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Abstract: We consider biclustering that clusters both samples and features and propose efficient
convex biclustering procedures. The convex biclustering algorithm (COBRA) procedure solves twice
the standard convex clustering problem that contains a non-differentiable function optimization.
We instead convert the original optimization problem to a differentiable one and improve another
approach based on the augmented Lagrangian method (ALM). Our proposed method combines the
basic procedures in the ALM with the accelerated gradient descent method (Nesterov’s accelerated
gradient method), which can attain O(1/k2) convergence rate. It only uses first-order gradient
information, and the efficiency is not influenced by the tuning parameter λ so much. This advantage
allows users to quickly iterate among the various tuning parameters λ and explore the resulting
changes in the biclustering solutions. The numerical experiments demonstrate that our proposed
method has high accuracy and is much faster than the currently known algorithms, even for large-
scale problems.

Keywords: clustering; convex biclustering; optimization; gradient descent method

1. Introduction

By clustering, such as k-means clustering [1] and hierarchical clustering [2,3], we
usually mean dividing N samples, each consisting of p covariate values, into several
categories, where N, p ≥ 1.

In this paper, we consider biclustering [4] that is an extended notion of clustering. In
biclustering, we divide both {1, . . . , N} and {1, . . . , p} based on the data simultaneously.
If we are given a data matrix in RN×p, then the rows and columns within the shared
group exhibit similar characteristics. For example, given a gene expression data matrix,
with genes as columns and samples as rows, the biclustering detects the submatrices,
which represent the cooperative behavior of a group of genes corresponding to a group of
samples [5]. Figure 1 illustrates an intuitive difference between standard clustering and
biclustering. In recent years, biclustering has become a ubiquitous data-mining technique
with varied applications, such as text mining, recommendation system, and bioinformatics.
A comprehensive survey of biclustering was given by [6–8].

However, as noted in [6], biclustering is an NP-hard problem. Thus, the results may
vary significantly with different initializations. Moreover, some conventional biclustering
models suffer from poor performance due to non-convexity, which may return local op-
timal solutions. In order to avoid such an inconvenience, Chi et al. [9] proposed convex
biclustering by reformulating the problem to convex formulations and using the fused
lasso [10] concept.

In convex clustering [9,11–13], given a data matrix X ∈ RN×p and λ > 0, we compute
a matrix U of the same size as X. Let Xi· and Ui· be the i-th rows of X and U, let X·j
and U·j be the the j-th columns of X and U, and let ‖X −U‖2

F denote the square sums
of the Np elements, and ‖Ui· − Uj·‖, ‖U·m − U·n‖ as the `2 norm of p, N-dimensional
vectors, respectively. Convex clustering finds U ∈ RN×p that minimizes a weighted sum
of ‖X−U‖2

F and {λ‖Ui· −Uj·‖}i 6=j (it may be formulated as minimizing a weighted sum
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of ‖X−U‖2
F and {λ‖U·m −U·n‖}m 6=n) . If Xi· and Xj· share Ui· = Uj·, then they are in the

same group w.r.t. {1, · · · , N}. On the other hand, convex biclustering finds U ∈ RN×p that
minimizes a weighted sum of ‖X−U‖2

F and {λ‖Ui· −Uj·‖}i 6=j and {λ‖U·m −U·n‖}m 6=n.
The convex biclustering achieves checker-board-like biclusters by penalizing both

the rows and columns of U. When λ (the tuning parameter for {‖Ui· − Uj·‖}i 6=j and
{‖U·m −U·n‖}m 6=n) is zero, each (i, j) occupies a unique bicluster {(i, j)} and xij = uij for
i = 1, . . . , N and j = 1, . . . , p when X = (xij) and U = (uij). As λ increases, the bicluster
begins to fuse. For sufficiently large λ, all (i, j) merge into one single bicluster {(i, j)|i =
1, . . . , N, j = 1, . . . , p}. The convex formulation guarantees a globally optimal solution and
demonstrates superior performance to competing approaches. Chi et al. [9] claimed that
the convex biclustering performs better than the dynamic tree-cutting algorithm [14] and
sparse biclustering algorithm [15] in their experiments.

(a) (b) (c)
Figure 1. While standard clustering divides either rows or columns, the biclustering divides both.
(a) Row clustering; (b) column clustering; (c) biclustering.

Nevertheless, despite these advantages, convex biclustering has not yet gained
widespread popularity, due to its intensive computation. On the one hand, the main
challenge of solving the optimization problem is the two fused penalty terms: indecom-
posable and non-differentiable. These properties increase the difficulty of solving. Many
splitting methods for the indecomposable problem are complicated and create many sub-
problems to solve; techniques such as the subgradient method for the non-differentiable
problem are slow to converge [16,17]. Moreover, it is difficult to find the optimal tuning pa-
rameter λ because we need to solve optimization problems with a sequence of parameters
λ and select the one for the specific demand of researchers. Hence, we need to propose
a fast way to solve the problems with the sequence of parameters λ. On the other hand,
with the increased demands of biclustering techniques, convex biclustering is faced with
large-scale data as the volume and complexity of data grows. Above all, it is necessary to
propose an efficient algorithm to solve the convex biclustering problem.

There are limited algorithms for solving the problem in the literature. Chi et al. [9]
proposed the convex biclustering algorithm (COBRA) using a Dykstra-like proximal al-
gorithm [18] to solve the convex biclustering problem. Weylandt [19] proposed using
alternating direction method of multipliers (ADMM) [20,21] and its variant, generalized
ADMM [22], to solve the problem.

However, the COBRA yields subproblems, including the convex clustering problem,
which requires expensive computations for large-scale problems due to the high per
iteration cost [23,24]. Essentially, COBRA is a splitting method that separately solves a
composite optimization problem containing three terms. Additionally, it is sensitive to
tuning parameter λ. Therefore, obtaining the solutions under a wide range of parameters
λ takes time, which is not feasible for broad applications and different demands for users.
ADMM generally solves the problem by breaking it into smaller pieces and updating the
variables alternately. Still, at the same time, it also introduces several subproblems which
may cost much time. To be more specific, the ADMM proposed by Weylandt [19] requires
solving the Sylvester equation in the step of updating the variable U. Hence, the Schur
decomposition requires solving the Sylvester equation based on the numerical method
from [25], which is complicated and time consuming. Additionally, it is known that ADMM
exhibits O( 1

k ), where k is the number of iterations, convergence in general [26]. It often
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takes time to achieve relatively high precision [27], which is not feasible in some highly
accurate applications. For example, the gene expression data contain huge information
(the feature dimension usually exceeds 1000). However, COBRA and ADMM do not scale
well for such large-scale problems. Overall, the above algorithm shows weak performance,
which motivates us to combine some current algorithms to efficiently solve the convex
biclustering problem like in reference [28].

This paper proposes an efficient algorithm with simple subproblems and a fast con-
vergence rate to solve the convex biclustering problem. Rather than update each variable
alternately, like ADMM, we use the augmented Lagrangian method (ALM) to update the
primal variables simultaneously. In this way, we can transform the optimization problem
to be differentiable, solve the problem via an efficient gradient descent method and further
simplify the subproblems. Our proposed method is motivated by the work [29] in which
the authors presented a way to convert the augmented Lagrangian function to a composite
optimization that can be solved by the proximal gradient method [30]. Using the process
twice to handle the two fused penalties {λ‖Ui· −Uj·‖}i 6=j and {λ‖U·m −U·n‖}m 6=n, we
obtain a differentiable problem from the augmented Lagrangian function. Then, we pro-
pose Nesterov’s accelerated gradient method to solve the differentiable problem, which
has O( 1

k2 ) global convergence rate.
Our main contributions are as follows:

• We propose an efficient algorithm to solve the convex biclustering model for large-
scale N and p. The algorithm is a first-order method with simple subproblems. It only
requires calculating the matrix multiplications and simple proximal operators, while
the ADMM approaches require matrix inversion.

• Our proposed method does not require as much computation, even when the tuning
parameter λ is large, as the existing approaches do, which means that it is easier to
obtain biclustering results simultaneously for several λ values.

The remaining parts of this paper are as follows. In Section 2, we provide some
preliminaries which are used in the paper and introduce the convex biclustering problem.
In Section 3, we illustrate our proposed algorithm for solving the convex biclustering
model. After that, we conduct numerical experiments to evaluate the performance of our
algorithm in Section 4.

Notation: In this paper, we use ||x||p to denote the `p norm of a vector x ∈ Rd,

||x||p := (∑d
i=1 |xi|p)

1
p for p ∈ [1, ∞), and ||x||∞ := maxi |xi|. For a matrix X ∈ Rp×q, we

use ||X||F to denote the Frobenius norm, ||X||2 denotes the spectral norm, and ||X||1 :=
∑

p
i=1 ∑

q
j=1 |xij| if not specified.

2. Preliminaries

In this section, we provide the background for understanding the proposed method
in Section 3. In particular, we introduce the notions of ADMM, ALM, NAGM, and convex
biclustering.

We say that differentiable f : Rn → R has a Lipschitz-continuous gradient if there exists
L > 0 (Lipschitz constant) such that

||∇ f (x)−∇ f (y)||2 ≤ L||x− y||2, ∀x, y ∈ Rn. (1)

We define the conjugate of a function f : Rn → R by

f ∗(y) = sup
x∈dom f

(yTx− f (x)),

where dom f ⊆ Rn is the domain of f , and know that f ∗ is closed ({x ∈ dom( f ∗)| f ∗(x) ≤ α}
is a closed set for any α ∈ R) and convex. It is known that ( f ∗)∗ = f when f is closed and
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convex, and that Moreau’s decomposition [31] is available. Let f : Rn → R be closed and
convex. For any x ∈ Rn and γ > 0, we have

proxγ f (x) + γproxγ−1 f ∗(γ
−1x) = x. (2)

where prox f : Rn → Rn is the proximal operator defined by

prox f (x) := arg min
y∈Rn
{1

2
||x− y||22 + f (y)} . (3)

The relation (2) is derived from ( f ∗)∗ = f and the definition (3) [31].

2.1. ADMM and ALM

In this subsection, we introduce the general optimization procedures of ADMM
and ALM.

Let f , g : Rn → R and h : Rp → R be convex. Assume that f is differentiable, and g
and h are not necessarily differentiable. We consider the following optimization problem:

min
x,y

f (x) + h(y) + g(x)

subject to Ax = y,
(4)

with variables x ∈ Rn and y ∈ Rp, and matrix A ∈ Rp×n. To this end, we define the
augmented Lagrangian function as the following,

Lν(x, y, λ) := f (x) + g(x) + h(y) + 〈λ, Ax− y〉+ ν

2
||Ax− y||22 , (5)

where ν > 0 is an augmented Lagrangian parameter, and λ ∈ Rp is the Lagrangian
multipliers.

ADMM is a general procedure to find the solution to the problem (4) by iterating

xk+1 := arg min
x

Lν(x, yk, λk),

yk+1 := arg min
y

Lν(xk+1, y, λk),

λk+1 := λk + ν(Axk+1 − yk+1),

given the initial values y1 and λ1.
What we mean by the ALM [32–34] is to minimize the augmented Lagrangian func-

tion (5) w.r.t. variables x and y simultaneously given a λ value, i.e., we iterate the follow-
ing steps:

(xk+1, yk+1) := arg min
x,y

Lν(x, y, λk), (6)

λk+1 := λk + ν(Axk+1 − yk+1) . (7)

Shimmura and Suzuki [29] considered the minimization of the function φ : Rn → R,

φ(x) := f (x) + min
y
{h(y) + 〈λ, Ax− y〉+ ν

2
||Ax− y||22},

and the non-differentiable function g(x) over x ∈ Rn, replacing the minimization over
x ∈ Rn and y ∈ Rn in (6).

Lemma 1 ([29], Theorem 1). The function φ(x) is differentiable and its differential is

∇φ(x) = ∇ f (x) + AT(proxνh∗(νAx + λ)).
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By Lemma 1, the minimization in (6) can be regarded as the composite optimization
problem with the differentiable function φ(x) and the non-differentiable function g(x).
Therefore, it is feasible to use the proximal gradient method to update the variable x, such
as the fast iterative shrinkage-thresholding algorithm (FISTA) [30].

2.2. Nesterov’s Accelerated Gradient Method

Nesterov [35] proposed a variant of the gradient descent method for Lipschitz differ-
entiable functions. It has O( 1

k2 ) convergence rate while the (traditional) gradient descent
method has O( 1

k ) [35]. Considering the minimization of a convex and differentiable func-
tion F(x), NAGM is described in Algorithm 1 when ∇F(x) has a Lipschitz constant L
in (1).

Algorithm 1 NAGM.

Input: Lipschitz constant L, initial value x0 = y0, t1 = 1.
While k < kmax (until convergence) do

1: xk+1 = yk − 1
L∇F(yk)

2: tk+1 = 1+
√

4tk2
+1

2

3: yk+1 = xk+1 + tk−1
tk+1 (xk+1 − xk)

4: k = k + 1
End while

Algorithm 1 replaces the gradient descent yk+1 = yk − 1
L∇F(yk) by Steps 1 to 3: Step 1

executes the gradient descent to obtain xk+1 from yk, Steps 2 and 3 calculate new yk+1

based on the previous xk, xk+1, and then return to the gradient descent in Step 1. NAGM
assumes that F is differentiable, while FISTA [30], an accelerated version of ISTA [30], deals
with non-differentiable F using the proximal gradient descent (see Table 1).

Table 1. Gradient descent and its modifications .

Differentiable Non-Differentiable

Ordinary Gradient descent Proximal gradient descent (e.g., ISTA [30])
Accelated NAGM [35] FISTA [30]

2.3. Convex Biclustering

We consider the convex biclustering problem in a general setting. Suppose we have
a data matrix X = (xij) consisting of N observations, i = 1, . . . , N, w.r.t. p features
j = 1, . . . , p. Our task is to assign each observation to one of the non-overlapped row
clusters C1, · · · , CR ⊆ {1, . . . , N} and assign each feature to one of the non-overlapped
column clusters D1, · · · , DK ⊆ {1, . . . , p}. We assume that the clusters C1, · · · , CR and
D1, · · · , DK and the values of R and K are not known a priori.

More precisely, the convex biclustering in this paper is formulated as follows:

min
U∈RN×p

1
2
||X−U||2F + λ

(
N−1

∑
i=1

N

∑
j=i+1

ωij||Ui· −Uj·||2 +
p−1

∑
m=1

p

∑
n=m+1

ω̃mn||U·m −U·n||2

)
, (8)

where Ui· and U·j are the i-th row and j-th column of U ∈ RN×p. Chi et al. [9] suggested a
requirement on the weights selection:

ωij := 1k
i,j exp

(
−φ‖xi· − xj·‖2

2

)
and

ω̃mn := 1k
m,n exp

(
−φ̃‖x·m − x·b‖2

2

)
,
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where 1k
i,j is 1 if j belongs to the i’s k-nearest neighbors and 0 otherwise. 1k

m,n is defined
similarly (the parameter k should be specified beforehand), and xi· and x·j are the i-th
row and j-th column of the matrix X. They suggested that the constants φ and φ̃ are
determined so that the sums ∑N−1

i=1 ∑N
j=i+1 ωij and ∑

p−1
m=1 ∑

p
n=m+1 ω̃mn are N−1/2 and p−1/2,

respectively.
Chi et al. [9] proposed COBRA to solve the problem (8). Essentially, COBRA solves

the standard convex clustering problems of rows and columns alternately,

min
U∈RN×p

1
2
||X−U||2F + λ

N−1

∑
i=1

N

∑
j=i+1

ωij||Ui· −Uj·||2 (9)

and

min
U∈RN×p

1
2
||X−U||2F + λ

p−1

∑
m=1

p

∑
n=m+1

ω̃mn||U·m −U·n||2, (10)

until the solution converges. However, both optimization problems contain a non-differentiable
`2 norm term, and solving the convex clustering problems (9) and (10) take much time [23].
Later, the ADMM-based approaches considered alternating variables procedures and
outperformed the COBRA for large parameter λ [19].

3. The Proposed Method and Theoretical Analysis

In this section, we first show that the whole terms in the augmented Lagrangian
function of (8) can be differentiable w.r.t. U after introducing two dual variables. Therefore,
we use NAGM rather than FISTA in [29], where assumes the objective function contains a
non-differentiable term.

In order to make the notation clear, we formulate the problem (8) in another way. Let
ε1 and ε2 be the sets {(i, j)|ωij > 0, i < j} and {(m, n)|ω̃mn > 0, m < n}, respectively, and
denote the cardinality of a set S by |S|. We define the matrices C ∈ R|ε1|×n and D ∈ Rp×|ε2|

by
Cl,i = 1, Cl,j = −1, Cl,k = 0, k 6= i, j⇐⇒ l = (i, j) ∈ ε1,

C =


1 −1 0 · · · 0 0
1 0 −1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 −1


|ε1|×n

,

and
Dm,l = 1, Dn,l = −1, Dk,l = 0, k 6= m, n⇐⇒ l = (m, n) ∈ ε2 ,

D =



1 1 · · · 0
−1 0 · · · 0
0 −1 · · · 0
...

. . .
...

0 0 · · · 1
0 0 · · · −1


p×|ε2|

,

respectively.
Then, the optimization problem (8) can be reformulated as follows:

min
U∈RN×p

1
2
||X−U||2F + λ

(
∑

l∈ε1

ωl ||Cl,·U||2 + ∑
l∈ε2

ω̃l ||UD·,l ||2

)
. (11)



Mathematics 2021, 9, 3021 7 of 18

3.1. The ALM Formulation

To implement ALM, we further construct the problem (11) into the following con-
strained optimization problem by introducing the dual variables V ∈ R|ε1|×p and Z ∈
RN×|ε2|,

min
U,V,Z

1
2
||X−U||2F + λ

(
∑

l∈ε1

ωl ||Vl ||2 + ∑
l∈ε2

ω̃l ||Zl ||2

)
subject to Cl,·U −Vl = 0, ∀l ∈ ε1,

UD·,l − Zl = 0, ∀l ∈ ε2 ,

(12)

where Vl and Zl are the l-th row and l-th column of V and Z, respectively. If we introduce
the following functions,

f (U) : =
1
2
||X−U||2F

h(V) : = λ ∑
l∈ε1

ωl ||Vl ||2

g(Z) : = λ ∑
l∈ε2

ω̃l ||Zl ||2 ,

then the problem in (12) becomes

min
U,V,Z

{ f (U) + h(V) + g(Z)}. (13)

The augmented Lagrangian function of the problem (12) is given by

Lν(U, V, Z, Λ1, Λ2) := f (U) + h(V) + ∑
l∈ε1

〈Λ1l , Cl,·U −Vl〉+
ν

2 ∑
l∈ε1

||Cl,·U −Vl ||22

+ g(Z) + ∑
l∈ε2

〈Λ2l , UD·,l − Zl〉+
ν

2 ∑
l∈ε2

||UD·,l − Zl ||22,
(14)

where ν > 0 is an augmented Lagrangian penalty, Λ1 ∈ R|ε1|×p and Λ2 ∈ RN×|ε2| are
Lagrangian multipliers, and Λ1l and Λ2l are the l-th row and l-th column of Λ1 and Λ2,
respectively.

Hence, the ALM procedure of the problem (12) consists of the following three steps:

(Uk, Vk, Zk) = arg min
U,V,Z

Lν(U, V, Z, Λk−1
1 , Λk−1

2 ), (15)

Λk
1l = Λk−1

1l + ν(Cl,·Uk −Vk
l ), ∀l ∈ ε1, (16)

Λk
2l = Λk−1

2l + ν(Cl,·Uk −Vk
l ), ∀l ∈ ε2. (17)

3.2. The Proposed Method

We construct our proposed method: repeatedly minimizing the augmented La-
grangian function in Equation (15) w.r.t U, Vl , Zl and updating the Lagrange multipliers in
Equations (16) and (17). The whole procedure is summarized in Algorithm 2.
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Algorithm 2 Proposed method.
Input: Data X, matrices C and D, Lipschitz constant L calculated by (27), penalties λ and
ν, initial value Λ0

1, Λ0
2, Y1, t1 = 1.

While k < kmax (until convergence) do
1: Calculate the gradient ∇F(Yk) by (20).
2: Update iterate: Uk ← Yk − 1

L∇F(Yk).
3: Update iterate: Λk

1l ← PBl (Λ
k−1
1l + νCl,·Uk), for l ∈ ε1, by (24) and (25), where Bl :=

{y : ||y||2 ≤ λωl}.
4: Update iterate: Λk

2l ← PB̃l
(Λk−1

2l + νUkD·,l), for l ∈ ε2, by (26) and (25), where B̃l :=
{ỹ : ||ỹ||2 ≤ λω̃l}.

5: tk+1 = 1+
√

1+4tk2

2

6: Yk+1 = Uk + tk−1
tk+1 (Uk −Uk−1)

7: k = k + 1
Output: optimal solution to problem (8), U∗ = Uk.

Step 1: update U. In the U-update, if we define the following function in Equation (14),

F(U) : = f (U) + min
V,Z
{L(U, V, Z, Λ1, Λ2)}

= f (U) + min
V,Z

{
h(V) + ∑

l∈ε1

〈Λ1l , Cl,·U −Vl〉+
ν

2 ∑
l∈ε1

||Cl,·U −Vl ||22

+g(Z) + ∑
l∈ε2

〈Λ2l , UD·,l − Zl〉+
ν

2 ∑
l∈ε2

||UD·,l − Zl ||22

}
,

(18)

then the update of U in (15) can be written as

Uk+1 := arg min
U

F(Uk). (19)

We find that (18) is differentiable due to Lemma 1, and obtain the following proposi-
tion.

Proposition 1. The function F(U) is differentiable with respect to U, and

∇U F(U) = −X + U + CT(proxνh∗(νCU + Λ1)) +
(

proxνg∗(νUD + Λ2)
)

DT . (20)

For the proof, see the Appendix A.1.
With Proposition 1, we can use NAGM (Algorithm 1) to update U by solving the

differentiable optimization problem (19).
Step 2: update Vl and Λ1. By step (15) in the ALM procedure, we must minimize the

functions in Equation (18) corresponding to the vector Vl by updating the following,

Vk
l = arg min

Vl

{
λωl ||Vl ||2 +

ν

2
||Vl ||22 − ∑

l∈ε1

〈Λk−1
1l + νCl,·Uk, Vl〉

}
= arg min

Vl

{ν

2
||Vl − (Cl,·Uk + ν−1Λk

1l)||
2
2 + hl(Vl)

}
= proxhl/ν(Cl,·Uk + ν−1Λk−1

1l ) ,

where hl(Vl) := λωl ||Vl ||2 denotes the l-th term in h(V).
We substitute the optimal Vk

l in the k-th iteration into step (16)

Λk
1l ← Λk−1

1l + ν(Cl,·Uk −Vk
l ), ∀l ∈ ε1,
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to obtain
Λk

1l ← Λk−1
1l + νCl,·Uk − νproxhl/ν(Cl,·Uk + ν−1Λk−1

1l ). (21)

By Moreau’s decomposition (2), we further simplify the update (21) as follows,

Λk
1l ← proxνh∗l

(Λk−1
1l + νCl,·Uk), (22)

which means the updates of Vl and Λ1l become one update (22). Hence, there is no
longer a need to store and compute the variable Vl in the ALM updates, which reduces
computational costs.

In the update (22), the conjugate function h∗l (y) of the `2 norm is an indicator func-
tion ([36], Example 3.26):

h∗l (y) =
{

0, if ||y||2 ≤ λωl ,
∞, otherwise.

(23)

Moreover, the proximal operator of the indicator function (22) is the projection prob-
lem ([37], Theorem 6.24):

proxνh∗l
(νCl,·Uk + Λk−1

1l ) = PBl (νCl,·Uk + Λk−1
1l ) , (24)

where Bl := {y : ||y||2 ≤ λωl}, and the operator PBl denotes the projection onto the ball
Bl . It solves the problem PBl (x) := arg minu∈Bl ||u− x||22, i.e.,

PBl (x) =
{

x, if ||x||2 ≤ λωl ,
λωl , otherwise.

(25)

This projection problem completes in O(p) operations for a p-dimensional vector
x ∈ Rp.

Step 3: update Z and Λ2. Similarly, we can derive the following equations:

Zk+1
l = arg min

Zl

{
λω̃l ||Zl ||2 +

ν

2
||Zl ||22 − ∑

l∈ε2

〈Λk−1
2l + νUkD·,l , Zl〉

}
= arg min

Zl

{ν

2
||Zl − (UkD·,l + ν−1Λk−1

2l )||22 + gl(Zl)
}

= proxgl /ν(U
kD·,l + ν−1Λk−1

2l )

where gl(Zl) := λω̃l ||Zl ||2. Then, the dual variable Λ2 update becomes

Λk
2l ← proxνg∗l

(Λk−1
2l + νUkD·,l), for l ∈ ε2.

If we write in the projection operator, then it becomes

Λk
2l ← PB̃l

(Λk−1
2l + νUkD·,l) (26)

where B̃l := {ỹ : ||ỹ||2 ≤ λω̃l}.
Our proposed method only uses first-order information. Furthermore, we just need to

calculate the gradient of the function F and proximal operators in each iteration, where the
proximal operators are easy to obtain by solving the projection problem.

3.3. Lipschitz Constant and Convergence Rate

By the following lemma, we know that if we choose 1
L as the step size for each iteration

in the NAGM, then the convergence rate is, at most, O( 1
k2 ).
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Lemma 2 ([30,35,38]). Let {Uk} as the sequence generated by Algorithm 1, and U0 as an initial
value. If we take the step size as 1

L , then for any k ≥ 1 we have

F(Uk)− F(U∗) ≤
2L||U0 −U∗||2F

(k + 1)2 .

In order to examine the performance of the proposed method, we derive the Lipschitz
constant L of ∇U F(U) as in the following proposition.

Proposition 2. The Lipschitz constant of ∇U F(U) is upperbounded by

1 + νλmax(CTC) + νλmax(DT D) , (27)

where λmax denotes the maximum eigenvalue of the corresponding matrix.

Proof. By definition in (1) and Proposition 1, we derive the Lipschitz constant as follows,

||∇U F(U1)−∇U F(U2)||2 = ||U1 −U2 + CT(proxνh∗(νCU1 + Λ1))− CT(proxνh∗(νCU2 + Λ1))

+
(

proxνg∗(νU1D + Λ2)
)

DT −
(

proxνg∗(νU2D + Λ2)
)

DT ||2

≤ ||U1 −U2||2 + ||CT(proxνh∗(νCU1 + Λ1))− CT(proxνh∗(νCU2 + Λ1))||2
+ ||

(
proxνg∗(νU1D + Λ2)

)
DT −

(
proxνg∗(νU2D + Λ2)

)
DT ||2.

By the definition of matrix 2-norm and the nonexpansiveness of the proximal operators
([39], Lemma 2.4), we obtain

||∇U F(U1)−∇U F(U2)||2 ≤ ||U1 −U2||2 +
√

λmax(CTC)||νCU1 − νCU2||2 + ||νU1D− νU2D||2
√

λmax(DT D)

≤ ||U1 −U2||2 + νλmax(CTC)||U1 −U2||2 + νλmax(DT D)||U1 −U2||2
≤
(

1 + νλmax(CTC) + νλmax(DT D)
)
||U1 −U2||2

Finally, it should be noted that for the time complexity, the proposed method is less
sensitive to the λ value than the conventional methods. In fact, the λ value affects the
proposed method only through the functions h∗l and g∗l that take 0 or ∞ depending on
‖y‖2 ≤ λωl and ‖ỹ‖2 ≤ λω̃l in (23).

On the other hand, the COBRA solves two optimization problems, and the ADMM-
based methods need to solve the Sylvester equation, which means that all of them are
influenced by the λ value so much.

4. Experiments

In this section, we show the performance of the proposed approach for estimating and
assessing the biclusters by conducting experiments on both synthetic and real datasets. We
executed the following algorithms:

• COBRA: Dykstra-like proximal algorithm proposed by Chi et al. [9].
• ADMM: the ADMM proposed by Weylandt [19].
• G-ADMM (generalized ADMM): the modified ADMM presented by Weylandt [19].
• Proposed method: the proposed algorithm showed in Algorithm 2.

They were all implemented by Rcpp on a Macbook Air with 1.6 GHz Intel Core i5 and
8 GB memory. We recorded the wall times for the four algorithms.
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4.1. Artificial Data Analysis

We evaluate the performance of the proposed methods on synthetic data in terms of
the number of iterations, the execution time, and the clustering quality.

We generate the artificial data X ∈ RN×p with a checkerboard bicluster structure
similar to the method in [9]. We simulate Xij ∼ N(µrc, σ2) (i.i.d.) as follows, where the
indices r and c range in clusters {1, · · · , R} and {1, · · · , C}, respectively, which means that
the number of biclusters is M := R× C. We assign each xij randomly belongs to one of
those M biclusters. The mean µrc is chosen uniformly from an equally spaced sequence
{−10,−9, · · · , 9, 10}, and the σ is chosen as 1.5 and 3.0 for different noise levels.

In our experiments, we consider the following stopping criteria for the four algorithms.

1. Relative error:
||Uk+1 −Uk||F
max{||Uk||F, 1}

≤ ε.

2. Objective function error:
||F(Uk)− F(U∗)||F ≤ ε.

where ε is a given accuracy tolerance. We terminate the algorithm if the above error is
smaller than ε or the maximum number of iterations exceeds 10,000. We use the relative
error for the time comparisons and quality assessment and the objective function error for
convergence rate analysis.

4.1.1. Comparisons

We change the sizes of N, p of the data matrix X and the tuning parameter λ to test the
performance of four algorithms and compare the performance among the algorithms. At
first, we compare the execution time with different λ, ranging from 1 to 2000, and setting
R = 4, C = 4, σ = 1.5. We obtain the results shown in Figure 2a.

10

20

30

40

0 500 1000 1500 2000
λ

Ti
m

e 
(s

)

(a)

0

100

200

300

400

50 100 150
p

Ti
m

e 
(s

) Algorithm
COBRA

ADMM

G−ADMM

proposed

(b)
Figure 2. Execution time for various λ and p with N = 100 and ε = 1× 10−6. (a) Different λ, with
p = 40; (b) different p, with λ = 1.

From Figure 2a, we observe that the execution time of the COBRA and G-ADMM
increases rapidly as λ varies. The execution time of COBRA is the largest when λ > 1400.
Therefore, it will take a long time for COBRA to visualize the whole fusion process,
particularly the single bicluster case. Our proposed method significantly outperforms
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the other three algorithms and offers high stability in a wide range of λ. Due to its low
computational time, our proposed method is a preferable choice to visualize the biclusters
for various λ values when applying biclustering.

Next, we compare the execution time with different p (from 1 to 200). Here, we fix
the number of column clusters and row clusters (C = R = 4). Figure 2b shows that the
execution time of the algorithms increases as p grows. The proposed method shows better
performance than the other three. In particular, the ADMM and G-ADMM are suffered
from the feature dimension p and the computations grow dramatically.

Then, we vary the sample size N from 100 to 1000 and fix the size of the feature
p = 40, with λ = 1, R = 4, C = 4, σ = 1.5. Figure 3 shows the execution times of the three
algorithms (COBRA, G-ADMM, and Proposed) for each N.

0

20

40

60

250 500 750 1000
N

Ti
m

e 
(s

)

Algorithm
COBRA

G−ADMM

proposed

Figure 3. Execution times for each N with λ = 1, p = 40 and ε = 1× 10−6.

The curves reveal that when the larger the sample size N, the more time the algorithms
require. Moreover, the ADMM takes more than 500 s when N > 500 and takes around
1800 s when N = 1000, which are much larger than the other three algorithms. Thus, we
remove the result of ADMM from the figure. However, our proposed method only takes
around 10 s even when N = 1000, which is six times smaller than G-ADMM.

4.1.2. Assessment

We evaluate the clustering quality by a widely used criterion called the Rand index
(RI) [40]. The value of RI ranges from 0 to 1; a higher value shows better performance, and
1 indicates the perfect quality of the clustering. Note that we can obtain the true bicluster
labels in the data generation procedure. We generate the matrix data with N = 100 and
p = 100, and set two noise levels, low (σ = 1.5) and high (σ = 3.0). We compare the
clustering quality of our proposed method with ADMM, G-ADMM, and COBRA under
different settings. Setting 1: R = 2, C = 4, σ = 1.5; Setting 2: R = 4, C = 4, σ = 1.5;
Setting 3: R = 4, C = 8, σ = 1.5; Setting 4: R = 2, C = 4, σ = 3; Setting 5: R = 4, C = 4,
σ = 3; Setting 6: R = 4, C = 8, σ = 3.

Table 2 presents the result of the experiment. As the tuning parameter λ increases,
the biclusters tend to fuse and reduce noise interference in the raw data. While in some
cases, for extremely high λ such as 10,000, the biclusters may be over-smoothed, and the
value of the Rand index is decreased. For example, in the first case (Setting 1: the number
of biclusters is 2× 4 and σ = 1.5). The Rand index in COBRA, ADMM, and our proposed
method shows a similar value in most cases because all the algorithms solve the same
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model. However, the G-ADMM exhibits the worst performance due to its slow convergence
rate, and it cannot converge well when the tuning parameter λ is large (λ = 5000 and
λ = 10,000). Overall, from the results in Table 2, our proposed method shows high accuracy
and stability from low to high noise.

Table 2. Assessment result.

Setting Algorithm Rand Index
λ = 100 λ = 1000 λ = 5000 λ = 10, 000

Setting 1

COBRA 0.874 0.875 0.999 0.931
ADMM 0.872 0.875 0.999 0.931

G-ADMM 0.874 0.875 0.874 0.872
Proposed 0.875 0.875 0.999 0.931

Setting 2

COBRA 0.928 0.932 0.994 0.999
ADMM 0.928 0.935 0.994 0.999

G-ADMM 0.928 0.934 0.981 0.936
Proposed 0.928 0.934 0.994 0.999

Setting 3

COBRA 0.959 0.962 0.962 0.999
ADMM 0.961 0.962 0.962 0.998

G-ADMM 0.959 0.962 0.967 0.967
Proposed 0.961 0.962 0.962 0.999

Setting 4

COBRA 0.870 0.870 0.870 0.935
ADMM 0.870 0.868 0.871 0.933

G-ADMM 0.870 0.870 0.871 0.871
Proposed 0.870 0.870 0.871 0.935

Setting 5

COBRA 0.934 0.934 0.934 0.964
ADMM 0.934 0.932 0.934 0.964

G-ADMM 0.934 0.934 0.932 0.932
Proposed 0.934 0.934 0.934 0.964

Setting 6

COBRA 0.960 0.960 0.962 0.962
ADMM 0.961 0.962 0.962 0.962

G-ADMM 0.960 0.962 0.962 0.960
Proposed 0.961 0.962 0.962 0.962

4.2. Real Data Analysis

In this section, we use three different real datasets to demonstrate the performance of
our proposed method.

Firstly, we use the presidential speeches dataset preprocessed by Weylandt et al. [41]
that contains 75 high-frequency words taken from the significant speeches of the 44 U.S.
presidents around the year 2018. We show the heatmaps in Figure 4 under a wide range of
tuning parameters λ to exhibit the fusion process of biclusters. We set the tolerance ε to
be 1× 10−6, and use the relative error stopping criterion as described in Section 4.1. The
columns represent the different presidents, and the rows represent the different words.
When λ = 0, the heatmap is disordered, and there are no distinct subgroups. While
we increase the λ, the biclusters begin to merge. We can further find out the common
vocabulary used in some groups of the prime minister’s speeches. Moreover, as shown in
Figure 4f, the heatmap clearly shows four biclusters with two subgroups of presidents and
two subgroups of words when λ = 30,000.
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(a) (b) (c)

(d) (e) (f)
Figure 4. The heatmap results of proposed method implementation on the presidential speeches
dataset under a wide range of λ. (a) λ = 0; (b) λ = 1500; (c) λ = 2000; (d) λ = 5000; (e) λ = 15,000;
(f) λ = 30,000.

Secondly, we compare the computational time of four algorithms for two actual
datasets. One is The Cancer Genome Atlas (TCGA) dataset [42], which contains 438 breast
cancer patients (samples) and 353 genes (features), and the other one is the diffuse large-B-
cell lymphoma (DLBCL) dataset [43] with 3795 genes and 58 patient samples. In DLBCL,
there are 32 samples from cured patients and 26 samples from sick individuals among
the 58 samples. Furthermore, we extract 500 genes with the highest variances among the
original genes.

Figure 5a,b depicts the outcomes of the elapsed time comparison. From the curves,
we observe that our proposed approach surpasses the other three methods. In contrast,
ADMM shows the worst performance in the DLBCL dataset, and the case of tolerance
ε < 10−3 requirement in the TCGA dataset.
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Figure 5. Plot of log(F(Uk)− F(U∗)) vs. the elapsed time. (a) TCGA; (b) DLBCL.
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Lastly, we compare the number of iterations to achieve the specified tolerance of
F(Uk)− F(U∗) and run it on the TCGA and DLBCL datasets. Figure 6a,b reveals that the
COBRA algorithm has the fastest convergence rate, whereas the generalized ADMM is
the slowest to converge. Our proposed method shows competitive performance in the
convergence rate.
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Figure 6. Plot of log(F(Uk)− F(U∗)) vs. the number of iterations. (a) TCGA; (b) DLBCL.

Overall, from the above experiment results of the artificial and real datasets, our
proposed method has superior computational performance with high accuracy.

5. Discussion

We proposed a method to find a solution to the convex biclustering problem. We
found that it outperformed the conventional algorithms, such as COBRA and ADMM-based
procedures, in the sense of efficiency. Our proposed method is more efficient than COBRA
because the latter should solve two optimization problems containing non-differentiable
fused terms in each cycle. Additionally, the proposed method performed better than the
ADMM-based procedures because the former is based on [29] and uses the NAGM to
update the variable U. However, ADMM spends much more time computing the matrix
inverse. Moreover, our proposed method is stable while varying the tuning parameters λ,
which is convenient for us to find the optimal λ and visualize the variation of the heatmaps
under a wide range of λ.

As for further improvements, we can use ADMM as a warm start strategy to select an
initial value for our proposed method. What is more, according to the fusion process of
the heatmap results in Figure 4, it will be meaningful if we can derive the range of tuning
parameters λ that yield the non-trivial solutions of the convex biclustering with more than
one bicluster. Additionally, the proposed method can motivate future work. We can extend
the proposed method to solve other clustering problems, such as the sparse singular value
decomposition model [44] and the integrative generalized convex clustering model [45].
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Appendix A

Appendix A.1. Proof of Proposition 1

First, we define the following two functions,

r1(V) := h(V) +
ν

2
||V||2F,

and
r2(Z) := g(Z) +

ν

2
||Z||2F.

By the definition of F(U) in (18),

F(U) : = f (U) + min
V,Z
{L(U, V, Z, Λ1, Λ2)}

= f (U) + min
V,Z

{
h(V) + g(Z) + ∑

l
〈Λ1l , Cl,·U −Vl〉+

ν

2 ∑
l
||Cl,·U −Vl ||22

+∑
l
〈Λ2l , UD·,l − Zl〉+

ν

2 ∑
l
||UD·,l − Zl ||22

}

= f (U) + min
V

{
h(V) +

ν

2
||V||2F −∑

l
〈Λ1l + νCl,·U, Vl〉

}
+

ν

2
||CU||2F + ∑

l
〈Λ1l , Cl,·U〉

+ min
Z

{
g(Z) +

ν

2
||Z||2F −∑

l
〈Λ2l + νUD·,l , Zl〉

}
+

ν

2
||UD||2F + ∑

l
〈Λ2l , UD·,l〉

= −max
V

{
〈νCU + Λ1, V〉 − h(V)− ν

2
||V||2F

}
+ f (U) +

ν

2
||CU||2F + ∑

l
〈Λ1l , Cl,·U〉

−max
Z

{
〈νUD + Λ2, Z〉 − g(Z)− ν

2
||Z||2F

}
+

ν

2
||UD||2F + ∑

l
〈Λ2l , UD·,l〉

= f (U)− r∗1(νCU + Λ1)− r∗2(νUD + Λ2) +
ν

2
||CU||2F + 〈Λ1, CU〉

+
ν

2
||UD||2F + 〈Λ2, UD〉.

https://www.presidency.ucsb.edu
http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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By Theorem 26.3 in [33], if the function r : Rp → R is closed and strongly convex, then
we have the differentiable conjugate function r∗(v), and

∇r∗(v) = arg max
u∈Rp
{〈u, v〉 − r(u)}.

Hence, we can derive the following equations,

∇r∗1(v) = arg max
u

{
〈u, v〉 − h(u)− ν

2
||u||2F

}
= arg max

u

{
−1

2
||u||2F +

1
ν
〈u, v〉 − 1

ν
h(u)

}
= arg min

u

{
1
2
||u− v

ν
||2F +

1
ν

h(u)
}

= proxh/ν(
v
ν
).

Then, we obtain

∇r∗1(νCU + Λ1) = νCT
(

proxh/ν(CU +
Λ1

ν
)

)
and, similarly,

∇r∗2(νUD + Λ2) = ν

(
proxg/ν(UD +

Λ2

ν
)

)
DT .

Next, take the derivative of F(U) w.r.t U,

∇U F(U) = ∇ f (U)−∇r∗1(νCU + Λ1)−∇r∗2(νUD + Λ2)

+ νCTCU + νUDDT + CTΛ1 + Λ2DT

= ∇ f (U)− νCT
(

proxh/ν(CU + ν−1Λ1)
)
− ν

(
proxg/ν(UD +

Λ2

ν
)

)
DT

+ νCTCU + CTΛ1 + νUDDT + Λ2DT

= ∇ f (U) + CT(proxνh∗(νCU + Λ1)) +
(

proxνg∗(νUD + Λ2)
)

DT ,

and we obtain the last equation by Moreau’s decomposition.
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