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Abstract

:

In this paper, we study the semi-Hyers–Ulam–Rassias stability and the generalized semi-Hyers–Ulam–Rassias stability of some partial differential equations using Laplace transform. One of them is the convection partial differential equation.






Keywords:


semi-Hyers–Ulam–Rassias stability; generalized semi-Hyers–Ulam–Rassias stability; Laplace transform; convection partial differential equation




MSC:


44A10; 35B35












1. Introduction


It is well known that the study of Ulam stability began in 1940, with a problem posed by Ulam concerning the stability of homomorphisms [1]. In 1941, Hyers [2] gave a partial answer in the case of the additive Cauchy equation in Banach spaces.



After that, Obloza [3] and Alsina and Ger [4] began the study of the Hyers–Ulam stability of differential equations. The field continued to develop rapidly. Linear differential equations were studied in [5,6,7], integral equations in [8], delay differential equations in [9], linear difference equations in [10,11], other equations in [12], and systems of differential equations in [13]. A summary of these results can be found in [14].



The Hyers–Ulam stability of linear differential equations was studied using the Laplace transform by H. Rezaei, S. M. Jung, and Th. M. Rassias [15], and by Q. H. Alqifiary and S. M. Jung [16]. This method was also used in [17,18,19].



The study of the stability of partial differential equations began in 2003, with the paper [20] of A. Prastaro and Th.M. Rassias. The Ulam–Hyers stability of partial differential equations was also studied in [21,22,23,24,25,26].



In [27], M. N. Qarawani used the Laplace transform to establish the Hyers–Ulam–Rassias–Gavruta stability of initial-boundary value problem for heat equations on a finite rod:


    ∂ u   ∂ t   =  a 2     ∂ 2  u   ∂  x 2    , t > 0 , 0 < x < l .  











In [28], D.O. Deborah and A. Moyosola studied nonlinear, nonhomogeneous partial differential equations using the Laplace differential transform method:


     d 2  w  x , t    d  t 2    +  a n   x  R w  x , t  +  b n   x  S w  x , t  = f  x , t  , t > 0 , x > 0 , n ∈ N ,  








where    a n   x  ,  b n   x    are variable coefficients,   n ∈ N ,  R   is the linear operator, S is the nonlinear operator, and   f  x , t    is the source function.



In [29], E. Bicer used the Sumudu transform to study the equation:


   y t  − k  y  x x   = 0 , k  a  positive  real   constant ,    x , t  ∈ D ,  D =   x 0  , x  ×  0 , ∞  .  











In [30], the Poisson partial differential equation


   u  x x    x , y  +  u  y y    x , y  = g  x , y   








is studied via the double Laplace transform method (DLTM).



In the following sections, we will study the semi-Hyers–Ulam–Rassias stability and the generalized semi-Hyers–Ulam–Rassias stability of some partial differential equations using Laplace transform. One of them is the convection partial differential equation:


    ∂ y   ∂ t   + a   ∂ y   ∂ x   = 0 ,  a > 0 ,  x > 0 ,  t > 0 , y  0 , t  = c ,  y  x , 0  = 0 .  



(1)







A physical interpretation [31] of these equations is a river of solid goo, since we do not want anything to diffuse. The function   y = y ( x , t )   is the concentration of some toxic substance. The variable x denotes the position where   x = 0   is the location of a factory spewing the toxic substance into the river. The toxic substance flows into the river so that at   x = 0  , the concentration is always C. We also study the semi-Hyers–Ulam–Rassias stability of the following equation:


    ∂ y   ∂ t   +   ∂ y   ∂ x   − x = 0 , x > 0 , t > 0 , y  0 , t  = 0 , y  x , 0  = 0 .  



(2)







Our results regarding Equation (1) complete those obtained by S.-M. Jung and K.-S. Lee in [22]. In [22], the following equation:


  a   ∂ y  x , t    ∂ x   + b   ∂ y  x , t    ∂ t   + c y  x , t  + d = 0 ,  a , b ∈ R ,  b ≠ 0 ,  c , d ∈ C , with  ℜ  c  ≠ 0 ,  



(3)




where   ℜ ( c )   denotes the real part of c, was studied. In our paper, we consider the case   c = 0   in Equation (3). Moreover, we also study the generalized stability. The method used in [22] was the method of changing variables.




2. Preliminaries


We first recall some notions and results regarding the Laplace transform.



Let   f :  0 , ∞  → R   be a piecewise differentiable and of exponential order, that is   ∃ M > 0   and    α 0  ≥ 0   such that


   f  t   ≤ M ·  e   α 0  t   ,  ∀ t > 0 .  











We denote by   L [ f ]   the Laplace transform of the function f, defined by


  L  [ f ]   ( s )  = F  ( s )  =  ∫ 0 ∞  f  ( t )   e  − s t   d t .  











Let


  u  t  =      0 ,  if  t ≤ 0       1 ,  if  t > 0       








be the unit step function of Heaviside. We write   f ( 0 )   instead of the lateral limit   f (  0 +  )  . The following properties are used in the paper:


  L   t n    s  =   n !   s  n + 1    ,  s > 0 ,  n ∈ N ,  










   L  − 1     1  s n     t  =   t  n − 1     n − 1  !   u  t  ,  










  L  [  f ′  ]   ( s )  = s L  [ f ]   ( s )  − f  ( 0 )  ,  










  L  f  t − a  u  t − a    s  =  e  − a s   F  s  ,  a > 0 ,  








hence,


   L  − 1    [  e  − a s   F  s  ]   t  = f  t − a  u  t − a  .  











We now consider the function   y :  0 , ∞  ×  0 , ∞  → R , y = y  x , t  ,   a piecewise differentiable and of exponential order with respect to t. The Laplace transform of y with respect to t is as follows:


  L  y  x , t   =  ∫  0  ∞  y  x , t   e  − s t   d t ,  








where x is treated as a constant. We also denote the following:


  L  y  x , t   = Y  x , s  = Y  x  = Y .  











We treat Y as a function of x, leaving s as a parameter. We then have the following:


  L    ∂ y   ∂ t    = s Y  x , s  − y  x , 0  ,  










  L     ∂ 2  y   ∂  t 2     =  s 2  Y  x , s  − s y  x , 0  −   ∂ y   ∂ t    ( x , 0 )  .  











Since we transform with respect to t, we can move   ∂  ∂ x    to the front of the integral; hence, we have:


  L    ∂ y   ∂ x    =   d Y   d x   =  Y ′   x  .  











Similarly,


  L     ∂ 2  y   ∂  x 2     =  ∫  0  ∞     ∂ 2  y   ∂  x 2     e  − s t   d t =  d  d  x 2     ∫  0  ∞  y  x , t   e  − s t   d t =   d Y   d  x 2    =  Y ″   x  .  











For the Laplace transform properties and applications, see [31,32].




3. Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation


Let   ε > 0  . We also consider the following inequality:


     ∂ y   ∂ t   + a   ∂ y   ∂ x    ≤ ε ,  



(4)




or the equivalent


  − ε ≤   ∂ y   ∂ t   + a   ∂ y   ∂ x   ≤ ε .  



(5)







Analogous to [33], we give the following definition:



Definition 1.

The Equation (1) is called semi-Hyers–Ulam–Rassias stable if there exists a function   φ :  0 , ∞  ×  0 , ∞  →  0 , ∞   , such that for each solution y of the inequality (4), there exists a solution   y 0   for the Equation (1) with


    y  x , t  −  y 0   x , t   ≤ φ  ( x , t )  ,  ∀ x > 0 , t > 0 .   













Theorem 1.

If a function   y :  0 , ∞  ×  0 , ∞  → R   satisfies the inequality (4), then there exists a solution    y 0  :  0 , ∞  ×  0 , ∞  → R   for (1), such that


    y  x , t  −  y 0   x , t   ≤      ε t ,  t <  x a        ε  x a  ,  t ≥  x a       ,   



(6)




that is, the Equation (1) is considered semi-Ulam–Hyers–Rassias stable.





Proof. 

We apply the Laplace transform with respect to t in (5); thus, we have the following:


  −  ε s  ≤ s Y  x  − y  x , 0  + a  Y ′   x  ≤  ε s  .  











Since   y  x , 0  = 0 ,   dividing by a we get the following:


  −  ε  a s   ≤  Y ′   x  +  s a  Y  x  ≤  ε  a s   .  











We now multiply by   e   s a  x    and we obtain this equation:


  −  ε  a s    e   s a  x   ≤  e   s a  x    Y ′   x  +  s a   e   s a  x   Y  x  ≤  ε  a s    e   s a  x   ,  








hence,


  −  ε  a s    e   s a  x   ≤  d  d x     e   s a  x   Y  x   ≤  ε  a s    e   s a  x   .  











Integrating from 0 to x we get the following:


  −  ε  a s     e   s a  x    s a    |  0  x  <  e   s a  x   Y  x   |  0  x  ≤  ε  a s    e   s a  x    |  0  x  ,  








that is,


  − ε    e   s a  x    s 2   −  1  s 2    ≤  e   s a  x   Y  x  − Y  0  ≤ ε    e   s a  x    s 2   −  1  s 2    .  











But   Y  0  = L  [ y  0 , t  ]  = L  [ c ]  =  c s   , so we obtain:


  − ε    e   s a  x    s 2   −  1  s 2    ≤  e   s a  x   Y  x  −  c s  ≤ ε    e   s a  x    s 2   −  1  s 2    .  











We now multiply by   e  −  s a  x    and we obtain the equation below:


  − ε   1  s 2   −   e  −  s a  x    s 2    ≤ Y  x  − c   e  −  s a  x   s  ≤ ε   1  s 2   −   e  −  s a  x    s 2    .  











We apply the inverse Laplace transform and we obtain the following:


  − ε  t −  t −  x a   u  t −  x a    ≤ y  x , t  − c · u  t −  x a   ≤ ε  t −  t −  x a   u  t −  x a    ,  








that is,


   y  x , t  − c · u  t −  x a    ≤ ε  t −  t −  x a   u  t −  x a    .  











We then put


   y 0   x , t  = c · u  t −  x a   =      0 ,  t <  x a        c ,  t ≥  x a       .  











This is the solution of (1) and the equation below:


   y  x , t  −  y 0   x , t   ≤      ε t ,  t <  x a        ε  x a  ,  t ≥  x a       .  











□






4. Generalized Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation


Let   ϕ :     0 , ∞  × R →  0 , ∞  ,   and   L  ϕ  x , t   = Φ  x , s   . We consider the following inequality:


     ∂ y   ∂ t   + a   ∂ y   ∂ x    ≤ ϕ  x , t  ,  



(7)




or the equivalent


  − ϕ  x , t  ≤   ∂ y   ∂ t   + a   ∂ y   ∂ x   ≤ ϕ  x , t  ,  ∀ x > 0 , t > 0 .  



(8)







Definition 2.

The Equation (1) is called generalized semi-Hyers–Ulam–Rassias stable if there exists a function   φ :  0 , ∞  ×  0 , ∞  →  0 , ∞   , such that for each solution y of the inequality (7), there exists a solution   y 0   for the Equation (1) with


    y  x , t  −  y 0   x , t   ≤ φ  ( x , t )  ,  ∀ x > 0 , t > 0 .   













Theorem 2.

Assume that


    ∫  0  x   e   s a  x   Φ  x , s  d x ≤ Φ  x , s  ,  ∀ x > 0 , s > 0 .   



(9)




If a function   y :  0 , ∞  ×  0 , ∞  → R   satisfies the inequality (7), then there exists a solution    y 0  :  0 , ∞  ×  0 , ∞  → R   for (1), such that


    y  x , t  −  y 0   x , t   ≤  1 a  ϕ  x , t −  x a   ,  ∀ x > 0 , t > 0 ,   








that is, the Equation (1) is considered generalized semi-Hyers–Ulam–Rassias stable.





Proof. 

We apply the Laplace transform with respect to t in (8), so we have the following:


  − Φ  x , s  ≤ s Y  x  − y  x , 0  + a  Y ′   x  ≤ Φ  x , s  .  








Since   y  x , 0  = 0 ,   dividing by a we get the equation below:


  −  1 a  Φ  x , s  ≤  Y ′   x  +  s a  Y  x  ≤  1 a  Φ  x , s  .  











We now multiply by   e   s a  x    and we obtain the following:


  −   e   s a  x   a  Φ  x , s  ≤  e   s a  x    Y ′   x  +  s a   e   s a  x   Y  x  ≤   e   s a  x   a  Φ  x , s  ,  








hence,


  −   e   s a  x   a  Φ  x , s  ≤  d  d x     e   s a  x   Y  x   ≤   e   s a  x   a  Φ  x , s  .  











Integrating from 0 to x we get the following equation:


  −  1 a   ∫  0  x   e   s a  x   Φ  x , s  d x ≤  e   s a  x   Y  x   |  0  x  ≤  ∫  0  x   1 a   e   s a  x   Φ  x , s  d x .  











Using (9), we have


  −  1 a  Φ  x , s  ≤  e   s a  x   Y  x  − Y  0  ≤  1 a  Φ  x , s  .  











But   Y  0  = L  [ y  0 , t  ]  = L  [ c ]  =  c s   , so we obtain


  −  1 a  Φ  x , s  ≤  e   s a  x   Y  x  −  c s  ≤  1 a  Φ  x , s  .  











We now multiply by   e  −  s a  x    and we obtain the following equation:


  −  1 a   e  −  s a  x   Φ  x , s  ≤ Y  x  − c   e  −  s a  x   s  ≤  1 a   e  −  s a  x   Φ  x , s  .  











We apply the inverse Laplace transform and we obtain:


  −  1 a  ϕ  x , t −  x a   ≤ y  x , t  − c · u  t −  x a   ≤  1 a  ϕ  x , t −  x a   ,  








that is,


   y  x , t  − c · u  t −  x a    ≤  1 a  ϕ  x , t −  x a   .  











We then put the following:


   y 0   x , t  = c · u  t −  x a   =      0 , t <  x a        c , t ≥  x a       .  











This is the solution of Equation (1) and the equation below:


   y  x , t  − c  y 0   x , t   ≤  1 a  ϕ  x , t −  x a   .  











□






5. Semi-Hyers–Ulam–Rassias Stability of Equation (2)


Let   ε > 0  . We also consider the following inequality:


     ∂ y   ∂ t   +   ∂ y   ∂ x   − x  ≤ ε ,  



(10)




or the equivalent


  − ε ≤   ∂ y   ∂ t   +   ∂ y   ∂ x   − x ≤ ε .  



(11)







Definition 3.

The Equation (2) is called semi-Hyers–Ulam–Rassias stable if there exists a function   φ :  0 , ∞  ×  0 , ∞  →  0 , ∞   , such that for each solution y of the inequality (10), there exists a solution   y 0   for the Equation (2) with the following:


    y  x , t  −  y 0   x , t   ≤ φ  ( x , t )  ,  ∀ x > 0 , t > 0 .   













Theorem 3.

If a function   y :  0 , ∞  ×  0 , ∞  → R   satisfies the inequality (10), then there exists a solution    y 0  :  0 , ∞  ×  0 , ∞  → R   for (2), such that


    y  x , t  −  y 0   x , t   ≤      ε t ,  t < x       ε x ,  t ≥ x      ,   








that is, the Equation (2) is considered semi-Hyers–Ulam–Rassias stable.





Proof. 

We apply the Laplace transform with respect to t in (11), so we have the equation below:


  −  ε s  ≤ s Y  x  − y  x , 0  +  Y ′   x  − x  1 s  ≤  ε s  .  











Since   y  x , 0  = 0 ,   we get the following:


  −  ε s  ≤  Y ′   x  + s Y  x  − x  1 s  ≤  ε s  .  











We now multiply by   e  s x    and we obtain the following equation:


  −  ε s   e  s x   ≤  e  s x    Y ′   x  + s  e  s x   Y  x  − x   e  s x   s  ≤  ε s   e  s x   .  








hence,


  −  ε s   e  s x   ≤  d  d x     e  s x   Y  x   − x   e  s x   s  ≤  ε s   e  s x   .  











Integrating from 0 to x, we get the following:


  −  ε s    e  s x   s   |  0  x  ≤  e  s x   Y  x   |  0  x  −  1 s   ∫  0  x  x  e  s x   d x ≤  ε s    e  s x   s   |  0  x  .  











Integrating by parts, we get the equation below:


   ∫  0  x  x  e  s x   d x =    x s − 1   e  s x     s 2   +  1  s 2   ,  








hence,


  − ε    e  s x    s 2   −  1  s 2    ≤  e  s x   Y  x  − Y  0  −  1 s      x s − 1   e  s x     s 2   +  1  s 2    ≤ ε    e  s x    s 2   −  1  s 2    .  











But   Y  0  = L  [ y  0 , t  ]  = 0  , so we obtain the following:


  − ε    e  s x    s 2   −  1  s 2    ≤  e  s x   Y  x  −  1 s      x s − 1   e  s x     s 2   +  1  s 2    ≤ ε    e  s x    s 2   −  1  s 2    .  











We now multiply by   e  − s x    and we obtain the following:


  − ε   1  s 2   −   e  − s x    s 2    ≤ Y  x  −  1 s     x s − 1   s 2   +   e  − s x    s 2    ≤ ε   1  s 2   −   e  − s x    s 2    ,  








hence,


  − ε   1  s 2   −   e  − s x    s 2    ≤ Y  x  −  x  s 2   +  1  s 3   −   e  − s x    s 3   ≤ ε   1  s 2   −   e  − s x    s 2    .  











We apply the inverse Laplace transform and we obtain the following equation:


  − ε  t −  t − x  u  t − x   ≤ y  x , t  − x t +  1 2   t 2  −  1 2    t − x  2  u  t − x  ≤ ε  t −  t − x  u  t − x   .  











We then put the following:


   y 0   x , t  = x t −  1 2   t 2  +  1 2    t − x  2  u  t − x  =      x t −  1 2   t 2  ,  t < x        1 2   x 2  ,  t ≥ x      .  











This is the solution of (2) and the equation below:


   y  x , t  −  y 0   x , t   ≤      ε t ,  t < x       ε x ,  t ≥ x      .  











□






6. Conclusions


In this paper, we studied the semi-Hyers–Ulam–Rassias stability of Equations (1) and (2) and the generalized semi-Hyers–Ulam–Rassias stability of Equation (1) using the Laplace transform. To the best of our knowledge, the Hyers-Ulam-Rassias stability of Equations (1) and (2) has not been discussed in the literature with the use of the Laplace transform method. Our results complete those of Jung and Lee [22]. In [22], the Equation (3) was studied for   ℜ  c  ≠ 0  . We considered the case   c = 0   in Equation (3). We can apply our results to the convection equation in the sense that for every solution y of (4), which is called an approximate solution, there exists an exact solution   y 0   of (1), such that the relation (6) is satisfied. From a different perspective, the approximate solution can be viewed in relation to the perturbation theory, as any approximate solution of (4) is an exact solution of the perturbed equation     ∂ y   ∂ t   + a   ∂ y   ∂ x   = h  ( x , t )  ,   h ( x , t )  ≤ ε ,  a > 0 ,  x > 0 ,  t > 0 ,  y  0 , t  = c ,  y  x , 0  = 0  .



We intend to study other partial differential equations as well as other integro-differential equations using this method. We have already applied this method to [34], where we investigated the semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution-type kernel.
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