ− αn−2 − 1)q + 1, (δ− δn − 1)q + 1)]
1
q

=κ0(t2 − t1)
δ−αn−2−1− 1

p +(δ−δn),

where B(·, ·) denotes the usual Beta function and:

κ0 = [B((δ− αn−2 − 1)q + 1, (δ− δn − 1)q + 1)]
1
q . (10)

We will then estimate the first right-hand side term in the above inequality (8) in two
cases.

(i) If 0 < (δ− αn−2 − 1)q ≤ 1 :
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(∫ t1

0

(
(t2 − s)(δ−αn−2−1)q − (t1 − s)(δ−αn−2−1)q

)
s(δ−δn−1)qds

) 1
q

≤
(∫ t1

0
(t2 − t1)

(δ−αn−2−1)qs(δ−δn−1)q
) 1

q
(11)

=(t2 − t1)
δ−αn−2−1

(
t(δ−δn−1)q+1
1

(δ− δn − 1)q + 1

) 1
q

.

(ii) If (δ − αn−2 − 1)q > 1; owing to the Lagrange’s mean value theorem, we choose
ξ ∈ (t1 − s, t2 − s) such that:(∫ t1

0

(
(t2 − s)(δ−αn−2−1)q − (t1 − s)(δ−αn−2−1)q

)
s(δ−δn−1)qds

) 1
q

=

(
(t2 − t1)(δ− αn−2 − 1)q

∫ t1

0
ξ(δ−αn−2−1)q−1s(δ−δn−1)qds

) 1
q

≤
(
(t2 − t1)(δ− αn−2 − 1)q

t(δ−δn−1)q+1
1

(δ− δn − 1)q + 1

) 1
q

(12)

≤
(

(δ− αn−2 − 1)q
(δ− δn − 1)q + 1

) 1
q
(t2 − t1)

1
q .

Therefore, from (9), (11) and (12), as t2 → t1, we obtain |Iδ−αn−2
0+ h(t2)− Iδ−αn−2

0+ h(t1)| →
0, which means that Iδ−αn−2

0+ h is continuous on [0,1].

Let hj → h in Lp
δ−δn

, we need to prove that lim
j→∞
‖Iδ−αn−2

0+ hj − Iδ−αn−2
0+ h‖0 = 0. In fact:

‖Iδ−αn−2
0+ hj − Iδ−αn−2

0+ h‖0 ≤
1

Γ(δ− αn−2)
max

0≤t≤1

∫ t

0
(t− s)δ−αn−2−1|hj(s)− h(s)|ds

≤
‖hj − h‖Lp

δ−δn

Γ(δ− αn−2)
max

0≤t≤1

(∫ t

0
(t− s)(δ−αn−2−1)qs(δ−δn−1)q

) 1
q

=
‖hj − h‖Lp

δ−δn

Γ(δ− αn−2)
κ0,

where κ0 is defined in (10). Obviously, in view of the estimate, we naturally have ‖Iδ−αn−2
0+ hj−

Iδ−αn−2
0+ h‖0 → 0, as j → ∞. Since 1 < δ− δn−1 < δ− αn−2, following the same procedure

as above, we will naturally come to the continuity of Iδ−δn−1
0+ .

Lemma 5. Suppose that (C1), (C2) hold, then Iδ−δn
0+ : Lp

δ−δn
→ Cδ−δn is continuous.

Proof of Lemma 5. For all h ∈ Lp
δ−δn

, we need to show that Iδ−δn
0+ h ∈ Cδ−δn . For conve-

nience, denote H(t) = t1+δn−δ Iδ−δn
0+ h(t). Then, for t ∈ (0, 1] :

|H(t)| = t1+δn−δ

Γ(δ− δn)

∣∣∣∣∫ t

0
(t− s)δ−δn−1h(s)ds

∣∣∣∣
≤ t1+δn−δ

Γ(δ− δn)
‖h‖Lp

δ−δn

(∫ t

0
(t− s)(δ−δn−1)qs(δ−δn−1)qds

) 1
q

(13)

=
‖h‖Lp

δ−δn

Γ(δ− δn)
t1+δn−δtδ−δn−1+δ−δn− 1

p (B((δ− δn − 1)q + 1, (δ− δn − 1)q + 1))
1
q

=
‖h‖Lp

δ−δn

Γ(δ− δn)
κ1tδ−δn− 1

p ,
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where:
κ1 = (B((δ− δn − 1)q + 1, (δ− δn − 1)q + 1))

1
q . (14)

By (13), we notice that lim
t→0

H(t) = 0. As a consequence, we supplement the definition

of H on t = 0; thus, H is continuous on t = 0.
For 0 < t1 ≤ t2 ≤ 1, we have:

|t1+δn−δ
1 Iδ−δn

0+ h(t1)− t1+δn−δ
2 Iδ−δn

0+ h(t2)|

≤ 1
Γ(δ− δn)

[
t1+δn−δ
1

∫ t1

0
((t1 − s)δ−δn−1 − (t2 − s)δ−δn−1)|h(s)|ds

+t1+δn−δ
1

∫ t2

t1

(t2 − s)δ−δn−1|h(s)|ds + (t1+δn−δ
2 − t1+δn−δ

1 )
∫ t2

0
(t2 − s)δ−δn−1|h(s)|ds

]
≤
‖h‖Lp

δ−δn

Γ(δ− δn)

[
t1+δn−δ
1

(∫ t1

0
((t1 − s)δ−δn−1 − (t2 − s)δ−δn−1)qs(δ−δn−1)qds

) 1
q

(15)

+ t1+δn−δ
1

(∫ t2

t1

(t2 − s)(δ−δn−1)qs(δ−δn−1)qds
) 1

q

(16)

+ (t1+δn−δ
2 − t1+δn−δ

1 )

(∫ t2

0
(t2 − s)(δ−δn−1)qs(δ−δn−1)qds

) 1
q
]

. (17)

We will now evaluate each of these expressions (15)–(17) separately.

(a) We choose a constant 0 < γ < min{1 + δn − δ, δ− δn − 1
p} :

t1+δn−δ
1

(∫ t1

0
((t1 − s)δ−δn−1 − (t2 − s)δ−δn−1)qs(δ−δn−1)qds

) 1
q

≤t1+δn−δ
1

(∫ t1

0
(

1
t1 − s

− 1
t2 − s

)(1+δn−δ)qs(δ−δn−1)qds
) 1

q
(∵ 0 < (1 + δn − δ)q < 1)

=t1+δn−δ
1

(∫ t1

0
(

1
t1 − s

− 1
t2 − s

)(1+δn−δ−γ)q(
t2 − t1

(t1 − s)(t2 − s)
)γqs(δ−δn−1)qds

) 1
q

≤t1+δn−δ
1 (t2 − t1)

γ

(∫ t1

0
(t1 − s)(δ−δn−1+γ)q(t1 − s)−γq(t2 − s)−γqs(δ−δn−1)qds

) 1
q

≤t1+δn−δ
1 (t2 − t1)

γ

(∫ t1

0
(t1 − s)(δ−δn−1−γ)qs(δ−δn−1)qds

) 1
q

=(t2 − t1)
γt1+δn−δ

1 t
δ−δn−1−γ+δ−δn− 1

p
1 (B((δ− δn − 1− γ)q + 1, (δ− δn − 1)q + 1))

1
q

≤(t2 − t1)
γ(B((δ− δn − 1− γ)q + 1, (δ− δn − 1)q + 1))

1
q .

(b) Since 1 + δn − δ > 0, we have t(1+δn−δ)q
1 s(δ−δn−1)q ≤ 1 for all 0 < t1 ≤ s. Hence:

t1+δn−δ
1

(∫ t2

t1

(t2 − s)(δ−δn−1)qs(δ−δn−1)qds
) 1

q
≤
(∫ t2

t1

(t2 − s)(δ−δn−1)qds
) 1

q

=
(t2 − t1)

δ−δn− 1
p

((δ− δn − 1)q + 1)
1
q

.

(c) As for (17), we have the following estimate:

(t1+δn−δ
2 − t1+δn−δ

1 )

(∫ t2

0
(t2 − s)(δ−δn−1)qs(δ−δn−1)qds

) 1
q

=(t1+δn−δ
2 − t1+δn−δ

1 )t
δ−δn−1+δ−δn− 1

p
2 (B((δ− δn − 1)q + 1, (δ− δn − 1)q + 1))

1
q

=κ1t
δ−δn− 1

p
2 (1− t1+δn−δ

1 tδ−δn−1
2 ),
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where κ1 is defined in (14).

Gathering these estimates (a)− (c), we conclude that:

lim
t2→t1

|t1+δn−δ
1 Iδ−δn

0+ h(t1)− t1+δn−δ
2 Iδ−δn

0+ h(t2)| = 0.

We will now prove that the integral operator Iδ−δn
0+ is continuous. Suppose {hj} ⊆

Lp
δ−δn

and lim
j→∞
‖hj − h‖Lp

δ−δn
= 0, we need to prove lim

j→∞
‖Iδ−δn

0+ hj − Iδ−δn
0+ h‖Cδ−δn

= 0. In

fact:

‖Iδ−δn
0+ hj − Iδ−δn

0+ h‖Cδ−δn

= max
0≤t≤1

|t1+δn−δ(Iδ−δn
0+ hj(t)− Iδ−δn

0+ h(t))|

≤
‖hj − h‖Lp

δ−δn

Γ(δ− δn)
max

0≤t≤1
t1+δn−δ

(∫ t

0
(t− s)(δ−δn−1)qs

(δ−δn−1)q
) 1

q

=
‖hj − h‖Lp

δ−δn

Γ(δ− δn)
max

0≤t≤1
tδ−δn− 1

p [B((δ− δn − 1)q + 1, (δ− δn − 1)q + 1)]
1
q

=
‖hj − h‖Lp

δ−δn

Γ(δ− δn)
κ1,

and let j→ ∞—this finally completes the demonstration.

Lemma 6. Suppose that (C1), (C2) hold, for any h ∈ Lp
δ−δn

,
∫ 1

0 (1− s)δ−αn−1−1h(s)ds < ∞.

Proof of Lemma 6. By means of the Hölder inequality, we immediately infer the conclu-
sion.

To prove the existence of at least one positive solution of (1), we state the following
Guo–Krasnoselskii fixed point theorem [25] and Schauder fixed point theorem [26].

Theorem 1. Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 are two bounded open balls of
E centered at the origin with Ω1 ⊂ Ω2. Suppose that A : P

⋂
(Ω2\Ω1) → P is a completely

continuous operator such that either:

(i) ‖Ax| ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax| ≥ ‖x‖, x ∈ P ∩ ∂Ω2; or
(ii) ‖Ax| ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax| ≤ ‖x‖, x ∈ P ∩ ∂Ω2 holds. Then, A has a fixed point

in P
⋂
(Ω2\Ω1).

Theorem 2. Let Ω be a convex and closed subset of a Banach space E. Then, any continuous and
compact map F : Ω→ Ω has a fixed point.

3. Properties of Green’s Function

Lemma 7. Assume that (C1), (C2) hold and h ∈ Lp
δ−δn

[0, 1], if δ− αn−1 < 1, then the following
boundary value problem: {

−Dδ−αn−2
0+ v(t) = h(t), 0 < t < 1,

v(0) = 0, Dαn−1−αn−2
0+ v(1) = ϕ[v(t)]

(18)

has a unique solution:

v(t) =
∫ 1

0
K(t, s)h(s)ds +

tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]h(s)ds,
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where:

K(t, s) =
1

Γ(δ− αn−2)

{
tδ−αn−2−1(1− s)δ−αn−1−1 − (t− s)δ−αn−2−1, 0 ≤ s ≤ t ≤ 1,
tδ−αn−2−1(1− s)δ−αn−1−1, 0 ≤ t ≤ s < 1.

(19)

Proof of Lemma 7. Applying the Riemann–Liouville operator Iδ−αn−2
0+ on both sides of the

equation and using Lemma 1, we obtain:

v(t) = −Iδ−αn−2
0+ h(t) + C1tδ−αn−2−1 + C2tδ−αn−2−2,

where C1, C2 ∈ R are arbitrary constants. At the same time, the boundary condition
v(0) = 0 and 1 < δ− αn−2 ≤ 2 imply that C2 = 0. Consequently, the solution of (18) is:

v(t) = −Iδ−αn−2
0+ h(t) + C1tδ−αn−2−1.

By Lemma 2 and the boundary condition Dαn−1−αn−2
0+ v(1) = ϕ[v(t)], we obtain:

−Iδ−αn−1
0+ h(1) + C1

Γ(δ− αn−2)

Γ(δ− αn−1)
= ϕ[v(t)],

hence, C1 = Γ(δ−αn−1)
Γ(δ−αn−2)

(Iδ−αn−1
0+ h(1) + ϕ[v(t)]). Therefore, the unique solution of the prob-

lem (18) is given by

v(t) =− 1
Γ(δ− αn−2)

∫ t

0
(t− s)δ−αn−2−1h(s)ds +

tδ−αn−2−1

Γ(δ− αn−2)

∫ 1

0
(1− s)δ−αn−1−1h(s)ds

+ tδ−αn−2−1 Γ(δ− αn−1)

Γ(δ− αn−2)
ϕ[v(t)] (20)

=
∫ 1

0
K(t, s)h(s)ds + tδ−αn−2−1 Γ(δ− αn−1)

Γ(δ− αn−2)
ϕ[v(t)].

Since ϕ is linear, applying ϕ to both sides of (20) gives:

ϕ[v(t)] =
∫ 1

0
ϕ[K(·, s)]h(s)ds + ϕ[tδ−αn−2−1]

Γ(δ− αn−1)

Γ(δ− αn−2)
ϕ[v(t)],

then, ϕ[v(t)] = 4−1Γ(δ− αn−2)
∫ 1

0 ϕ[K(·, s)]h(s)ds. Therefore:

v(t) =
∫ 1

0
K(t, s)h(s)ds +

tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]h(s)ds.

Corollary 1. Assume that (C1), (C2) hold and h ∈ Lp
δ−δn

[0, 1], if δ− αn−1 = 1, then BVP (18)
has a unique solution v(t) which can be represented by Lemma 7:

v(t) =
∫ 1

0
K̃(t, s)h(s)ds +

tδ−αn−2−1

4

∫ 1

0
ϕ[K̃(·, s)]h(s)ds,

where K̃(t, s) defined in [0, 1]× [0, 1] can be expressed by

K̃(t, s) =
1

Γ(δ− αn−2)

{
tδ−αn−2−1 − (t− s)δ−αn−2−1, 0 ≤ s ≤ t ≤ 1,
tδ−αn−2−1, 0 ≤ t ≤ s ≤ 1.

(21)

Lemma 8. If δ− αn−1 < 1, the Green’s function K(t, s) defined in (19) has the following properties:

(i) K(t, s) is continuous for t, s ∈ [0, 1]× [0, 1);
(ii) K(0, s) = K(t, 0) = 0, for t ∈ [0, 1], s ∈ [0, 1);
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(iii) lim
s→1−

K(t, s) = +∞, t ∈ [0, 1);

(iv) For any (t, s) ∈ [0, 1]× [0, 1) :

0 ≤ mtδ−αn−2−1s(1− s)δ−αn−1−1 ≤ K(t, s) ≤ Mtδ−αn−2−1(1− s)δ−αn−1−1,

where m, M are in the definition (22) below.

Proof of Lemma 8. From the expression of K, it can be readily seen that statements (i)–(iii)
hold. Let us then turn to prove statement (iv). Define:

m :=
1

Γ(δ− αn−2)
min{1, αn−1 − αn−2}, M =

1
Γ(δ− αn−2)

. (22)

From the representation of K, it is obvious that K(t, s) ≤ Mtδ−αn−2−1(1− s)δ−αn−1−1,
(t, s) ∈ [0, 1]× [0, 1). On the other hand, for 0 ≤ s ≤ t ≤ 1 :

Γ(δ− αn−2)K(t, s) ≥tδ−αn−2−1[(1− s)δ−αn−1−1 − (1− s)δ−αn−2−1]

=tδ−αn−2−1(1− s)δ−αn−1−1[1− (1− s)αn−1−αn−2 ]

≥tδ−αn−2−1(1− s)δ−αn−1−1 min{1, αn−1 − αn−2}(1− (1− s))

=min{1, αn−1 − αn−2}tδ−αn−2−1s(1− s)δ−αn−1−1.

For 0 ≤ t ≤ s < 1 :

Γ(δ− αn−2)K(t, s) = tδ−αn−2−1(1− s)δ−αn−1−1 ≥ min{1, αn−1 − αn−2}tδ−αn−2−1s(1− s)δ−αn−1−1.

Corollary 2. If δ− αn−1 = 1, according to Corollary 1, we know the properties (i), (ii), and (iv) of
K̃ defined in [0, 1]× [0, 1] are also satisfied, that is:

(i) K̃(t, s) is continuous for t, s ∈ [0, 1]× [0, 1];

(ii) K̃(0, s) = K̃(t, 0) = 0, for t ∈ [0, 1], s ∈ [0, 1];

(iii) For any (t, s) ∈ [0, 1]× [0, 1) :

0 ≤ mtδ−αn−2−1s ≤ K̃(t, s) ≤ Mtδ−αn−2−1,

where m, M are in the definition (22) above.

In light of Lemma 2, it follows that:

Dδn−1−αn−2
0+ tδ−αn−2−1 =

Γ(δ− αn−2)

Γ(δ− δn−1)
tδ−δn−1−1, Dδn−αn−2

0+ tδ−αn−2−1 =
Γ(δ− αn−2)

Γ(δ− δn)
tδ−δn−1.

If δ − αn−1 < 1, denoting K1(t, s) = Dδn−1−αn−2
0+ K(t, s), K2(t, s) = Dδn−αn−2

0+ K(t, s),
we obtain:

K1(t, s) =
1

Γ(δ− δn−1)

{
tδ−δn−1−1(1− s)δ−αn−1−1 − (t− s)δ−δn−1−1, 0 ≤ s ≤ t ≤ 1,
tδ−δn−1−1(1− s)δ−αn−1−1, 0 ≤ t ≤ s < 1.

(23)

K2(t, s) =
1

Γ(δ− δn)

{
tδ−δn−1(1− s)δ−αn−1−1 − (t− s)δ−δn−1, 0 ≤ s < t ≤ 1,
tδ−δn−1(1− s)δ−αn−1−1, 0 < t ≤ s < 1.

(24)

If δ− αn−1 = 1, let K̃1(t, s) = Dδn−1−αn−2
0+ K̃(t, s), K̃2(t, s) = Dδn−αn−2

0+ K̃(t, s).
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Lemma 9. If δ− αn−1 < 1, Ki(t, s)(i = 1, 2) defined in (23) and (24) has the following properties:

(i) K1(t, s) is continuous on [0, 1]× [0, 1);
(ii) 0 ≤ m1tδ−δn−1−1s(1 − s)δ−αn−1−1 ≤ K1(t, s) ≤ M1tδ−δn−1−1(1 − s)δ−αn−1−1, (t, s) ∈

[0, 1]× [0, 1), where m1, M1 are defined in (25) below;
(iii) K2(t, s) is continuous on Σ1 ∪ Σ2, K2(t, s) ≤ 0 for (t, s) ∈ Σ1 and K2(t, s) > 0 for (t, s) ∈

Σ2, where Σ1 = {(t, s)|0 ≤ s < t ≤ 1}, Σ2 = {(t, s)|0 < t ≤ s < 1}.

Proof of Lemma 9. We only prove statement (ii), since (i) and (iii) are obvious. Following
the proof of Lemma 8 (iv), we denote:

m1 =
1

Γ(δ− δn−1)
min{1, αn−1 − δn−1}, M1 =

1
Γ(δ− δn−1)

, (25)

analogously, we naturally obtained statement (ii).

Corollary 3. If δ− αn−1 = 1,

(i) K̃1(t, s) is continuous on [0, 1]× [0, 1];

(ii) 0 ≤ m1tδ−δn−1−1s ≤ K̃1(t, s) ≤ M1tδ−δn−1−1, (t, s) ∈ [0, 1] × [0, 1], where m1, M1 are
defined in (25) above;

(iii) K̃2(t, s) ≤ 0 for (t, s) ∈ {(t, s)|0 ≤ s < t ≤ 1} and K̃2(t, s) > 0 for (t, s) ∈ {(t, s)|0 <
t ≤ s ≤ 1}.

Remark 1. In view of Corollaries 2 and 3, we know that K, Ki have properties almost identical to
those of K̃, K̃i. In combination with (19) and Corollary 1, we can unify the expressions of K, Ki and
K̃, K̃i, and we will uniformly write them as K, Ki(i = 1, 2) below.

4. Result of Existence and Uniqueness

Let the Banach space E = {v : [0, 1] → R : v ∈ C, Dδn−1−αn−2
0+ v ∈ C, Dδn−αn−2

0+ v ∈
Cδ−δn} endowed with the norm ‖v‖E = max{‖v‖0, ‖v‖1, ‖v‖2}, where:

‖v‖1 = ‖Dδn−1−αn−2
0+ v‖0, ‖v‖2 = ‖Dδn−αn−2

0+ v‖δ−δn .

Let:
P = {v ∈ E : v(t) ≥ 0, Dδn−1−αn−2

0+ v(t) ≥ 0, t ∈ [0, 1]},

then P is a cone of E.
We now consider the operator F : P → Lp

δ−δn
, for any v ∈ E, defining the function

Fv by Fv(t) = f
(

t, Iαn−2
0+ v(t), Iαn−2−δ1

0+ v(t), · · ·, Iαn−2−δn−2
0+ v(t), Dδn−1−αn−2

0+ v(t), Dδn−αn−2
0+ v(t)

)
.

For the forthcoming analysis, we need the following assumptions:

Hypothesis 1. f : (0, 1]× (R+)n ×R→ R+ satisfies the Carathéodory condition, meaning:

(i) f (·, x0, x1, · · ·, xn) : (0, 1]→ R+ is measurable for all (x0, x1, · · ·, xn) ∈ (R+)n ×R;
(ii) f (t, ·, ·, · · ·, ·) : (R+)n ×R→ R+ is continuous for a.e. t ∈ (0, 1].

Hypothesis 2. There exist some constants 0 ≤ ρi < 1 (i = 0, 1, ..., n) and nonnegative functions
b(t), b0(t), ..., bn−1(t) ∈ Lp

δ−δn
, t(1+δn−δ)(1−ρn)bn(t) ∈ Lp such that for any t ∈ (0, 1] and

(x0, x1, · · ·, xn) ∈ (R+)n ×R:

| f (t, x0, · · ·, xn)| ≤ b(t) +
n

∑
i=0

bi(t)|xi|ρi . (26)
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Hypothesis 3. There exist some constants ρi ≥ 1 (i = 0, 1, ..., n) (there is at least one constant
ρi > 1) and nonnegative functions b(t), b0(t), ..., bn−1(t) ∈ Lp

δ−δn
, t(δ−δn−1)(ρn−1)bn(t) ∈ Lp

such that for any t ∈ (0, 1] and (x0, x1, · · ·, xn) ∈ (R+)n ×R:

| f (t, x0, · · ·, xn)| ≤ b(t) +
n

∑
i=0

bi(t)|xi|ρi . (27)

Hypothesis 4. There is a nonnegative function a(t) with
∫ 1

0 s(1− s)δ−αn−1−1a(s)ds > 0 and
a constant r0 > 0 such that for any t ∈ (0, 1], 0 ≤ xi ≤ r0

Γ(αn−2−δi+1) (i = 0, 1, ..., n− 2), 0 ≤
xn−1 ≤ r0, t1+δn−δ|xn| ≤ r0 :

f (t, x0, ..., xn) ≥ a(t).

Hypothesis 5. There are positive numbers χ1, χ2 satisfying χ1 < χ2, M(‖b‖Lp
δ−δn

+
n
∑

i=0
Biχ

ρi
2 ) ≤

χ2 such that: ∫ 1

0
s(1− s)δ−αn−1−1[ inf

(x0,x1,...,xn)∈Ξ
f (s, x0, ..., xn)]ds ≥ χ1

m(1 + ϕ0)
,

where Ξ = {(x0, x1, ..., xn) : xi ∈ [0, χ2
Γ(αn−2−δi+1) ], i = 0, 1, ..., n − 2, xn−1, t1+δn−δ|xn| ∈

[0, χ2]}, M, Bi(i = 0, 1, ..., n) are defined in (43), m is in (22) and ϕ0 is in (35), respectively.

Hypothesis 6. There exist nonnegative functions a0(t), ..., an(t) ∈ Lp, such that for any t ∈ (0, 1]
and (x0, x1, · · ·, xn), (y0, y1, · · ·, yn) ∈ (R+)n ×R:

| f (t, x0, · · ·, xn)− f (t, y0, · · ·, yn)| ≤
n

∑
i=0

ai(t)|xi − yi|.

Lemma 10. Assume that (C1), (C2) and Hypotheses 1 and 2 hold, then F : P → Lp
δ−δn

is
continuous.

Proof of Lemma 10. First, we will show that F is well defined, that is for any v ∈ P,
Fv ∈ Lp

δ−δn
. In fact, for t ∈ (0, 1], by Hypothesis 2:

|t1+δn−δFv(t)|

≤t1+δn−δ

(
b(t) +

n−2

∑
i=0

bi(t)|I
αn−2−δi
0+ v(t)|ρi

+ bn−1(t)|D
δn−1−αn−2
0+ v(t)|ρn−1 + bn(t)|Dδn−αn−2

0+ v(t)|ρn
)

(28)

≤t1+δn−δb(t) +
n−2

∑
i=0

t1+δn−δbi(t)(‖v‖0)
ρi

(Γ(αn−2 − δi + 1))ρi
+ t1+δn−δbn−1(t)‖v‖

ρn−1
1

+ t(1+δn−δ)(1−ρn)bn(t)‖v‖ρn
2 .

As a consequence, we obtain t1+δn−δFv(t) ∈ Lp, i.e., Fv ∈ Lp
δ−δn

.
We now turn to prove the continuity of F. Let v0 ∈ P be fixed and let {vk} ⊆ P

be the sequence converging to v0 as k → ∞. Then, for any t ∈ [0, 1], we have vk(t) →
v0(t), Dδn−1−αn−2

0+ vk(t) → Dδn−1−αn−2
0+ v0(t), t1+δn−δDδn−αn−2

0+ vk(t) → t1+δn−δDδn−αn−2
0+ v0(t),

as k→ ∞. There exists a positive number M such that ‖vk‖E ≤M(k = 0, 1, ...). We need to
prove Fvk → Fv0 in Lp

δ−δn
as k→ ∞. Since f satisfies the Carathéodory condition, we know

for any t ∈ (0, 1], we obtain the conclusion Fvk (t)→ Fv0(t), k→ ∞. According to (28), we
can easily deduce that:
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t1+δn−δ|Fvk (t)| ≤t1+δn−δb(t) +
n−2

∑
i=0

t1+δn−δbi(t)
(Γ(αn−2 − δi + 1))ρi

Mρi + t1+δn−δbn−1(t)Mρn−1

+ t(1+δn−δ)(1−ρn)bn(t)Mρn .

By utilizing the Lebesgue-dominated convergence theorem, we obtain:

lim
k→∞
‖Fvk − Fv0‖

p
Lp

δ−δn
= lim

k→∞

∫ 1

0
t(1+δn−δ)p|Fvk (t)− Fv0(t)|pdt = 0.

Corollary 4. Assuming that (C1), (C2), Hypotheses 1 and 3 hold, then F : P → Lp
δ−δn

is
continuous.

The proof is similar to that of Lemma 10, so it is omitted.
Now, we define an operator T by

Tv(t) =− Iδ−αn−2
0+ Fv(t) +

tδ−αn−2−1

Γ(δ− αn−2)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(t, s)]Fv(s)ds (29)

=
∫ 1

0
K(t, s)Fv(s)ds +

tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds.

By simple calculation, we can deduce that:

Dδn−1−αn−2
0+ Tv(t)

=− Iδ−δn−1
0+ Fv(t) +

tδ−δn−1−1

Γ(δ− δn−1)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
tδ−δn−1−1Γ(δ− αn−2)Γ(δ− αn−1)

Γ(δ− δn−1)4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds (30)

=
∫ 1

0
K1(t, s)Fv(s)ds +

Γ(δ− αn−1)Γ(δ− αn−2)

Γ(δ− δn−1)4
tδ−δn−1−1

∫ 1

0
ϕ[K(·, s)]Fv(s)ds.

Similarly, we also obtain:

Dδn−αn−2
0+ Tv(t)

=− Iδ−δn
0+ Fv(t) +

tδ−δn−1

Γ(δ− δn)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
tδ−δn−1Γ(δ− αn−2)Γ(δ− αn−1)

Γ(δ− δn)4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds (31)

=
∫ 1

0
K2(t, s)Fv(s)ds +

Γ(δ− αn−1)Γ(δ− αn−2)

Γ(δ− δn)4
tδ−δn−1

∫ 1

0
ϕ[K(·, s)]Fv(s)ds.

Further calculation yields:

t1+δn−δDδn−αn−2
0+ Tv(t)

=− t1+δn−δ Iδ−δn
0+ Fv(t) +

1
Γ(δ− δn)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds (32)

+
Γ(δ− αn−1)Γ(δ− αn−2)

Γ(δ− δn)4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds.



Mathematics 2021, 9, 3031 14 of 23

Lemma 11. Suppose that (C1), (C2) and Hypotheses 1 and 2 hold. Then, T : P→ P is completely
continuous.

Proof of Lemma 11. First, we will show that T is well defined. For any v ∈ P, in view of
Lemma 10, we observe that Fv ∈ Lp

δ−δn
. With this conclusion, on the basis of Lemmas 4

and 5, we know Iδ−αn−2
0+ Fv, Iδ−δn−1

0+ Fv ∈ C, Iδ−δn
0+ Fv ∈ Cδ−δn and from Lemma 6, we obtain

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds < ∞.

Furthermore, according to Lemma 8 and Corollary 2, we conclude that:∫ 1

0
ϕ[K(·, s)]Fv(s)ds ≤Mϕ[tδ−αn−2−1]

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

≤κ2Mϕ[tδ−αn−2−1]‖Fv‖Lp
δ−δn

< ∞,

where:
κ2 = [B((δ− αn−1 − 1)q + 1, (δ− δn − 1)q + 1)]

1
q . (33)

With these estimates, from (29)–(31), we have Tv, Dδn−1−αn−2
0+ Tv ∈ C and Dδn−αn−2

0+ Tv ∈
Cδ−δn . Moreover, Tv(t) ≥ 0, Dδn−1−αn−2

0+ Tv(t) ≥ 0, t ∈ [0, 1], then Tv ∈ P.
Then, we will show that T : P → P is uniformly bounded. For any bounded subset

B ⊂ P, from Lemma 10, we deduce that ‖Fv‖Lp
δ−δn

< ∞, ∀v ∈ B. In light of Lemma 8 and

Corollary 2, by the Hölder inequality, we obtain:

|Tv(t)| =
∣∣∣∣∫ 1

0
K(t, s)Fv(s)ds +

tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds

∣∣∣∣
≤
(

M +
Γ(δ− αn−1)

4 Mϕ[tδ−αn−2−1]

) ∫ 1

0
(1− s)δ−αn−1−1|Fv(s)|ds (34)

≤(M + Mϕ0)

(∫ 1

0
(1− s)(δ−αn−1−1)qs(δ−δn−1)qds

) 1
q
‖Fv‖Lp

δ−δn

=M(1 + ϕ0)κ2‖Fv‖Lp
δ−δn

,

where κ2 is defined in (33) and:

ϕ0 :=
Γ(δ− αn−1)

4 ϕ[tδ−αn−2−1]. (35)

By (C1), we know that 0 ≤ ϕ0 < ∞. It follows from (34) that:

‖Tv‖0 ≤ M(1 + ϕ0)κ2‖Fv‖Lp
δ−δn

< ∞. (36)

Similarly, from (30) and Lemma 9 and Corollary 3, we also obtain:

‖Tv‖1 = max
0≤t≤1

∣∣∣Dδn−1−αn−2
0+ Tv(t)

∣∣∣
≤
{

M1 +
Γ(δ− αn−1)Γ(δ− αn−2)

Γ(δ− δn−1)4
Mϕ[tδ−αn−2−1]

} ∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds (37)

≤
[

M1 +
Γ(δ− αn−2)

Γ(δ− δn−1)
Mϕ0

]
κ2‖Fv‖Lp

δ−δn
< ∞.
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Moreover, in view of (32) we have:

‖Tv‖2 = max
0≤t≤1

∣∣∣t1+δn−δDδn−αn−2
0+ Tv(t)

∣∣∣
≤ max

0≤t≤1
|t1+δn−δ Iδ−δn

0+ Fv(t)|+
1

Γ(δ− δn)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
Γ(δ− αn−1)Γ(δ− αn−2)

Γ(δ− δn)4
Mϕ[tδ−αn−2−1]

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds (38)

≤
[

max
0≤t≤1

t1+δn−δ

Γ(δ− δn)
tδ−δn−1+δ−δn− 1

p κ1 +
κ2

Γ(δ− δn)
+

Γ(δ− αn−2)

Γ(δ− δn)
κ2 Mϕ0

]
‖Fv‖Lp

δ−δn

=

[
κ1 + κ2

Γ(δ− δn)
+

Γ(δ− αn−2)

Γ(δ− δn)
Mϕ0κ2

]
‖Fv‖Lp

δ−δn
< ∞,

where κ1 is defined in (14). Gathering together these conclusions (36)–(38), we infer that
T(B) is uniformly bounded.

Now, we need to show that T(B) is equicontinuous. For v ∈ B, 0 ≤ t1 < t2 ≤ 1, we
have:

|(Tv)(t2)− (Tv)(t1)|

≤
∫ t1

0

(t2 − s)δ−αn−2−1 − (t1 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds +

∫ t2

t1

(t2 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds

+
tδ−αn−2−1
2 − tδ−αn−2−1

1
Γ(δ− αn−2)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
(tδ−αn−2−1

2 − tδ−αn−2−1
1 )Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds (39)

≤
∫ t1

0

(t2 − s)δ−αn−2−1 − (t1 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds +

∫ t2

t1

(t2 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds

+ (tδ−αn−2−1
2 − tδ−αn−2−1

1 )

(
1

Γ(δ− αn−2)
+ Mϕ0

)
κ2‖Fv‖Lp

δ−δn
.

We estimate the first two integral expressions of (39):

∫ t1

0

(t2 − s)δ−αn−2−1 − (t1 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds

≤
‖Fv‖Lp

δ−δn

Γ(δ− αn−2)

(∫ t1

0
(t2 − t1)

(δ−αn−2−1)qs(δ−δn−1)qds
) 1

q

≤
‖Fv‖Lp

δ−δn

Γ(δ− αn−2)

(t2 − t1)
δ−αn−2−1

((δ− δn − 1)q + 1)
1
q

and:

∫ t2

t1

(t2 − s)δ−αn−2−1

Γ(δ− αn−2)
Fv(s)ds ≤

‖Fv‖Lp
δ−δn

Γ(δ− αn−2)

(∫ t2

t1

(t2 − s)(δ−αn−2−1)q(s− t1)
(δ−δn−1)q

) 1
q

=
‖Fv‖Lp

δ−δn

Γ(δ− αn−2)
κ0(t2 − t1)

δ−αn−2−1− 1
p +δ−δn ,

where κ0 is defined in (10). Gathering together all these facts and combining with (39), we
have:

|(Tv)(t2)− (Tv)(t1)| → 0, t2 → t1. (40)
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Analogously, due to (30), we obtain:∣∣∣Dδn−1−αn−2
0+ Tv(t2)− Dδn−1−αn−2

0+ Tv(t1)
∣∣∣

≤
∫ t1

0

(t2 − s)δ−δn−1−1 − (t1 − s)δ−δn−1−1

Γ(δ− δn−1)
Fv(s)ds +

∫ t2

t1

(t2 − s)δ−δn−1−1

Γ(δ− δn−1)
Fv(s)ds

+
tδ−δn−1−1
2 − tδ−δn−1−1

1
Γ(δ− δn−1)

∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

+
(tδ−δn−1−1

2 − tδ−δn−1−1
1 )Γ(δ− αn−2)Γ(δ− αn−1)

Γ(δ− δn−1)4

∫ 1

0
ϕ[K(t, s)]Fv(s)ds

≤
‖Fv‖Lp

δ−δn

Γ(δ− δn−1)

 (t2 − t1)
δ−δn−1−1

((δ− δn − 1)q + 1)
1
q
+ κ3(t2 − t1)

δ−δn−1−1− 1
p +δ−δn


+ (tδ−δn−1−1

2 − tδ−δn−1−1
1 )

(
1

Γ(δ− δn−1)
+

Γ(δ− αn−2)

Γ(δ− δn−1)
Mϕ0

)
κ2‖Fv‖Lp

δ−δn
,

where κ3 = [B((δ− δn−1 − 1)q + 1, (δ− δn − 1)q + 1)]
1
q . Hence:

|Dδn−1−αn−2
0+ Tv(t2)− Dδn−1−αn−2

0+ Tv(t1)| → 0, t2 → t1. (41)

From (32), imitating the method in Lemma 5, we can also deduce that:

|t1+δn−δ
2 Dδn−αn−2

0+ Tv(t2)− t1+δn−δ
1 Dδn−αn−2

0+ Tv(t1)| → 0, t2 → t1. (42)

Synthesizing the above conclusions (40)–(42), we know that T(B) is equicontinuous.
In the end, we will prove that T : P → P is continuous. Suppose that {vk} ⊂ P

is a convergent sequence and let lim
k→∞
‖vk − v‖E = 0. From Lemma 10, it follows that

lim
k→∞
‖Fvk − Fv‖Lp

δ−δn
= 0. We deduce from (34) that:

‖Tvk − Tv‖0 ≤ M(1 + ϕ0)κ2‖Fvk − Fv‖Lp
δ−δn

.

Likewise, by means of (37) and (38), we also obtain:

‖Tvk − Tv‖1 = max
0≤t≤1

|Dδn−1−αn−2
0+ Tvk(t)− Dδn−1−n+2

0+ Tv(t)|

≤
[

M1 +
Γ(δ− αn−2)

Γ(δ− δn−1)
Mϕ0

]
κ2‖Fvk − Fv‖Lp

δ−δn

and:

‖Tvk − Tv‖2 = max
0≤t≤1

|t1+δn−δDδn−1−αn−2
0+ Tvk(t)− t1+δn−δDδn−1−n+2

0+ Tv(t)|

≤
[

κ1 + κ2

Γ(δ− δn)
+

Γ(δ− αn−2)

Γ(δ− δn)
Mϕ0κ2

]
‖Fvk − Fv‖Lp

δ−δn
.

As a consequence, lim
k→∞
‖Tvk − Tv‖ = 0 and T is continuous.

From the above steps, we obtain a completely continuous operator T : P→ P.

Corollary 5. Suppose that (C1), (C2), Hypotheses 1 and 3 hold. Then, T : P→ P is completely
continuous.

The proof is similar to that of Lemma 11, so it is omitted.
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For convenience, we introduce some donations which will be used in next theorem:

M = max
{

M(1 + ϕ0)κ2,
[

M1 +
Γ(δ− αn−2)

Γ(δ− δn−1)
Mϕ0

]
κ2,

κ1 + κ2

Γ(δ− δn)
+

Γ(δ− αn−2)

Γ(δ− δn)
Mϕ0κ2

}
,

Bi =
‖bi‖Lp

δ−δn

(Γ(αn−2 − δi + 1))ρi
, i = 0, 1, ..., n− 2, Bn−1 = ‖bn−1‖Lp

δ−δn
, (43)

Bn =

(∫ 1

0
(t(1+δn−δ)(1−ρn)bn(t))pdt

) 1
p
.

From Hypothesis 2 or Hypothesis 3, we immediately infer that 0 ≤ Bi < ∞ (i =
0, 1, ..., n).

The main results of this section are the following existence results.

Theorem 3. Let us assume that (C1), (C2), Hypotheses 1, 2 and 4 hold. Then, the boundary value
problem (1) has at least a positive solution.

Proof of Theorem 3. From Lemma 7, v ∈ P is a solution of (2) if and only if v is a fixed
point of T. By Lemma 3, the function u(t) = Iαn−2

0+ v(t) is a solution of problem (1). Choose:

r = min{r0, m(1 + ϕ0)
∫ 1

0
s(1− s)δ−αn−2−1a(s)ds}, (44)

let Ω1 = {v ∈ E : ‖v‖E ≤ r}. For v ∈ P ∩ ∂Ω1, t ∈ [0, 1], combining with Lemma 8 and
Corollary 2, from Hypothesis 4, we obtain:

Tv(t) =
∫ 1

0
K(t, s)Fv(s)ds +

tδ−αn−2−1Γ(δ− αn−1)

4

∫ 1

0
ϕ[K(·, s)]Fv(s)ds

≥tδ−αn−2−1(m +
Γ(δ− αn−1)

4 mϕ[tδ−αn−2−1])
∫ 1

0
s(1− s)δ−αn−1−1Fv(s)ds

=tδ−αn−2−1m(1 + ϕ0)
∫ 1

0
s(1− s)δ−αn−1−1a(s)ds,

so:

‖Tv‖0 ≥ m(1 + ϕ0)
∫ 1

0
s(1− s)δ−αn−1−1a(s)ds ≥ r.

Hence, ‖Tv‖E ≥ ‖v‖E, ∀v ∈ P ∩ ∂Ω1.
For all v ∈ P, according to (28), by Minkowski inequality, we obtain:

‖Fv‖Lp
δ−δn
≤ ‖b‖Lp

δ−δn
+

n−2
∑

i=0
Bi‖v‖

ρi
0 + Bn−1‖v‖

ρn−1
1 + Bn‖v‖ρn

2

≤ ‖b‖Lp
δ−δn

+
n
∑

i=0
Bi(‖v‖E)

ρi .
(45)

We choose:

R1 > max
{

1, r,

(
M(‖b‖Lp

δ−δn
+

n

∑
i=0

Bi)

) 1
1−ρ}

,

where ρ = max
0≤i≤n

{ρi}. Let Ω2 = {v ∈ E : ‖v‖E ≤ R1}, for all v ∈ P ∩ ∂Ω2, then we derive

from (36)–(38) and the definition of M in (43) that:

‖Tv‖E ≤ M‖Fv‖Lp
δ−δn
≤M(‖b‖Lp

δ−δn
+

n

∑
i=0

BiR
ρi
1 ) ≤ M(‖b‖Lp

δ−δn
+

n

∑
i=0

BiR
ρ
1) ≤ R1.

So ‖Tv‖E ≤ ‖v‖E, ∀v ∈ P ∩ ∂Ω2.
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Then, Theorem 1 ensures the existence of a fixed point v ∈ P ∩ (Ω2\Ω1) such that v =
Tv, and thus the problem (2) possesses at least one positive solution. Then, by Lemma 3,
we conclude that the boundary value problem (1) has at least a positive solution.

Theorem 4. Suppose that (C1), (C2), Hypotheses 1, 3 and 4 hold. In addition, let us assume that

0 < M(‖b‖Lp
δ−δn

+
n
∑

i=0
Bi) < 1 holds. Then, the boundary value problem (1) has at least a positive

solution.

Proof of Theorem 4. From Corollary 5, we know T : P → P is continuous. Let Ω1 =
{v ∈ E : ‖v‖E ≤ r}, r be defined in (44). From Theorem 3, we know that ‖Tv‖E ≥
‖v‖E, ∀v ∈ P ∩ ∂Ω1.

If r < 1, we choose 1 < r2 ≤

 1

M(‖b‖Lp
δ−δn

+
n
∑

i=0
Bi)


1

ρ−1

, where ρ = max
0≤i≤n

{ρi}. If

r ≥ 1, we choose M(‖b‖Lp
δ−δn

+
n
∑

i=0
Bi) ≤ r2 < 1. Let Ω2 = {v ∈ E : ‖v‖E ≤ r2}, for all

v ∈ P ∩ ∂Ω2, then we obtain:

‖Tv‖E ≤ M‖Fv‖Lp
δ−δn
≤ M(‖b‖Lp

δ−δn
+

n

∑
i=0

Bir
ρi
2 ) ≤ r2.

Thus, ‖Tv‖E ≤ ‖v‖E, ∀v ∈ P ∩ ∂Ω2. Again, from Theorem 1, we know that the
problem (2) has at least one positive solution v ∈ P ∩ (Ω1\Ω2) or v ∈ P ∩ (Ω2\Ω1), then
the boundary value problem (1) has at least a positive solution.

Theorem 5. Suppose that (C1), (C2), Hypotheses 1, 2 and 5 hold. Then, the boundary value
problem (1) has at least a positive solution u satisfying u(t) ≥ Γ(δ−αn−2)

Γ(δ) χ1tδ−1, t ∈ [0, 1].

Proof of Theorem 5. According to Lemma 11, we know that T : P → P is completely
continuous. Let Ω = {v ∈ P : χ1tδ−αn−2−1 ≤ v(t) ≤ χ2tδ−αn−2−1, t ∈ [0, 1], ‖v‖E ≤ χ2}.
For any v ∈ Ω, under Hypothesis 2, we derive:∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

≤
∫ 1

0
(1− s)δ−αn−1−1

(
b(s) +

n−2

∑
i=0

bi(s)|I
αn−2−δi
0+ v(s)|ρi

+ bn−1(s)|D
δn−1−αn−2
0+ v(s)|ρn−1 + bn(s)|Dδn−αn−2

0+ v(s)|ρn
)

(46)

≤κ2‖b‖Lp
δ−δn

+ κ2

n−2

∑
i=0

Bi‖v‖
ρi
0 + κ2Bn−1‖v‖

ρn−1
1 + κ2Bn‖v‖ρn

2

≤κ2(‖b‖Lp
δ−δn

+
n

∑
i=0

Bi‖v‖
ρi
E ).

Hence, combining with (46), from Lemma 8, we have:

Tv(t) ≤tδ−αn−2−1[M(1 + ϕ0)]
∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

≤tδ−αn−2−1[M(1 + ϕ0)]κ2(‖b‖Lp
δ−δn

+
n

∑
i=0

Bi‖v‖
ρi
E )

≤tδ−αn−2−1M(‖b‖Lp
δ−δn

+
n

∑
i=0

Biχ
ρi
2 ) ≤ χ2tδ−αn−2−1,
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so ‖Tv‖0 ≤ χ2. In addition., by Hypothesis 5, we obtain:

Tv(t) ≥tδ−αn−2−1[m(1 + ϕ0)]
∫ 1

0
s(1− s)δ−αn−1−1Fv(s)ds

≥tδ−αn−2−1[m(1 + ϕ0)]
χ1

m(1 + ϕ0)
= χ1tδ−αn−2−1.

In addition, by (30) and (46), in view of Lemma 9 and Corollary 3, we have:

‖Tv‖1 = max
0≤t≤1

Dδn−1−αn−2
0+ Tv(t)

≤ max
0≤t≤1

tδ−δn−1−1
[

M1 +
Γ(δ− αn−2)

Γ(δ− δn−1)
Mϕ0

] ∫ 1

0
(1− s)δ−αn−1−1Fv(s)ds

≤M(‖b‖Lp
δ−δn

+
n

∑
i=0

Biχ
ρi
2 ) ≤ χ2.

Similarly, we can deduce ‖Tv‖2 ≤ χ2. Therefore, ‖Tv‖E ≤ χ2, then T(Ω) ⊂ Ω.
Theorem 2 ensures the existence of (at least) one fixed point v ∈ Ω such that v = Tv, and v
is a positive solution. Thus, the problem (2) possesses at least a positive solution. Therefore,
the boundary value problem (1) has at least a positive solution.

Theorem 6. Let us assume that (C1), (C2), Hypotheses 1, 3 and 5 hold. Then, the boundary value

problem (1) has at least a positive solution provided that 0 < M(‖b‖Lp
δ−δn

+
n
∑

i=0
Bi) < 1.

The proof is similar to that of Theorem 5, so it is omitted.

Theorem 7. Assume that (C1), (C2), Hypothesis 1, Hypothesis 2 (or Hypothesis 3), Hypothesis 6
hold, then the following condition is also satisfied:

M

(
n−2

∑
i=0

‖ai‖Lp

Γ(αn−2 − δi + 1)
+ ‖an−1‖Lp + ‖an‖Lp

)
< 1. (47)

Then, the boundary value problem (1) has a unique nonegative solution.

Proof of Theorem 7. To obtain the conclusion, we just need to prove that T is a contraction.
For any v1, v2 ∈ P, by Hypothesis 6, likewise, we obtain:

t1+δn−δ|Fv1(t)− Fv2(t)|

≤
n−2

∑
i=0

ai(t)|I
αn−2−δi
0+ v1(t)− Iαn−2−δi

0+ v2(t)|+ an−1(t)|D
δn−1−αn−2
0+ v1(t)− Dδn−1−αn−2

0+ v2(t)|

+ an(t)t1+δn−δ|Dδn−αn−2
0+ v1(t)− Dδn−αn−2

0+ v2(t)|

≤
n−2

∑
i=0

ai(t)
Γ(αn−2 − δi + 1)

‖v1 − v2‖0 + an−1(t)‖v1 − v2‖1 + an(t)‖v1 − v2‖2,

then:

‖Fv1 − Fv2‖Lp
δ−δn
≤
(

n−2

∑
i=0

‖ai‖Lp

Γ(αn−2 − δi + 1)
+ ‖an−1‖Lp + ‖an‖Lp

)
‖v1 − v2‖E.

Therefore:

‖Tv1 − Tv2‖E ≤M‖Fv1 − Fv2‖Lp
δ−δn

≤M

(
n−2

∑
i=0

‖ai‖Lp

Γ(αn−2 − δi + 1)
+ ‖an−1‖Lp + ‖an‖Lp

)
‖v1 − v2‖E.
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From (47), we naturally infer that T is a contraction. By the Banach contraction
mapping principle, we deduce that T has a unique fixed point which is obviously a
solution of the problem (1). This ends the proof.

5. Examples

Example 1. 
Dδ

0+u(t) + f (t, u(t), Dδ1
0+u(t), Dδ2

0+u(t), ..., Dδ5
0+u(t)) = 0,

u(0) = Dα1
0+u(0) = Dα2

0+u(0) = Dα3
0+u(0) = 0,

Dα4
0+u(1) =

∫ 1
0 tDα3

0+u(t)dt,
(48)

Taking δ = 47
10 , δ1 = 1

2 , δ2 = 3
2 , δ3 = 5

2 , δ4 = 31
10 , δ5 = 83

20 , n = 5, α1 = 3
2 , α2 = 12

5 , α3 =
29
10 , α4 = 41

10 . Let ϕ[g] =
∫ 1

0 (1− t)0.2g(t)dt, then:

4 = Γ(δ− α3)− Γ(δ− α4)ϕ[tδ−α3−1] = Γ(1.8)− Γ(0.6)ϕ[t0.8] ≈ 0.2946 > 0.

Choosing p = 2, q = 2, it is obvious that 1
p < min{δ− δ4 − 1, δ− δ5}. Choosing a(t) =

t−
2
5 , a0(t) = t−

1
5 , a1(t) = t−

3
10 , a2(t) = t−

3
20 , a3(t) = t−

1
4 , a4(t) = t−

1
3 , a5(t) = t−

1
10 , ρi =

1
i+2 (0 ≤ i ≤ 4), ρ5 = 2

3 , for any t ∈ (0, 1], (x0, ..., x4, x5) ∈ (R+)5 ×R :

f (t, x0, .., x5) = a(t) +
4

∑
0

ai(t)√
i + 1 + xi

xρi
i +

a5(t)√
6 + |x5|

|x5|
2
3 .

It is easy to show that a, ai ∈ Lp
δ−δn

(i = 0, 1, ..., 4), t(1+δn−δ)(1−ρ5)a5(t) ∈ Lp are non-

negative. Let b(t) = a(t), bi(t) = ai(t)√
i+1

, i = 0, 1, ..., 5, then we deduce that for any t ∈
(0, 1], (x0, ..., x4, x5) ∈ (R+)5 ×R:

| f (t, x0, ..., x5)| ≤ b(t) +
5

∑
i=0

bi(t)|xi|ρi .

This implies that Hypotheseis 1 and 2 hold. In addition:

f (t, x0, ..., x5) ≥ b(t), t ∈ (0, 1], (x0, ..., x4, x5) ∈ (R+)5 ×R.

In conclusion, all the conditions (C1), (C2), Hypotheses 1, 2 and 4 hold. From Theorem 3, we
know that the boundary value problem (48) has at least one positive solution.

Example 2. We consider BVP (1) with δ = 23
5 , δ5 = 41

10 , δ4 = 31
10 , δ3 = 13

5 , α1 = 1, α2 = 2, α3 =
13
5 , α4 = 18

5 . Let p = 3, p1(t) = 1
50 t−

1
3 , p2(t) = 1

40 t
1
4 , p3(t) = 1

100 t−
1
6 , g(t) = 1

100 (t
1
2 + t

1
4 )

and:

f (t, x, y, z) = g(t) + p1(t)x + p2(t) sin(y2) + p3(t)|z|, t ∈ (0, 1], u, v ≥ 0, w ∈ R,

It is obvious that 0 < 1
p < 1

2 = δ − δ5, g, pi(i = 1, 2, 3) is a nonegative function and

g, p1, p2 ∈ Lp
δ−δ5

, p3 ∈ Lp. Then, the problem can be transformed into the following two-point
boundary value problem:{

v′′(t) + p1(t)v(t) + p2(t) sin(D
1
2
0+v(t))2 + p3(t)|D

3
2
0+v(t)|+ g(t) = 0, t ∈ (0, 1),

v(0) = 0, v′(1) = 0,
(49)

Through basic calculations and inferences, we conclude that the assumptions of Theorem 4 are
satisfied. Hence, BVP (49) has at least one positive solution.
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Remark 2. Here we show an illustrate example (see [9] or [10]). Consider now the rigid plate of
mass m immersed in a Newtonian fluid of infinite extent and connected by a massless spring of
stiffness K to a fixed point. The system is depicted in Figure 1. We assume that the small motions
of the spring do not disturb the fluid, and that the area A of the plate is sufficiently large as to
produce the velocity field in the fluid adjacent to the plate. Given that the initial velocity of the fluid
is zero, by Hook’s law and Newton’s second law, we find the differential equation describing the
displacement X of the plate to be:

mX′′(t) + 2A
√

µρD
1
2
0+X′(t) + KX + F = 0, (50)

where µ is the viscosity, ρ is the fluid density, and F is constant external force. Combining the
boundary condition X(0) = 0, integrating by parts, we obtain:

D
3
2
0+X(t) =

1
Γ( 1

2 )

d2

dt2

∫ t

0
(t− s)−

1
2 X(s)ds

=
1

Γ( 1
2 )

d2

dt2 (2
∫ t

0
(t− s)

1
2 X′(s)ds)

=
1

Γ( 1
2 )

d
dt
(
∫ t

0
(t− s)−

1
2 X′(s)ds) = D

1
2
0+X′(t).

Let m = 1, p1(t) = K, p2(t) = 0, p3(t) = 2A
√

µρ, g(t) = F. Then, Equation (50) is
transformed into:

X′′(t) + p1(t)X(t) + p3(t)D
3
2
0+X(t) + g(t) = 0. (51)

Obviously, it is a special case of equation in (49).

Figure 1. The immersed plate.

Example 3. We consider BVP (1) with δ = 7
2 , δ4 = 16

5 , δ3 = 2, δ2 = 3
2 , δ1 = 1

2 , α3 = 29
10 , α2 =

9
5 , α1 = 1, p = 5, q = 5

4 , ϕ[u] =
∫ 1

0 t0.3u(t)dt. We know by calculation that the conditions
(C1), (C2) are satisfied. Choosing:

f (t, x0, ..., x4) =
3

∑
i=0

ai(t)
i + 2 + (xi)

ρi

i + 2 + (sinxi)ρi
+ a4(t)|x4|ρ4 , (52)

where a0(t) = 1
10 t−0.7, a1(t) = 1

5 t−0.72, a2(t) = 1
3 t−0.74, a3(t) = t−0.6, a4(t) = 1

5 t−0.608, ρ0 =
0.1, ρ1 = 0.2, ρ2 = 0.1, ρ3 = 0.08, ρ4 = 0.16. Since |sint| ≤ 1, we know:

f (t, x0, ..., x4) ≤
3

∑
i=0

i + 2
i + 1

ai(t) +
3

∑
i=0

ai(t)
i + 1

(xi)
ρi + a4(t)|x4|ρ4 . (53)
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Let b(t) = ∑3
i=0

i+2
i+1 ai(t), bi(t) =

ai(t)
i+1 (i = 0, 1, 2, 3), b4(t) = a4(t). Equations (52) and (53)

means that Hypotheses 1 and 2 hold. Moreover, we choose χ1 = 10, χ2 = 232. It follows from
sin x ≤ x, ∀x ≥ 0 that for any (x0, x1, ..., xn) ∈ Ξ:

inf
(x0,x1,...,xn)∈Ξ

f (s, x0, ..., xn) ≥
3

∑
0

ai(t) = η(t). (54)

We can also verify that Hypothesis 5 is satisfied. From Theorem 5, we know that the boundary
value problem has at least one positive solution.

Example 4. We consider BVP (1) with δ = 3.7, δ4 = 3.4, δ3 = 2.2, δ2 = 1.7, δ1 = 0.7, α3 =

3.1, α2 = 2, α1 = 1.2, p = 5, q = 5
4 , ϕ[u] =

∫ 1
0 t0.3u(t)dt. The conditions (C1), (C2) are satisfied

by calculation. Define f (t, x0, ..., x4) as (52), where a0(t) = 1
200 t1.1, a1(t) = 1

150 t3.1, a2(t) =
3

400 t5.1, a3(t) = 1
125 t7.1, a4(t) = 1

500 t9.8, ρ0 = 2, ρ1 = 3, ρ2 = 1, ρ3 = 4, ρ4 = 1. Let b(t) =

∑3
i=0

i+2
i+1 ai(t), bi(t) = ai(t)

i+1 (i = 0, 1, 2, 3), b4(t) = a4(t). By similar deduction, we note that
Hypotheses 1 and 3 hold. Moreover, we choose χ1 = 0.01, χ2 = 1. It follows from the same inference

and calculation that Hypothesis 5 is satisfied and 0 < M(‖b‖Lp
δ−δn

+
n
∑

i=0
Bi) < 1. From Theorem 6,

we know that the boundary value problem has at least one positive solution.

6. Conclusions

In the above research work, we studied the properties of integral operators and then
successfully obtained the existence results of a nonlinear higher-order fractional differential
equation with multi-term lower-order derivatives by means of the Guo–Krasnoselskii fixed
point theorem and Schauder fixed point theorem. Furthermore, a uniqueness result was
obtained by the Banach contraction mapping principle. The existence results were verified
by considering an example where needed.
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