
mathematics

Article

The Meyers Estimates for Domains Perforated along
the Boundary

Gregory A. Chechkin 1,2,3

����������
�������

Citation: Chechkin, G.A. The Meyers

Estimates for Domains Perforated

along the Boundary. Mathematics

2021, 9, 3015. https://doi.org/

10.3390/math9233015

Academic Editor: Alberto Ferrero

Received: 2 November 2021

Accepted: 23 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow
State University, Leninskie Gory, 1, 119991 Moscow, Russia; chechkin@mech.math.msu.su

2 Institute of Mathematics with Computing Center, Subdivision of the Ufa Federal Research Center of Russian
Academy of Science, Chernyshevskogo st., 112, 450008 Ufa, Russia

3 Institute of Mathematics and Mathematical Modeling, Pushkin st. 125, Almaty 050010, Kazakhstan

Abstract: In this paper, we consider an elliptic problem in a domain perforated along the boundary.
By setting a homogeneous Dirichlet condition on the boundary of the cavities and a homogeneous
Neumann condition on the outer boundary of the domain, we prove higher integrability of the
gradient of the solution to the problem.
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1. Introduction

This paper confronts the estimates of solutions to an elliptic problem in domains
perforated along the boundary (see Figure 1).

Figure 1. Domain perforated along the boundary.

For the following homogeneous Dirichlet problem in a bounded domain:{
Lu := div(a(x)∇u) = div f , x ∈ Ω,
u = 0, x ∈ ∂Ω

(1)

with uniformly elliptic measurable and symmetric matrix a(x), that is, aij = aji, and the
following:

λ−1|ξ|2 ≤
d

∑
i,j=1

aij(x)ξiξ j ≤ λ|ξ|2, for almost all x ∈ Ω, and for all ξ ∈ Rd, (2)

and with the right hand side as f ∈ Lp(Ω), where p > 2, a higher integrability of the
gradient of solutions (Meyers estimates) in a plane domain was proved in [1]. In other
words, it was proved that the gradient of the solution is integrable at the power greater
than two:
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∫
Ω

|∇uε|2+δdx ≤ C
∫
Ω

| f |2+δ dx. (3)

In a multidimensional case, the same result for domains with sufficiently smooth
boundary was proved in [2]. It should be noted that higher integrability of the gradient
of solutions to the Dirichlet problem in a bounded domain with Lipschitz boundary for
p-Laplacian with variable p was obtained in [3].

The Meyers estimate (higher integrability) of solutions to a Zaremba problem with
rapidly changing type of boundary conditions in a plane domain for the Laplacian can
be observed in [4]. The uniformly elliptic operators in the multidimensional case can be
observed in [5].

Some other integral estimates of solutions can be found in [6–9]. In paper [10], one
can find the integral estimates in domains perforated along the boundary.

It should be noted that similar mathematical models and problems appear in many
applications, for instance, in mechanics of aircraft and space structures, theory of bridge
constructions, hudrodynamics of bodies with complicated microstructure, etc. For more
details, refer to [11].

This paper is devoted to obtaining the Meyers estimates for the gradient of the solution
to an elliptic problem on a perforated slope along the boundary. Thus, by assuming a
homogeneous Dirichlet condition at the cavity boundary and a Neumann homogeneous
condition at the outer boundary of the domain, higher integrability of the gradient of the
solution is proved.

2. Setting of the Problem and Formulation of the Main Result

Consider a domain Ω ⊂ Rd, d ≥ 2, with Lipschitz boundary (Lipschitz domain).
Denote by Γε the hypersurface lying in Ω on the distance ε from the boundary ∂Ω. Here,
ε > 0 is a small parameter. Suppose that Hε

j are balls centered on this hypersurface with

radii αjε, 0 < αj <
1
2 . Denote Hε =

⋃
j∈J

Hε
j , J := {1, 2, . . . , Mε}. Here, Mε is an integer and

tends to infinity as ε→ 0.
The domain Ω is called a Lipschitz domain, if for any point x0 ∈ ∂Ω there exists an

open cube Q centered in x0, with edges of the length 2R0 parallel to the coordinate axes
such that Q ∩ ∂Ω is a graph of the Lipschitz function xn = g(x1, . . . , xn−1) with Lipschitz
constant L independent of x0. Here, x = (x1, . . . , xn) are new coordinates with origin in x0.

Consider in the domain Ωε := Ω \ Hε, the following problem:
Luε = div f , in Ωε,
uε = 0, on ∂Hε,
∂uε
∂n = 0, on ∂Ω,

(4)

where ∂uε
∂n is an outward conormal derivative of the function uε, and the components of the

vector-function f = ( f1, . . . , fd) are functions from L2(Ω). In order to define the solution to
problem (4) denoted by W1

2 (Ωε, Hε), the completion of the set of infinitely smooth functions
in Ω is required, vanishing in the vicinity of ∂Hε, with respect to the following norm.

‖ u ‖W1
2 (Ωε ,Hε)

=

( ∫
Ωε

u2 dx +
∫

Ωε

|∇u|2 dx
)1/2

.

The function uε ∈ W1
2 (Ωε, Hε) is called a solution to problem (4), if the following

integral identity: ∫
Ωε

a∇uε · ∇ϕ dx =
∫

Ωε

f · ∇ϕ dx, (5)

holds for any test–function ϕ ∈W1
2 (Ωε, Hε) (see [12,13]).
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We now study the question of higher integrability of the gradient of the solution to
problem (4).

Let us describe the structure of the set ∂Hε. Consider a compact set K ⊂ Rd. Define
the capacity Cp(K) for 1 < p < d by the following formula.

Cp(K) = inf
{ ∫

Rd

|∇ϕ|p dx : ϕ ∈ C∞
0 (Rd), ϕ ≥ 1 on K

}
. (6)

Let Bx0
r be an open ball centered in x0 with radius r, and let mesd−1(E) be (d − 1)-

dimensional measure of the set E (see for the definition, for instance [14]). Assume that the
following is the case.

p =
2d

d + 2
, as d > 2, p =

3
2

, as d = 2.

Denote by Fs the boundary layer along the boundary ∂Ω with a thickness that equals
to s ≥ 3

2 ε, including all the cavities.
Suppose that for x0 ∈ F3

2 ε and r ≤ r0, either we have the following inequality:

Cp(∂Hε ∩ Bx0
r ) ≥ c0rd−p, (7)

or the the following inequality:

mesd−1(∂Hε ∩ Bx0
r ) ≥ c0rd−1, (8)

where the positive constant c0 does not depend on x0 and r.
Note that the condition (8) is stronger but is easier to test. In addition, one can observe

that under any of these conditions for any v ∈W1
2 (Ωε, Hε), the Friedrichs inequality of the

following: ∫
Ωε

v2 dx ≤ K
∫

Ωε

|∇v|2 dx,

holds, which by means of the Lax–Milgram Lemma (see [15]) results in the existence of a
unique solution to problem (4).

Theorem 1. If f ∈ L2+δ0(Ω), where δ0 > 0, then there exist positive constants δ(d, δ0) < δ0 and
C in that the solution to problem (4) satisfies Lax-Milgra estimate:∫

Ωε

|∇uε|2+δdx ≤ C
∫

Ωε

| f |2+δ dx, (9)

where C depends only on δ0, d and c0 from (7) and (8), the constant λ and also on r0 ≤ R0 and L.

3. Proof of the Main Result

Proof of Theorem 1. First of all we estimate the gradient of a solution to problem (2) in
the neighbourhood of the boundary of the domain. Let us locally transform the coordinates
in the vicinity of the boundary and, more precisly, in the neighbourhood of an arbitrary
point x0 ∈ ∂Ω. By denoting the following:

QR0 = {x : |xi| < R0, i = 1, . . . , d},

consider a local Cartesian coordinate system with its origin in x0 and that ∂Ω ∩ QR0 is
given in this coordinate system by the following equation:

xd = g(x′), x′ = (x1, . . . , xd−1),

where g is a Lipschitz function with the Lipschitz constant L. We assume that the following:
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Ωε,R0 = QR0 ∩Ωε,

satisfies xd > g(x′). By changing the following variables:

y′ = x′, yd = xd − g(x′), (10)

we have the following:

PR0 = {y : |yi| < R0, i = 1, . . . , d− 1, yd = 0},

for QR0 ∩ ∂Ω. Denote by Q̃R0 the domain QR0 after the transformation of the coordinates
x 7→ y (see Figure 2).

Figure 2. Transformation of the cube QR0 .

Lemma 1. The domain Q̃R0 contains the following cube.

KR0 = {y : |yi| < (1 +
√

d− 1L)−1R0, i = 1, . . . , d}. (11)

Proof. Suppose that y ∈ Q̃R0 and |yi| < ϑR0 for some ϑ ∈ (0, 1) and i = 1, . . . , d− 1. It is
easy to observe that the following is the case:

yd ∈ (−R0 − g(y′), R0 − g(y′)).

due to the fact that function g is Lipschitz and g(0) = 0; thus, we have the following.

|g(y′)| ≤ L|y′| <
√

n− 1LϑR0.

Consequently, the following is the case.

(−R0(1−
√

n− 1Lδ), R0(1−
√

n− 1Lδ)) ⊂ (−R0 − g(y′), R0 − g(y′)).

Moreover, by taking the following:

ϑ =
1

1 + L
√

d− 1
,

we complete the proof.

Now problem (2) in perforated semicube K+
R0,perf = KR0 ∩ Ω̃ε has the following form.

L̃vε = div f̃ , in K+
R0,perf,

vε = 0, on ∂H̃ε ∩ KR0 ,
∂vε
∂ñ = 0, on ∂Ω̃ ∩ KR0 .

(12)

Here, Ω̃, Ω̃ε and H̃ε are the images under transformation (10) of the domains Ω, Ωε

and Hε, respectively, and the following:

L̃v := div(b(y)∇v), (13)
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satisfies bij = bji and

µ−1|ξ|2 ≤
d

∑
i,j=1

bij(y)ξiξ j ≤ µ|ξ|2, for almost all y ∈ K+
R0

, and for all ξ ∈ Rd, (14)

where µ depends on λ from (1) and the constant L of the function g. Note that the following
is the case:

f̃ (y) = ( f̃1(y), . . . , f̃d(y)), where f̃i(y) = fi(y′, yd + g(y′)), as i = 1, . . . , d− 1,

f̃d(y) =
d−1

∑
i=1

∂g(y′)
∂yi

fi(y′, yd + g(y′)) + fd(y′, yd + g(y′)),
(15)

and ∂vε
∂ñ is the respective conormal derivative.
Denote by K−R0,perf the domain {y : (y1, . . . , yd−1,−yd) ∈ K+

R0,perf}, and let KR0,perf be

the union K−R0,perf ∪ K+
R0,perf. Denote also byHε,R0 the cavities (pores) in KR0,perf (see Figure 3).

Figure 3. Cube KR0,perf.

Let us extend the solution vε to problem (12) by zero inside the pores and then extend
it with respect to the hyperplane {y : yd = 0}. We retain the same notation for the extended
function. The extended function vε satisfies the following problem.{

L̃1vε = div h, in KR0,perf,
vε = 0, on ∂Hε,R0 .

(16)

Here, we have the following:

L̃1v := div(c(y)∇v),

with a positive definite matrix c = {cij(y)} satisfying cjd(y) = cdj(y), as j 6= d. Moreover,
cjd are odd extensions of the functions bjd(y) from (13), and cij(y) are even extensions
of bij(y), j 6= d. The vector function h = (h1, . . . , hd) in (16) is defined by the following
relations: hi(y) as i = 1, . . . , d− 1, are the even extension of the components f̃i(y) from (12),
and hd(y) is the odd extension of f̃d(y).

Clearly the solution to problem (16) is the function vε ∈ W1
2 (KR0,perf,Hε,R0), which

satisfies the integral identity (see (5)):∫
KR0,perf

c(y)∇vε · ∇ϕ dy =
∫

KR0,perf

h · ∇ϕ dy, (17)

for any ϕ ∈ W1
2 (KR0,perf,Hε,R0). Here, W1

2 (KR0,perf,Hε,R0) is the closure of the set of in-
finitely smooth functions in KR0,perf, vanishing in a vicinity of ∂KR0 and ∂Hε,R0 by the
following norm.



Mathematics 2021, 9, 3015 6 of 11

‖ u ‖W1
2 (KR0,perf,Hε,R0 )

=

( ∫
KR0,perf

u2 dx +
∫

KR0,perf

|∇u|2 dx
)1/2

.

We denote by Qy0
R the open cube centered in y0 with edges of the length 2R parallel to

the coordinate axes. Moreover, we assume that the following is the case.

y0 ∈ K R0
2
\ ∂K R0

2
, where R ≤ 1

2
dist(y0, ∂K R0

2
).

Denote the following:

−
∫

Q
y0
R

w dx =
1
|Qy0

R |

∫
Q

y0
R

w dx,

where |Qy0
R | is the d-dimensional measure of the cube Qy0

R .

• Consider the case Qy0
3R
2
⊂ KR0,perf and take in (17) the test-function ϕ = (vε − v)η2,

where the following is the case.

v = −
∫

Q
y0
3R
2

vε, dy. (18)

Here, the cutoff function η ∈ C∞
0 (Qy0

3R
2
) satisfies the following.

0 < η ≤ 1, η = 1, in Qy0
R , and |∇η| ≤ C

R
. (19)

Next, the lemma is devoted to the Caccioppoli inequality.

Lemma 2. For the solution vε to problem (16), the following Caccioppoli inequality:

∫
Q

y0
R

|∇vε|2 dy ≤ C(d, λ, L)

(
1

R2

∫
Q

y0
3R
2

(vε −v)2 dy +
∫

Q
y0
3R
2

|h|2 dy

)
, (20)

holds true with ϕ defined in (18).

Proof. By taking η defined in (19) and substituting the test function ϕ = (vε−v)η2

in the integral identity (17), we have the following.

∫
Q

y0
3R
2

c(y)|∇vε|2η2 dy =− 2
∫

Q
y0
3R
2

c(y)η(vε −v)∇vε · ∇η dy +
∫

Q
y0
3R
2

η2h · ∇vεdy+

+ 2
∫

Q
y0
3R
2

η(vε −v)h · ∇η dy.
(21)

Since 0 ≤ η ≤ 1, then by inequality a2 + b2 ≥ 2ab, we derive the following.
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|η(vε −v)∇vε · ∇η| ≤ 1
16
|∇vε|2η2 + 4(vε −v)2|∇η|2,

|η2h · ∇vε| ≤
1

16
|∇vε|2η2 + 4|h|2,

|η(vε −v)h · ∇η| ≤ 1
16
|h|2 + 4(vε −v)2|∇η|2.

(22)

Using the inequalities (21) and (22) and the ellipticity of problem (16), we obtain the
following. ∫

Q
y0
3R
2

|∇vε|2η2 dx ≤ C
( ∫

Q
y0
3R
2

(vε −v)2|∇η|2 dx +
∫

Q
y0
3R
2

|h|2 dx
)

. (23)

Finally, bearing in mind that η = 1 in Qy0
R and |∇η| ≤ C

R , we obtain inequality (20).
The lemma is proved.

Then, by using the Poincaré–Sobolev inequality:(
−
∫

Q
y0
3R
2

(vε −v)2 dx
)1/2

≤ C(d, p)R
(
−
∫

Q
y0
3R
2

|∇vε|p dx
)1/p

,

with p ≥ 2d
d+2 , we deduce from (23) the following.

(
−
∫

Q
y0
R

|∇vε|2 dy
)1/2

≤ C(d, λ, L, p)
( (

−
∫

Q
y0
2R

|∇vε|p dy
)1/p

+

(
−
∫

Q
y0
2R

|h|2 dy
)1/2)

. (24)

• Consider the case Qy0
3R
2
∩Hε,R0 6= ∅. Taking in (17) the test-function ϕ = vεη

2 with η

defined in (19), we come to (20) with v = 0; hence, we have the following.

∫
Q

y0
R

|∇vε|2 dy ≤ C(d, λ, L, p)

(
1

R2

∫
Q

y0
2R

v2
ε dy +

∫
Q

y0
2R

|h|2 dy

)
. (25)

Now, we estimate the first term in the right hand side of (25). If Qy0
3R
2
∩Hε,R0 6= ∅, then

there exists z0 ∈ Qy0
3R
2
∩ ∂Hε,R0 such that Qz0

R
2
⊂ Qy0

2R. Denote by z the pre-image (the

inverse image) of point z0 with respect to transformation (10). Note that the pre-image
of the cube Qz0

R
2

contains the ball Bz
cR, with a positive constant c dependent on L and d.

Due to (7), we have the following.

Cp(∂Hε,R0 ∩ Bz
cR) ≥ C(L, d, c0)Rd−p.

Hence, by using the definition (6), we obtain Cp(∂Hε,R0 ∩ Q2R) ≥ C(L, d, c0)Rd−p.
Keeping in mind the imbedding theorem (see [1] (§14.1.2)), we estimate the following.(

−
∫

Q
y0
2R

v2
ε dy

)1/2

≤ C(d, p, L, c0)R

(
−
∫

Q
y0
2R

|∇vε|p dy

)1/p

. (26)

If we use condition (8), then, bearing in mind the estimate from Proposition 4
from [1] (§13.1.1), we also obtain (26). Thus, estimate (25) results in inequality (24).
Next, estimate (24) for any cubes Qy0

R and the Gehring Lemma (see [16,17] and
also [18] (Ch. VII)) produces the following inequality:
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∫
K R0

4

|∇vε|2+δ dy ≤ C(d, λ, δ0, c0, L, R0)
∫

K R0
2

|h|2+δ dy, (27)

if h ∈ L2+δ0(KR0), δ0 > 0, with positive constant δ = δ(d, δ0) ≤ δ0. Rewriting (27) and
keeping in mind the properties of the extended functions, we have the following.∫

K+
R0
4

|∇vε|2+δ dy ≤ C(d, λ, δ0, c0, L, R0)
∫

K+
R0
2

| f̃ |2+δ dy. (28)

Considering the inverse to (10) transformation, we conclude that the pre-image of
K R0

2
is contained in Ωε,R0 , and the pre-image of cube K+

R0
4

contains the domain Ωε,µR0 ,

where µ = µ(d, L) > 0. By means of (15) and (28), we obtain the following:∫
Ωε,µR0

|∇uε|2+δ dx ≤ C(d, λ, δ0, c0, L, R0)
∫

Ωε,R0

| f |2+δ dx,

or the following.∫
Ωε∩Q

x0
µR0

|∇uε|2+δ dx ≤ C(d, λ, δ0, c0, L, R0)
∫

Ωε∩Q
x0
R0

| f |2+δ dx.

Due to the arbitrariness of point x0 ∈ ∂Ω and the compactness of boundary ∂Ω, one
can find such finite cover of ∂Ω such that the closed set:

Ωε,µ1R0 = {x ∈ Ω : dist(x, ∂Ω) ≤ µ1R0}, µ1 = µ1(d, L) > 0,

is contained in the union of the sets Ωε ∩Qxi
µR0

, where xi ∈ ∂Ω. By summarizing the
following inequalities:∫

Ωε∩Q
xi
µR0

|∇uε|2+δ dx ≤ C(d, λ, δ0, c0, L, R0)
∫

Ωε∩Q
xi
R0

| f |2+δ dx,

we derive the following.∫
Fµ1R0

|∇uε|2+δ dx ≤ C(d, λ, δ0, c0, L, R0)
∫

Ωε

| f |2+δ dx.

The internal estimate of the following:∫
Ωε\Fµ1R0

|∇uε|2+δ dx ≤ C(d, λ, δ0, R0)
∫

Ωε

| f |2+δ dx.

follows from [2]. Finally, we have (9).

Remark 1. Note that in the case Qy0
3R
2
∩Hε,R0 6= ∅, when conditions (7) and (8) are not valid,

we can modify the proof to obtain the same estimate (9). In this case, we also use Lemma 2, but
instead of the Friedrichs–Sobolev inequality (26), we use the Poincaré–Sobolev inequality:(

−
∫

Q
y0
3R
2

(vε −v)2 dx
)1/2

≤ C(d, p)R
(
−
∫

Q
y0
3R
2

|∇vε|p dx
)1/p

, p ≥ 2d
d + 2

,
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with an appropriate cutoff function.

4. One Application

Let us consider the following problem:
Luε = div f , in Ωε,
uε = 0, on ∂Hε,
∂uε
∂n +κuε = 0, on ∂Ω,

(29)

where κ is a constant in two-dimensional domain perforated along the boundary with the
limit Robin (Fourier) problem of the following form.{

Lu0 = div f , in Ω,
∂u0
∂n +κu0 = 0, on ∂Ω.

(30)

Note that sequence {uε} is uniformly bounded in the Sobolev space W1
2 ; hence, the existence

of the limit function u0 is obvious. We study the rate of convergence of the solution uε to
solution u0 in the Sobolev space W1

2 .
Assume that (rk, θ) is the polar system of coordinates centered in pε

k (the center of the
circle Hε

k). Consider the following cut-off function.

ψε = ∏
k

ψk
ε , ψk

ε = ψ

(
| ln ε|
| ln rk|

)
, ψ(s) =

{
0, s ≤ 1,
1, s ≥ 1 + σ.

Then, substitute the test-function ϕε = ψε ϕ, ϕ ∈ W1
2 (Ω) in the integral identity of

problem (29). ∫
Ωε

a∇uε · ∇ϕε dx +
∫

∂Ω

κuε ϕε ds =
∫

Ωε

f · ∇ϕε dx, (31)

In order to estimate the rate of convergence depending on ε → 0, we subtract the
following integral identity:∫

Ω

a∇uε · ∇ϕ dx +
∫

∂Ω

κuε ϕ ds =
∫
Ω

f · ∇ϕ dx, ϕ ∈W1
2 (Ω), (32)

of the limit problem (30) from integral identity (31) . We obtain the following.∫
Ω

a(ψε∇uε −∇u0) · ∇ϕ dx +
∫

∂Ω

κ(uε − u0)ϕ ds

=
∫
Ω

f · ∇ϕ(ψε − 1) dx +
∫
Ω

a∇uε · ∇ψε ϕ dx +
∫
Ω

f · ∇ψε ϕ dx.
(33)

Rewriting (33) and keeping in mind the ellipticity of the operator L by means of the
Cauchy inequality and the equivalence of the norms in the Sobolev space, we derive the
following.

‖uε − u0‖2
W1

2 (Ω)
≤ C

( ∫
Ω

f · ∇ϕ(ψε − 1) dx +
∫
Ω

∇uε · ∇ψε dx
)

. (34)

The first term in the right hand side of inequality (34) is easy to estimate (due to the
Cauchy inequality) by the following.

K M
1
2
ε ε

1
1+σ .

Here, Mε is the number of circles, and ε
1

1+σ is the diameter of the circle, where the
integral is nontrivial, since ψε − 1 6= 0.
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Next, we estimate the second term at the right hand side of (34) and show the difference
between inequalities with and without the Meyers estimate.

1. Without Meyers

We have the following.

∫
Ω

∇uε · ∇ψε dx ≤
(∫

Ω

|∇uε|2 dx
) 1

2
(∫

Ω

|∇ψε|2 dx
) 1

2

≤ K1M
1
2
ε | ln ε|

( ε
1

1+σ∫
ε

| ln r|−4d ln r
) 1

2 ≤ K2M
1
2
ε | ln ε|−

1
2 .

The number of circles can be the following:

Mε = | ln ε|1−χ,

where constant χ satisfies 0 < χ < 1. In this case, we have the final estimate.

‖uε − u0‖2
W1

2 (Ω)
≤ C| ln ε|−

χ
2 . (35)

2. With Meyers

Suppose that the following is the case.

p1 = 2 + δ > 2, p2 =
2 + δ

1 + δ
< 2.

We obtain the following.

∫
Ω

∇uε · ∇ψε dx ≤
(∫

Ω

|∇uε|p1 dx
) 1

p1
(∫

Ω

|∇ψε|p2 dx
) 1

p2

≤ K1M
1

p2
ε ε

2−p2
p2(1+σ) | ln ε|

( ε
1

1+σ∫
ε

| ln r|−2p2 d ln r
) 1

p2 ≤ K2M
1

p2
ε ε

2−p2
p2(1+σ) | ln ε|

1
p2
−1.

In this case, to retain the same logarithmic rate of convergence as in (35), the number of
circles is as follows.

Mε = ε
− δ

(1+δ)(1+σ) | ln ε|
1

1+δ−χ, 0 < χ <
1

1 + δ
,

Alternatively, by keeping the logarithmic number of holes Mε, we obtain the power estimate
of convergence.

5. Discussion

Analogous results can be obtained for general perforated domains and porous media
with periodic, almost periodic, nonperiodic and random structures.

6. Materials and Methods

In this paper, we used integral estimates of different types, Sobolev inequalities and
Sobolev embedding theorems. It should be noted that the obtained inequalities (higher
integrability) allowed increasing the rate of convergence and a priori estimates of solutions
to homogenization problems in domains perforated along the boundary (refer to such
problems with regular estimates, for example, in [10]). Similar problems with concentrated
masses along the boundary can be observed in [19]. We also note recent investigations on
the topic raised in paper ([20–22]).
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