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Abstract: In this paper, we consider the validity of the strong maximum principle for weakly
coupled, degenerate and cooperative elliptic systems in a bounded domain. In particular, we are
interested in the viscosity solutions of elliptic systems with fully nonlinear degenerated principal
symbol. Applying the method of viscosity solutions, introduced by Crandall, Ishii and Lions in
1992, we prove the validity of strong interior and boundary maximum principle for semi-continuous
viscosity sub- and super-solutions of such nonlinear systems. For the first time in the literature, the
strong maximum principle is considered for viscosity solutions to nonlinear elliptic systems. As a
consequence of the strong interior maximum principle, we derive comparison principle for viscosity
sub- and super-solutions in case when on of them is a classical one. The main novelty of this work is
the reduction of the smoothness of the solution. In the literature the strong maximum principle is
proved for classical C2 or generalized C1 solutions, while we prove it for semi-continuous ones.

Keywords: strong maximum principle; degenerate fully non-linear elliptic systems; viscosity solutions

1. Introduction

In this paper, we give the latest result of research on the validity of Maximum Principle
(MP) for fully nonlinear, weakly-coupled elliptic systems.

In 1927, the study on MP was started by E. Hopf with his notorious paper [1]. He
studied a strictly elliptic operator

Lu = −
n

∑
i,j=1

aij(x)Diju +
n

∑
i=1

bi(x)Diu + c(x)u

in some domain Ω ⊆ Rn. Hopf’s maximum principle states that if c = 0 and Lu ≥ 0
(Lu ≤ 0) in Ω, then u is a constant if u it attains a maximum (minimum) at some interior
point for Ω. Moreover, suppose c ≥ 0 and c/λ(x) is bounded, where λ(x) is the function
from the ellipticity condition

0 < λ(x) · |ξ|2 ≤
n

∑
i,j=1

aij(x)ξiξ j ≤ Λ(x) · |ξ|2, x ∈ Ω, ξ 6= 0,

Then, u does not attain non-negative maximum (non-positive minimum) at interior for Ω
point, if u is not a constant. Earlier results on Hoph maximum principle under much more
restrictive hypothesis are discussed in [2] page 156.

Following E. Hopf, the classical maximum principle was discussed in many works, in
between them the famous books of M. Protter and H. Weinberger [2] and D. Gilbarg and N.
Trudinger [3], as well in the survey paper of P. Pucci and Serrin J.P [4], etc. Analysis of the
classical Hopf MP is given in [4] as well. The correlation between positivity, maximum and
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comparison principles for cooperative and non-cooperative elliptic systems is studied in [5].
Complete results for validity of the classical maximum principle for linear elliptic operators
are proved by H. Berestycki, L. Nirenberg and S.R.S. Varadhan. In [6], the authors are given
necessary and sufficient conditions for the validity of MP, namely, the positiveness of the
first eigenvalue of the operator with null Dirichlet boundary data.

Despite the complete studies of MP for elliptic equations, it is still a matter of interest
for systems of elliptic PDEs. For instance, MP for linear cooperative elliptic systems is

proved in [7] under some structural conditions, in between them |bk
i (x)|

λ(x) to be bounded for
all x ∈ Ω, i and k. Here, λ is the function from the ellipticity condition. Remark 1.7 in the
same paper concerns the validity of the strong maximum principle under the structural
condition ψ (Definition 1.1 of the same paper), namely, the existence of a positive in Ω
function ψ(x) ∈ C2(Ω) such that Lk(ψ)− f k ≥ 0 in Ω.

A further example for recent research on maximum principles can be found in [8]. The
author introduces a rather restricting structural condition “c” on the inward unit normal
vector ν. It states that ν is a left-eigenvector of {bk

i } at any point of ∂Ω. Furthermore, the
scalar product (ν. f ) is non-negative. Under condition “c”, the author proves the validity
of MP. This way, the usual condition for the validity of MP—cooperativeness and non-
cooperativeness—is replaced by condition “c”. Although in [8] the proves are given for
parabolic systems, they can be applied to elliptic ones as well.

Another interesting proof of MP for cooperative elliptic systems is given in [9], where
a fixed point index property is used.

In [10], the MP is applied to the problem of the minimal matrix norm of a characteristic
matrix. Under different conditions, it is proved that the norm of every C2 smooth solution
of an elliptic system has no positive local maximums in the domain.

MP for problems with non-Dirichlet boundary conditions is studied as well. The
validity of MP for degenerate oblique derivative problem for elliptic equations is proved
in [11] (Lemma 2.1.2, p. 71), for the particular case when boundary vector field violates
Schapiro–Lopatinski condition. In the same paper, the uniqueness of the solutions is proved
by MP, as well for estimates of max. norm of the solutions. MP for nonlinear cooperative
elliptic systems with mixed boundary conditions is proved in [12]. Furthermore, the strong
MP is proved in [13] for vector bundles on Riemannian manifolds.

The strong MP is considered in [14] for weak solutions of quasi-linear elliptic equations
on Lorentzian and Riemannian manifolds.

The authors studied the validity of MP for cooperative elliptic systems in several
papers. In [15], the strong interior and boundary MP is proved for the classical sub- and
super-solutions of linear elliptic system

Lkuk = −
n

∑
i,j=1

∂

∂xi

(
ak

ij(x)
∂uk

∂xj

)
+

n

∑
i=1

bk
i (x)

∂uk

∂xi
+

N

∑
l=1

mkl(x)ul + f k(x)

in a bounded domain, k = 1, . . . , N. For linear systems, if the maximum is attained at some
interior point for one component of the solution u = (u1, . . . , uN), then at the same point is
attained the maximum for all components of the vector u.

In [16], strong interior and boundary MP is proved for the classical sub- and super-
solutions of quasi-linear systems of the type

Lkuk = −
n

∑
i,j=1

∂

∂xi

(
ak

ij(x)
∂uk

∂xj

)
+ Fk(x, u1, ..., uN ,

∂uk

∂x1
, ...,

∂uk

∂xn
).

As a natural development of the works above, in this article we study MP for viscosity
solutions of fully nonlinear quasi-monotone elliptic systems. In their pioneering work of
1991 [17], Ishii and Koike consider viscosity solutions for systems of fully nonlinear second
order elliptic equations. In particular, they generalize the Peron’s method for existence of
viscosity solutions for quasi-monotone systems. Moreover, the authors prove uniqueness
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and comparison principle for semi-continuous viscosity sub- and super-solutions. Note that
the quasi-monotone systems are more general than the cooperative ones, see Example 2.3
in [17]. The work in [17] is essential for our research inspiring the authors to consider
viscosity solutions of nonlinear elliptic systems.

In the present paper, we prove strong interior and boundary MP for semi-continuous
viscosity sub- and super-solutions of fully nonlinear, degenerate and cooperative elliptic
systems. Viscosity solutions have applications in some real-world and financial processes,
for instance, in the theory of the optimal control and the theory of differential games,
where the value functions are viscosity solutions of the associated systems, see in [18–21].
Let us recall that the main advantage of the notion of viscosity solutions is the minimal
smoothness of the sub-and super-solutions, which are only semi-continuous functions.
Therefore, the value function is only continuous one. Finally, the strong interior and
boundary MP for viscosity sub- and super-solutions shed light on the qualitative properties
of the solutions to system (1) as uniqueness, perturbation and asymptotic questions, etc.

Furthermore, comparison principle for viscosity sub-and-super solutions to (1), when
on of them is classical sub- or super-solution is also proved in Theorem 2 under the same
conditions for the validity of the strong interior MP.

The study of the validity of strong MP for quasi-linear systems with non-linear princi-
pal symbol is a matter of future research.

Let Ω ⊂ Rn be a bounded domain. Let us consider in Ω the weakly coupled nonlinear
system

Fk(x, u1(x), . . . , uN(x), Duk(x), D2uk(x)) = 0 (1)

for k = 1, . . . , N and x ∈ Ω, where

Fk(x, u1(x), . . . , uN(x), Duk(x), D2uk(x)) = Gk(x, uk(x), Duk(x), D2uk(x)) +
N

∑
j=1

ckj(x)uj(x)

Here, Gk(x, zk, pk, Xk) ∈ C(Ω × R × Rn × Sn), where Sn denotes the set of all real
symmetric matrices of order n, and ckj(x) ∈ C(Ω) for k, j = 1, . . . , N

We suppose that (1) is a quasi-monotone system, i.e.,

ckj ≤ 0 for k 6= j,
n

∑
j=1

ckj(x) ≥ 0 in Ω (2)

(see in [17]) as well as stronger condition

ckj ≤ 0 for k 6= j,
n

∑
j=1

ckj(x) ≥ λ > 0 in Ω and k = 1, . . . , N (3)

Condition (3) is similar to condition (A3) in [17] for weakly coupled system (1).
Moreover, suppose the system (1) is a degenerate elliptic one, i.e.,

Gk(x, zk, pk, Xk) ≤ Gk(c, zk, pk, Yk) whenever Xk ≥ Yk (4)

and monotone increasing one w.r.t. z variable, i.e.,

Gk(x, zk, pk, Xk) ≥ Gk(c, yk, pk, Xk) whenever zk ≥ yk (5)

for k = 1, . . . , N, x ∈ Ω, pk ∈ Rn, Xk, Yk ∈ Sn.
As the principal symbols in (1) are nonlinear ones, one expects low smoothness of the

solution. That is why the class of viscosity solutions is a proper choice of functional space
to work in.

Let us recall the definition of viscosity sub- and super-solution to (1) (Definition 2.1,
page 1997, [17]):

Definition 1. Let u = (u1, . . . , uN) : Ω→ RN be a locally bounded function.
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(i) We call u a viscosity sub-solution to (1) if whenever ψ ∈ C2(Ω)), 1 ≤ k ≤ N and uk∗ − ψ
attains its local maximum at x ∈ Ω, then

Fk
∗ (x, u∗(x), Dψ, D2ψ) ≤ 0.

(ii) We call u a viscosity super-solution to (1) if whenever ψ ∈ C2(Ω)), 1 ≤ k ≤ N and
uk
∗ − ψ attains its local minimum at x ∈ Ω, then

Fk∗(x, u∗(x), Dψ, D2ψ) ≥ 0.

(iii) If u is both viscosity sub- and super-solution to (1) the we call it a viscosity solution to (1).
Here,

uk∗ = lim sup
ε→0

{uk∗(y) : |x− y| < ε, y ∈ Ω}

and
uk
∗ = lim inf

ε→0
{uk∗(y) : |x− y| < ε, y ∈ Ω}.

Note that uk∗ = uk for uk ∈ USC(Ω), uk
∗ = uk for uk ∈ LSC(Ω) and Fk∗ = Fk

∗ = Fk for
Fk ∈ C(Ω).

Further in the text, USC(Ω) is the set of upper semi-continuous functions u = (u1, . . . , uN) :
Ω→ RN . We use the notion “absolute maximum” as well.

Definition 2. If sup
Ω

uk(x) = Mk then M = max
1≤k≤N

{Mk}, we call the absolute maximum of

u(x).

2. Strong Interior Maximum Principle

The strong interior MP for viscosity sub-solutions of the nonlinear, weakly coupled
and cooperative system (1) is formulated in the following theorem:

Theorem 1. (Strong interior maximum principle) Suppose conditions (3)–(5) hold. If u(x) ∈
USC(Ω), u = (u1, . . . , uN), is a viscosity sub-solution to (1) and

Fk(x, 0, 0, 0) = Gk(x, 0, 0) ≥ 0 (6)

for x ∈ Ω and k = 1, 2, . . . , N, then u(x) does not attain absolute positive maximum at an interior
point of Ω.

In the proof of Theorem 1 is used the notion of super- and sub-jet of second order. For
the sake of completeness, the definition follows:

Definition 3. Superjet of second order J2,+u(x) of function u : Ω → R at point x ∈ Ω is
defined as

J2,+u(x) =
{
(p, X) ∈ Rn × Sn : u(x + h) ≤ u(x) + 〈p, h〉+ 1

2
〈Xh, h〉+ σ(|h|2) as h→ 0

}
,

J̄2,+u(x) =
{
(p, X) ∈ Rn × Sn : for some sequence (xk, pk, Xk) ∈ Ω× Rn × Sn,

(pk, Xk) ∈ J2,+u(x) we have (xk, v(xk), pk, Xk)→ (x, v(x), p, X) as k→ ∞
}

.

Subjet of second order J2,−u(x) of function u : Ω→ R at point x ∈ Ω is defined as

J2,−u(x) =
{
(p, X) ∈ Rn × Sn : u(x + h) ≥ u(x) + 〈p, h〉+ 1

2
〈Xh, h〉+ σ(|h|2) as h→ 0

}
.
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J̄2,−u(x) =
{
(p, X) ∈ Rn × Sn : for some sequence (xk, pk, Xk) ∈ Ω× Rn × Sn,

(pk, Xk) ∈ J2,−u(x) we have (xk, v(xk), pk, Xk)→ (x, v(x), p, X) as k→ ∞
}

.

The following proposition (Proposition 2.3 in [17]) states that Definition 3 is equivalent
to Definition 1 as a definition of viscosity solution:

Proposition 1. Let u : Ω̄→ Rm is locally bounded function. Then,
(i) u is a sub-solution to (1) if and only if for every (p, X) ∈ J2,+uk∗(x)

Fk
∗ (x, u∗(x), p, X) ≤ 0;

u is a super-solution to (1) if and only if for every (p, X) ∈ J2,−uk
∗(x))

(Fk∗(x, u∗(x), p, X) ≥ 0.

(ii) Suppose that F∗ (F∗) is quasi-monotone. Then, u is a sub-solution (super-solution) to (1)
if and only if

Fk
∗ (x, u∗(x), p, X) ≤ 0 for all (p, X) ∈ J̄2,+uk∗(x)

(Fk∗(x, u∗(x), p, X) ≥ 0 for all (p, X) ∈ J̄2,−uk
∗(x)

Proof of Theorem 1. Without loss of generality let us suppose that the absolute maximum
is attained for u1(x1), i.e., u1(x1) = M for some x1 ∈ Ω. As u1(x) ≤ M and u1(x1) = M,
then (0, 0) ∈ J2,+u1(x1). From Definition 1, (3) and (5), we get the following impossible
chain of inequalities:

0 ≥ G1(x1, u1(x1), 0, 0) +
N

∑
j=1

c1j(x1)uj(x1)

= G1(x1, M, 0, 0) + M
N

∑
j=1

c1j(x1) +
N

∑
j=2

c1j(x1)
(

uj(x1)−M
)

≥ G1(x1, 0, 0, 0) + Mλ ≥ Mλ > 0.

Theorem 1 is proved.

As a consequence of Theorem 1, we obtain the following comparison principle for
viscosity sub-and super-solutions to (1) when one of them is a classical one:

Theorem 2. Suppose conditions (3)–(5) hold, u = (u1, . . . , uN) and u(x) ∈ USC(Ω) is a
viscosity sub-solution to (1) and v(x), vk(x) ∈ C2(Ω) ∩ C(Ω), k = 1, . . . , N is a classical super-
solution to (1). If uk(x) ≤ vk(x) for k = 1, . . . , N and x ∈ ∂Ω, then uk(x) ≤ vk(x) for x ∈ Ω
and k = 1, . . . , N.

Proof of Theorem 2. Let us consider the system

f k(x, w1(x), . . . , wN(x), Dwk(x), D2wk(x)) = 0 (7)

for k = 1, . . . , N and x ∈ Ω, where

f k(x, w1(x), . . . , wN(x), Dwk(x), D2wk(x))

= Gk(x, wk(x) + vk(x), Dwk(x) + Dvk(x), D2wk(x) + D2vk(x))
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+
N

∑
j=1

ckj(x)(wk(x) + vk(x))

The function w(x) = u(x) − v(x), wk(x) ∈ USC(Ω), k = 1, . . . , N is a viscosity
sub-solution to (7). Indeed, if (pk, Xk) ∈ J2,+wk(x), we get by Remark 2.7 in [22] that
(pk + Dvk(x), Xk + D2vk(x)) ∈ J2,+uk(x). Thus, the following inequality holds:

f k(x, w1(x), . . . , wN(x), pk, Xk)

= Gk(x, uk(x), pk + Dvk(x), Xk + D2vk(x))

+
N

∑
j=1

ckj(x)uk(x) ≤ 0,

because u(x) is a viscosity sub-solution to (1).
As for w = 0 we get

f k(x, 0, 0, 0) = Gk(x, vk(x), Dvk(x), D2vk(x)) +
N

∑
j=1

ckj(x)vk(x) ≥ 0,

because v(x) is a classical super-solution and therefore condition (6) is satisfied.
From the strong interior maximum principle it follows that w(x) does not attain

positive absolute maximum in Ω. Thus either the absolute maximum is attained on ∂Ω,
i.e., M ≤ 0 because wk(x) ≤ 0 on ∂Ω, or the absolute maximum is attained at some interior
point of Ω and hence M ≤ 0 again. As uk(x)− vk(x) ≤ Mk ≤ M ≤ 0 for every x ∈ Ω and
k = 1, . . . , N, Theorem 2 is proved.

3. Strong Boundary Maximum Principle

Having the strong interior MP at hand, one can easily derive the strong boundary MP
for the viscosity subs-solutions of the nonlinear cooperative elliptic system (1).

Theorem 3. (Strong boundary MP) Assume that conditions (3)–(6) hold and Ω satisfies the
interior sphere condition. Let u(x) = (u1(x), . . . , uN(x)), uk(x) ∈ USC(Ω̄) be a viscosity sub-
solution to (1). If u(x) attains an absolute positive maximum M at some boundary point x0 ∈ ∂Ω,
i.e., uk(x0) = M for some 1 ≤ k ≤ N, then for every non-tangential direction ρ pointing into Ω
the following inequality holds:

lim
t→+0

uk(x0 + ρt)− uk(x0)

t
< 0 (8)

Proof of Theorem 3. Without loss of generality we suppose that k = 1, i.e., u1(x0) = M.
It follows from Theorem 1 that u1(x) < M for every x ∈ Ω. After shifting the origin,

if necessary, let BR = {|x| < R} be an interior ball touching the boundary of Ω only at
the point x0. Let us consider function v(x) such that v1(x) = M − e−β|x|2/2 + e−βR2/2,
vk(x) = M for k = 2, . . . , N, where constant β satisfies conditions (9)–(12). In the annulus
U = {x ∈ Ω : r < |x| < R} the function v(x) is a classical super-solution to (1).

Indeed, for 2 ≤ k ≤ N we have

Fk(x, v1(x), . . . , vN(x), Dvk(x), D2vk(x)) = Gk(x, M, 0, 0) +
N

∑
j=1

ckj(x)vj(x)

≥ Gk(x, 0, 0, 0) + M
N

∑
j=1

ckj(x)− ck1

[
e−β|x|2/2 − e−βR2/2

]
≥ Mλ > 0,

because ck1(x) ≤ 0 for k = 2, . . . , N from (3).
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For k = 1, we get

F1(x, v, Dv1, D2v1) = G1
(

x, M− e−β|x|2/2 + e−βR2/2,−De−β|x|2 ,−D2e−β|x|2
)

+M
N

∑
j=1

c1j(x)− c11

[
e−β|x|2/2 − e−βR2/2

]
≥ Mλ− c11e−β|x|2/2 + G1

(
x, 0, βxe−β|x|2/2, (βI − β2x⊗ x)e−β|x|2/2

)
≥ Mλ− c11e−βr2/2 + G1

(
x, 0, βxe−β|x|2/2, βIe−β|x|2/2

)
If
∣∣G1(x, 0, q, T)− G1(x, 0, 0, 0)

∣∣ < Mλ
2 for |q|+ ||T|| < δ and x ∈ Ū, then

G1
(

x, 0, βxe−β|x|2/2, βIe−β|x|2/2
)
≥ G1(x, 0, 0, 0)− Mλ

2

whenever ∣∣∣βxe−β|x|2/2
∣∣∣ ≤ βRe−βr2/2 <

δ

2
(9)

and

‖βIe−β|x|2/2‖ < δ

2
. (10)

Finally, we get

F1(x, v, Dv1, D2v1) ≥ Mλ− c11(x)e−βr2 − Mλ

2
> 0

when

sup
Ω̄

(
c11(x)e−βr2/2

)
<

Mλ

2
. (11)

As sup
x∈∂Br

u1(x) = m1 < M, if

e−βr2/2 < M−m1, (12)

then
sup

x∈∂Br

u1(x) = m1 < M− e−βr2/2 ≤ M− e−β|x|2/2 + e−βR2/2 = v1(x)

for x ∈ ∂Br.
Thus, u1(x)− v1(x) < 0 on ∂Br and trivially uk(x)− vk(x) = uk(x)−M < 0 on ∂Br.
By the strong interior maximum principle, the function u(x)− v(x) does not attain a

positive absolute maximum at an interior point of U. As uk(x)− vk(x) = uk(x)−M ≤ 0
on ∂BR for k = 1, . . . , N, it follows that uk(x) ≤ vk(x) for x ∈ U and k = 1, . . . , N.

For k = 1, we get

u1(x) ≤ M− e−β|x|2/2 + e−βR2/2 = v1(x),

u1(x0) = v1(x0) = M.

Thus, for every direction ρ such that (x0, ρ) < 0 we obtain the inequality

lim
x→+0

u1(x0 + ρt)− u1(x0)

t
≤ lim sup

x→+0

e−βR2/2 − e−β|x0+tρ|2/2

t
= β(x0, ρ) · e−βR2/2 < 0.

The proof is complete.
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4. Conclusions

MP is a useful tool in studying the quantitative properties of the solution as uniqueness
and some a-priori estimates.

Conditions (3)–(6) are sufficient ones for validity of the interior MP for the viscosity
solutions of elliptic system (1) with fully nonlinear degenerated principal symbol. Fur-
thermore, if one of viscosity sub- and super solutions is a classical one then comparison
principle holds as well.

If conditions (3)–(6) and (8) hold, then the boundary MP holds for system (1).
The main novelty of this work is the reduction of the smoothness of the solution. In

the literature, the strong maximum principle is proved for classical C2 or generalized C1

solutions, while we prove it for semi-continuous ones.
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