
mathematics

Article

Fast-Slow Coupling Dynamics Behavior of the van der
Pol-Rayleigh System

Danjin Zhang and Youhua Qian *

����������
�������

Citation: Zhang, D.; Qian, Y.

Fast-Slow Coupling Dynamics

Behavior of the van der Pol-Rayleigh

System. Mathematics 2021, 9, 3004.

https://doi.org/10.3390/

math9233004

Academic Editors: Youming Lei and

Nikolai A. Kudryashov

Received: 5 November 2021

Accepted: 22 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China;
zhangdj@zjnu.edu.cn
* Correspondence: qyh2004@zjnu.edu.cn

Abstract: In this paper, the dynamic behavior of the van der Pol-Rayleigh system is studied by using
the fast–slow analysis method and the transformation phase portrait method. Firstly, the stability
and bifurcation behavior of the equilibrium point of the system are analyzed. We find that the system
has no fold bifurcation, but has Hopf bifurcation. By calculating the first Lyapunov coefficient, the
bifurcation direction and stability of the Hopf bifurcation are obtained. Moreover, the bifurcation
diagram of the system with respect to the external excitation is drawn. Then, the fast subsystem
is simulated numerically and analyzed with or without external excitation. Finally, the vibration
behavior and its generation mechanism of the system in different modes are analyzed. The vibration
mode of the system is affected by both the fast and slow varying processes. The mechanisms of
different modes of vibration of the system are revealed by the transformation phase portrait method,
because the system trajectory will encounter different types of attractors in the fast subsystem.

Keywords: van der Pol-Rayleigh system; the fast–slow analysis method; transformation phase
portrait; bifurcation

1. Introduction

Nonlinear oscillators appear in many applied sciences, involving mechanical engi-
neering, mechanics, chemistry, biology and physics, and have a wide range of engineering
backgrounds. The Duffing [1,2], van der Pol [3,4] and Rayleigh [5,6] oscillators are well-
known models of nonlinear systems in physics and mechanics.

In the wake of the rapid development of the economy and technology, the continuous
emergence of new structures and construction technologies and the increasing aesthetic
needs of the public, pedestrian bridges, stadiums, floors and other structures are becoming
increasingly slender. However, these structures are subjected to walking load, so it is
easy to produce a large-amplitude vibration. The modified hybrid van der Pol-Rayleigh
(MHVR) system proposed by Erlicher et al. [7] is a kind of typical self-excited oscillation
system, which can be suitably applied to the pedestrian walking lateral force model.

As a combination of the two oscillators, the dynamic behavior of the van der Pol-
Rayleigh system has attracted extensive attention. Tang et al. [8] studied the vibration
response and its generation mechanism in the van der Pol-Rayleigh system under slow-
varying periodic excitation, and analyzed the excitation hysteresis behavior and its gen-
eration mechanism of the system. Saha et al. [9] classified the van der Pol oscillator and
Rayleigh oscillator into the general form of the Liénard-Levinson-Smith (LLS) system, and
thus design a generalized van der Pol and Rayleigh oscillator family system with multiple
limit cycles. Hasegawa [10] studied the Jarzynski equality in van der Pol and Rayleigh
oscillators to which a ramp force with a duration τ is applied. In the τ range, the Jarzynski
equality (JE) is basically valid, but not completely satisfied. The work distribution function
(WDF) uses a u-shaped structure with large damping parameters. Jerzy [11] studied the
interactions between two parametrically coupled, self-excited oscillators. The different
types of motion were classified by Lyapunov’s exponent criterion. Veskos and Demiris [12]
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studied the effects of different lower-level building blocks of a robotic swinging system
using the van der Pol and Rayleigh oscillators. The similarities and differences between
these oscillators were analyzed. Chen et al. [13] studied the dynamics of a hybrid van
der Pol-Rayleigh oscillator and discovered new dynamics that are different from van der
Pol and Rayleigh oscillators. At the same time, the van der Pol-Rayleigh system is also
widely used in mechanics, electronic circuits, biomechanics and other engineering areas.
For example, Bartkowiak and Woernle [14] adjusted the parameters of the van der Pol-
Rayleigh oscillator to the given harmonic base excitation, and then added them to the linear
multi-body system. After adjusting the amplitude and phase shift, the vibration absorption
and energy collection tasks were completed. Chen et al. [15] used the multi-scale method
to decouple the van der Pol-Rayleigh equation and applied the discussion results to the
dynamic model of the side-coupling system of a footbridge—a flexible footbridge.

The fast–slow coupling systems can often cause bursting oscillation, which is an
important dynamic behavior. The fast–slow analysis method [16] first proposed by Rinzelis
can be used to reveal the generation mechanism of the bursting response. The bursting
oscillation [17–21] is composed of large and small oscillations alternately in a given period.
Generally speaking, the large-amplitude oscillation is called the spiking state motion, and
its trajectory moves in the large-amplitude limit cycle vector field. The small-amplitude
oscillation is called the quiescent state motion and its trajectory moves within the small-
amplitude limit cycle vector field or the equilibrium attraction region.

In this paper, we will analyze the dynamic response behavior of the van der Pol-
Rayleigh system, reveal the mechanism of vibration generation in different modes and
discuss the transition process among the different types of attractors in the process of rapid
change. In practical engineering, the results of the discussion can be used to reasonably
utilize or avoid these large vibrations in advance, so as to improve the stability of the
equipment, prolong the service cycle and increase the economic and social benefits.

The remainder of this paper is organized as follows. In Section 2, the stability and
bifurcation behavior of the equilibrium point of the system are analyzed. In Section 3, the
fast subsystem is simulated numerically and analyzed with or without external excitation.
In Section 4, the vibration behavior and its generation mechanism of the system in different
modes are analyzed. In Section 5, we draw the conclusions.

2. The System Model and Bifurcation Analysis
2.1. The System Model

The model equation in [7] is:

..
x− ε

.
x
(

1− βx2 − αx
.
x− µ

.
x2
)
+ ω0

2x = Acos(ωt), (1)

where x(t) is a real function, ω0 is the natural frequency of the system, ω is the periodic
excitation frequency, A is the periodic excitation amplitude, ε, β, µ, α are parameters, and
ω0 > 0, ω > 0, α > 0, β > 0, µ > 0, ε ∈ R. Obviously, the system is the Rayleigh oscillator
when β = α = 0; the system is the van der Pol oscillator when α = µ = 0. Therefore, this is
a coupling van der Pol-Rayleigh system.

Let f = Acos(ωt), and Equation (1) can become:{ .
x = y,

.
y = εy

(
1− βx2 − αxy− µy2)−ω0

2x + f .
(2)

When ω � ω0 and ω ≤ 1, we can view f = Acos(ωt) as the slow variable. In
any period t ∈ [t0, t0 + 2π/Ω] corresponding to the natural frequency, the excitation
term f = Acos(ωt) changes between ΩA = Acos(ωt0) and ΩB = Acos(ωt0 + 2πω/Ω),
obviously ΩA ≈ ΩB, so the change in f in any period of the natural frequency is very
small. Regarding f as a generalized parameter of Equation (2), Equation (2) can be called a
generalized autonomous system with respect to f accordingly. We regard the generalized
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autonomous system (2) as the fast subsystem corresponding to the fast variable x and y,
while treating f = Acos(ωt) as the corresponding slow subsystem.

2.2. Bifurcation Analysis

To further reveal the mixed-mode vibration behavior of Equation (2), its bifurcation
behavior with respect to the slow variable f will be discussed.

2.2.1. Equilibrium Analysis and Fold Bifurcation

The equilibrium point of the system is E0
f

ω0
2 , 0, and the Jacobian matrix of the linear

system derived at E0 is

Jε =

(
0 1
−ω0

2 (
1− βx2)ε

)
(3)

The corresponding characteristic equation is

λ2 + pλ + q = 0, (4)

where p =
(

βx2 − 1
)
ε, q = ω0

2. Its eigenvalues are λ1,2 =
−p±
√

p2−4q
2 .

When p > 0, namely f > 1√
β

ω0
2 or f < − 1√

β
ω0

2, the equilibrium point is stable;

conversely, when p < 0, namely − 1√
β

ω0
2 < f < 1√

β
ω0

2, the equilibrium point is unstable.

At the same time, when p > 2
√

q, namely f < −ω0
2
√

2ω0+ε
εβ or f > ω0

2
√

2ω0+ε
εβ , the equi-

librium point is a stable node; when p < −2
√

q, namely −ω0
2
√

ε−2ω0
εβ < f < ω0

2
√

ε−2ω0
εβ ,

the equilibrium point is an unstable node. When 0 < p < 2
√

q, namely −ω0
2
√

2ω0+ε
εβ <

f < − 1√
β

ω0
2 or 1√

β
ω0

2 < f < ω0
2
√

2ω0+ε
εβ , the equilibrium point is a stable focus; when

−2
√

q < p < 0, namely − 1√
β

ω0
2 < f < −ω0

2
√

ε−2ω0
εβ or ω0

2
√

ε−2ω0
εβ < f < 1√

β
ω0

2, the

equilibrium point is an unstable focus.
Because q = ω0

2 > 0, the characteristic Equation (4) has no zero eigenvalue, and the
system (2) has no fold bifurcation.

2.2.2. Hopf Bifurcation

Theorem 1. If f is the bifurcation parameter of the fast subsystem (2), the sufficient and necessary
conditions for the equilibrium point E0

f
ω0

2 , 0 of the fast subsystem to produce Hopf bifurcation at
f = fc are

(1) fc = ± 1√
β

ω0
2;

(2) ε 6= 0.

Proof of Theorem 1. The condition of the characteristic Equation (4) has a pair of pure
imaginary roots: p = 0, q > 0.

Because q = ω0
2 > 0, we can obtain that q > 0.

When p =
(

βx2 − 1
)
ε = 0, we can determine that fc = ± 1√

β
ω0

2. Thus, Equation (2)

may cause the Hopf bifurcation.
The existence of the Hopf bifurcation must also satisfy the transversal condition

Re
(

dλ
d f

)
f= fc
6= 0. The transversal condition of the Hopf bifurcation is proven below.

Taking the partial derivative of both sides of the characteristic Equation (4) with
respect to f , we obtain

dλ

d f
=

−2εβ f λ

εβ f 2 + ω4
0(2λ− ε)

. (5)
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Let λ = iω1, and substitute it into Equation (5) to obtain

dλ

d f
=
−4εβ f ω4

0ω2
1 − 2ε2β f ω1

(
β f 2 −ω4

0
)
i

ε2
(

β f 2 −ω4
0
)2

+ 4ω8
0ω2

1

. (6)

Separate the real part of dλ
d f , and substitute f = ± 1√

β
ω0

2 into Equation (6) to obtain

Re
(

dλ

d f

)
f= fc

= ∓
ε
√

β

ω2
0

. (7)

Thus, when ε 6= 0, determine Re
(

dλ
d f

)
f= fc
6= 0. Therefore, Equation (2) will cause the

Hopf bifurcation when ε 6= 0. �

2.2.3. The First Lyapunov Coefficient

In order to judge the bifurcation direction and the stability of the Hopf bifurcation,
the first Lyapunov coefficient l1 [22] of the system is considered. Firstly, we will shift E0 to
the original point O(0, 0), and the transformation of coordinates is{

X = x− f
ω0

2 ,
Y = y.

(8)

Substitute Equation (8) into Equation (2), and then use x and y to replace X and Y, so
Equation (2) can be converted into

.
x = y,
.
y = −ω0

2x +

(
ε− εβ f 2

ω4
0

)
y + εy

(
−βx2 − 2 f β

ω2
0

x− µy2 − α f
ω2

0
y− αxy

)
.

(9)

Next, transform Equation (9) into

.
X = AX + F(X), X ∈ R2, (10)

where

X =

(
x
y

)
, A =

(
0 1

−ω2
0 ε− εβ f 2

ω4
0

)
, F(X) =

 0

εy
(
−βx2 − 2 f β

ω2
0

x− µy2 − α f
ω2

0
y− αxy

) . (11)

Substitute λ = ±iω1 into characteristic Equation (5), and obtain ω4
0 − β f 2 = 0,

ω2
1 = ω2

0 . Thus,

A =

(
0 1
−ω2

1 0

)
. (12)

The eigenvector of A corresponding to iω1 is called q, and the eigenvector of AT

corresponding to −iω1 is called p. In other words, Aq = iω1q, AT p = −iω1 p, 〈p, q〉 = 1.
Thus, we can calculate the following:

q =

(
1

iω1

)
, p =

(
1
2

− 1
2iω1

)
. (13)

F(x) = O
(
||x||2

)
is a smooth function that can be expanded as

F(x) =
1
2

B(x, x) +
1
6

C(x, x, x) + O
(
||x||4

)
, (14)
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where B(x, x) and C(x, x, x) are bilinear functions, and

Bi(x, y) =
2

∑
j,k=1

∂2Fi(ξ)

∂ξ j∂ξk

∣∣∣∣∣
ξ=0

xjyk, i = 1, 2. (15)

Ci(x, y, z) =
2

∑
j,k,l=1

∂3Fi(ξ)

∂ξ j∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykzl , i = 1, 2. (16)

After calculation, we can obtain

B(x, y) =

(
0

− 2εβ f
ω2

0
x1y2 − 2εβ f

ω2
0

x2y1 − 2εα f
ω2

0
x2y2

)
, (17)

C(x, y, z) =
(

0
−2εβ(x1y1z2 + x1y2z1 + x2y1z1)− 2εα(x1y2z2 + x2y1z2 + x2y2z1)− 6εµx2y2z2

)
. (18)

Then, after a series of calculations, we obtain

l1 = 1
2ω1

Re
[
〈p, C(q, q, q)〉 − 2

〈
p, B

(
q, A−1B(q, q)

)〉
+
〈

p, B
(

q, (2iω1E− A)−1B(q, q)
)〉]

= 1
2ω0

(
2ε2α− εβ− 3εµω2

0
)
. (19)

In [22], we can see that when l1 > 0, the system experiences the subcritical Hopf
bifurcation and an unstable limit cycle is obtained; when l1 < 0, the system experiences the
supercritical Hopf bifurcation and a stable limit cycle is obtained; when l1 = 0, the system
experiences the codimensional 2 degenerate Hopf bifurcation.

Now, fixing the parameters α = 0.1, β = 0.36, µ = 1.25, ω0 = 0.6, we can obtain

l1 =
1
6

(
ε2 − 8.55ε

)
. (20)

Thus, when 0 < ε < 8.55, l1 < 0, the system experiences the supercritical Hopf
bifurcation and the resulting limit cycle is stable. When ε < 0 and ε > 8.55, l1 > 0, the
system experiences the subcritical Hopf bifurcation and the resulting limit cycle is unstable.

2.3. Bifurcation Curve

Fixing the parameters α = 0.1, β = 0.36, µ = 1.25, ω0 = 0.6, ε = 1.5, ω = 0.001, the
bifurcation diagram of the fast subsystem (2) with respect to f can be drawn, as shown
in Figure 1. The red solid line indicates that the equilibrium is stable, the black solid line
indicates that the equilibrium point is unstable, and the green solid line indicates that the
system has a stable limit cycle; these are consistent with the actual characteristics of the
van der Pol-Rayleigh system.

In Figure 1, HB1 and HB2 are Hopf bifurcation points; EP1 and EP2 are limit points,
and also are the saddle of the system, called the turning point. There are four different
equilibrium lines distributed on the equilibrium line N1N2. The first kind of equilibrium
lines are from the point N1 to the point EP1 and from the point EP2 to the point N2, and the
points on this kind of line are stable nodes. The second kind of equilibrium lines are from
the point EP1 to the point HB1 and from the point HB2 to the point EP2, and the points on
this kind of line are stable focuses. The third kind of equilibrium lines are from the point
HB1 to the point F1 and from the point F2 to the point HB2, and the points on this kind of
line are unstable focuses. The fourth kind of equilibrium line is from the point F1 to the
point F2, and the points on this kind of line are unstable nodes.
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Figure 1. Bifurcation diagram of the system (2) with respect to f when α = 0.1, β = 0.36, µ = 1.25,
ω0 = 0.6, ε = 1.5, ω = 0.001.

The images drawn by the software XPPAUT are consistent with the theoretical anal-
ysis, and the type and stability of the system equilibrium point discussed by the linear
characteristic equation derived from the system are consistent with the results obtained by
the actual software application.

3. Numerical Simulation of the System

Fixing the parameters α = 0.1, β = 0.36, µ = 1.25, ω0 = 0.6, the vibration behavior of
the system before and after external excitation is given by numerical simulation.

When A = 0, the system degenerates to the original MHVDR system. The numerical
simulation shows that the system causes a simple periodic vibration, as shown in Figure 2.
The phase plane portrait is a closed elliptical trajectory. Thus, it is also verified that the
system displays periodic motion from another aspect. From Figure 2, we can see that the
system trajectory hardly changes when ε changes.
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Figure 2. The vibration models of the original MHVDR system when A = 0: (a) the phase plane portrait when ε = 1.5;
(b) the time history diagram when ε = 1.5; (c) the phase plane portrait when ε = 3; (d) the time history diagram when ε = 3.

When the slow-varying external excitation f is applied to the system, the system
presents a relatively complex vibration mode, which is not a single vibration mode within
a period, as shown in Figures 3 and 4. The vibration mode is composed of large and small
oscillations alternately in a period.

Figure 3. The time history diagram of the MHVDR system under slow external excitation: (a) A = 2, ε = 1.5, ω = 0.001;
(b) A = 2, ε = 2.3, ω = 0.001; (c) A = 2, ε = 2.3, ω = 0.003; (d) A = 0.8, ε = 2.3, ω = 0.003.
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Figure 4. The phase plane portrait of the MHVDR system under slow external excitation: (a) A = 2, ε = 1.5, ω = 0.001;
(b) A = 2, ε = 2.3, ω = 0.001; (c) A = 2, ε = 2.3, ω = 0.003; (d) A = 0.8, ε = 2.3, ω = 0.003.

Comparing (a) with (b) in Figure 3, the system trajectory hardly changes when ε
changes. Comparing (b) with (c) in Figure 3, the period becomes short when ω changes.
Finally, comparing (c) with (d) in Figure 3, when A changes from 2 to 0.8, its vibration
mode is still in the form of bursting oscillation, but it is more violent than the spiking state
in Figure 3c. Therefore, it can be seen that the parameters have a certain influence on the
bursting oscillation of the system.

4. Mechanism of Vibration Generation in Different Modes

Regarding the external excitation Acos(ωt) as the slow-varying bifurcation parameter
of the fast subsystem, the transformation phase portrait of the fast variables x and the
slow variables Acos(ωt) is drawn. To further reveal the bifurcation mechanism of the
bursting oscillation, the transformation phase portrait is superimposed with the bifurcation
diagram of the fast subsystem about f . Thus, we can further study the vibration response
behavior of the system visually, analyze the transfer process between multiple attractors
in the system, discuss the mechanism of the bursting phenomenon generated and further
explore the influence of external excitation amplitude A on the fast subsystem.

Fixing the parameters α = 0.1, β = 0.36, µ = 1.25, ω0 = 0.6, ε = 1.5, ω = 0.001, we
take the excitation amplitudes A as 0.2, 0.6, 1.8, 12 and 20, respectively. Thus, the time
history diagrams and the superposition diagrams of the system are drawn.

4.1. The Mode of A = 0.2

Letting A = 0.2, we draw the time history diagram and the superposition diagram of
the system, as shown in Figure 5.
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Figure 5. The time history diagram and the superposition diagram of the system when A = 0.2: (a) the time history diagram;
(b) the superposition diagram.

In Figure 5a, the system presents a large vibration mode of periodic vibration with two
frequency coupling. One of the frequencies is the external excitation frequency ω = 0.001,
and the other frequency is close to ω0 = 0.6. The system vibrates at constant amplitude
and high frequency in accordance with the natural frequency of the fast subsystem in each
slow-varying period, which is presented as the spiking state motion.

Figure 5b is the superposition graph drawn, and f = 0.2cos(0.001t) changes within
the interval [−0.2, 0.2]. At this time, the system trajectory is only within the attraction
domain of the limit cycle attractor, the system presents the spiking state motion of high
frequency vibration, and the vibration amplitude is the same as that of the limit cycle.

4.2. The Mode of A = 0.6

When A increases, the vibration state of the system becomes different. When A = 0.6,
the time history diagram and the superposition diagram of the system are drawn, as shown
in Figure 6.

Figure 6. The time history diagram and the superposition diagram of the system when A = 0.6: (a) the time history diagram;
(b) the superposition diagram.

In Figure 6a, we show that the system still presents the spiking state. However, in each
slow-varying period, the amplitudes of the system are not the same, but there are distinct
differences. Thus, it can be judged that the system changes from constant-amplitude,
high-frequency vibration to variable-amplitude, high-frequency vibration.

It can be seen from Figure 6b that the system trajectory spreads towards both sides of
the limit cycle. When f is the Hopf bifurcation point HB2, the system trajectory covers the
whole region. Moreover, the amplitude of the system also changes. As the amplitude of the
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limit cycle decreases, the amplitude of the system is no longer the original high-frequency
vibration amplitude.

4.3. The Mode of A = 1.8

When A continues to increase, the system can display the situation of the coexistence
of the limit cycle attractor and stable equilibrium attractor, resulting in the “bistable state”
situation. Figure 7 plots the time history diagram and the superposition diagram of the
system when the excitation amplitude A increases to 1.8. At this point, the system has a
burst response. Moreover, the system presents the superposition of two vibration modes
of high-frequency, large-amplitude vibration and low-frequency vibration in each slow-
varying period, namely the mixed vibration mode of the spiking state and the quiescent
state alternately in a period.

Figure 7. The time history diagram and the superposition diagram of the system when A = 1.8: (a) the time history diagram;
(b) the superposition diagram.

In Figure 7b, we can see that the system has two Hopf bifurcation points fHB1 = −0.6
and fHB2 = 0.6. When the system trajectory is within the attraction domain of the limit
cycle attractor [−0.6, 0.6], it presents the spiking state mode of high-frequency vibration.
When the system trajectory is within the attractor domain [−1.8,−0.6] and [0.6, 1.8] of
stable equilibrium, the system converges to the stable equilibrium line and presents the
quiescent state mode. In one period, the system trajectory passes through four Hopf
bifurcation points and switches back and forth between the limit cycle attractor and stable
equilibrium attractor, resulting in two spiking states and two quiescent states.

4.4. The Mode of A = 12

When A continues to increase to 12, the time history diagram and the superposition
diagram of the system are drawn, as shown in Figure 8. From Figure 8a, another new
trajectory emerges. At this time, the system trajectory is still affected by the limit cycle
attractor and the stable equilibrium attractor, and the system has the tendency to move
away from and close to the attractor. The spiking state completely disappears, and the
system only presents the quiescent state mode, as shown in Figure 8b.
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Figure 8. The time history diagram and the superposition diagram of the system when A = 12: (a) the time history diagram;
(b) the superposition diagram.

4.5. The Mode of A = 20

When A continues to increase to 20, the time history diagram and the superposition
diagram of the system are drawn, as shown in Figure 9. Figure 9b plots the superposition
diagram, from which it can be seen that the system trajectory slowly moves around the
limit cycle and the equilibrium point. As ω0 weakens, the attractivity of the attractor also
weakens, and the influence of periodic excitation becomes more and more significant.

Figure 9. The time history diagram and the superposition diagram of the system when A = 20: (a) the time history diagram;
(b) the superposition diagram.

4.6. Summary

To sum up, both fast- and slow-varying processes affect the vibration mode of the
system. When A is small, the system has two kinds of frequencies and is more affected by
the fast-varying process. When A gradually increases, f increases, and the influence of the
slow-varying process is gradually reflected. At this time, the bursting phenomenon will
occur. When A reaches a certain value, the system is only affected by the slow-varying
process and presents a simple periodic vibration mode.

In Figures 5–8 and 9b, we reveal the vibration mode mechanism of (a), and f vibrates
in [−A, A]. The system trajectory encounters different types of attractors in the fast
subsystem, resulting in different vibration modes. When A is small, the system trajectory
presents the spiking state under the influence of stable limit cycle attractor. As A increases
gradually, the system trajectory will be affected by both the limit cycle attractor and stable
equilibrium attractor, which shows a “bistable state” bursting situation. Moreover, the
spiking state and the quiescent state alternately appear in the same period. Finally, the
influence of periodic excitation is increasing, the attraction of the fast subsystem is becoming
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weaker and weaker, the system appears a single periodic motion, and the trajectory moves
around the limit cycle and the equilibrium point.

5. Conclusions

In this paper, the dynamic behavior of the van der Pol-Rayleigh system with the
double Hopf bifurcations generated by external excitation is studied by the fast–slow
analysis method.

Firstly, the stability and bifurcation behavior of the equilibrium point of the system
(2) are analyzed. By analyzing the characteristic equation, we know that the equilibrium
point of the system has different properties under different conditions. In addition, the
system has no fold bifurcation point, but may have a Hopf bifurcation point. By calculating
the Hopf bifurcation’s transversality condition, we find that the Hopf bifurcation theorem
holds and a Hopf bifurcation point exists in the system. By calculating the first Lyapunov
coefficient, the bifurcation direction and stability of Hopf bifurcation are obtained.

Then, the fast subsystem is simulated numerically and analyzed with or without
external excitation. By comparing the time history diagrams with different values, it is
found that the parameters have a certain influence on the bursting oscillation of the system.

Finally, the vibration mechanism of the system under different modes is analyzed. The
vibration mode of the system is affected by both the fast- and slow-varying processes. The
mechanism of different modes vibration of the system is revealed by the transformation
phase portrait method, because the system trajectory will encounter different types of
attractors in the fast subsystem. When the external excitation amplitude is small, the
system trajectory presents the spiking state under the influence of a stable limit cycle
attractor. As the external excitation amplitude increases gradually, the system trajectory
will be affected by both the limit cycle attractor and stable equilibrium attractor, which
shows a “bistable state” bursting situation. When the external excitation amplitude reaches
a certain value, the system is only affected by the slow-varying process and presents a
simple periodic vibration mode.
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