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Abstract: The paper describes a method of gravity data inversion, which is based on parallel
algorithms. The choice of the density model of the initial approximation and the set on which the
solution is sought guarantees the stability of the algorithms. We offer a new upward and downward
continuation algorithm for separating the effects of shallow and deep sources. Using separated
field of layers, the density distribution is restored in a form of 3D grid. We use the iterative parallel
algorithms for the downward continuation and restoration of the density values (by solving the
inverse linear gravity problem). The algorithms are based on the ideas of local minimization; they do
not require a nonlinear minimization; they are easier to implement and have better stability. We also
suggest an optimization of the gravity field calculation, which speeds up the inversion. A practical
example of interpretation is presented for the gravity data of the Urals region, Russia.

Keywords: linear inverse gravity problem; depth-separated anomalies; Earth’s crust density

1. Introduction

Gravity data inversion is the main tool for obtaining the Earth’s crust density model.
Our main goal of the study is to construct a stable high-resolution method of three-
dimensional (3D) gravity data inversion. The simplest approach of finding 3D density
values is by forward gravity modeling. We can vary the initial model in an interactive
mode to reduce the gravity field residuals. However, such an approach cannot resolve the
non-uniqueness and instability of inverse problem solving. Our method of inversion fol-
lows the procedure of Cordell and Henderson [1]. The density values are calculated using
the observed gravity field by iterative regularized algorithm, without the time-consuming
trial-and-error procedure.

The interpretation process involves solving the forward and inverse gravity problems.
The inverse gravity problems are ill-posed since their solution is non-unique and unstable
depending on the initial data [2], hence why one should define the set of correctness for
the solution and select a reasonable initial condition. Density is one of the most important
parameters for geophysical modelling. Density models are usually created using complete
information (for example, seismic data) to select the initial model. We apply the iterative
scheme for transforming the model slightly at each step to create the geological meaningful
density model [3]. To extend the layer outside the study volume, we suggest selecting
piecewise-constant density function ρ0(z), which depends only on depth.

We propose a method for constructing density models with flat topography based on
inversion of gravity data with a complete Bouguer correction. In this article we describe
the creation of a density model method for layered medium. The process of constructing
density models based on gravity field anomalies proposed here contains five major steps:
the fast forward modeling algorithm; the initial 3D density model creation; the upward
and downward continuation (the extraction of the gravity fields of layers); the choice of
the density as multiplicative function; and the stable adaptive algorithm for the inverse
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problem solving. The horizontal layered models may well correspond to reality in some
areas but deviate from the actual geology in others; this is a limitation of the method.

For layer-by-layer separation of the gravitational field by depth, we use a filter based
on the analytical continuation of the vertical field component upward and downward
with Lavrentiev’s regularization. Several researchers have been engaged in the downward
continuation of potential fields. In [4], the authors apply Tikhonov’s regularization to
stabilize the process of solving this problem. They present realization of the method in the
form of a Matlab-based program. The optimum regularization parameter value is selected
as a local minimum of constructed Lp-norms functions-in the majority of cases. They
demonstrate excellent stabilizing properties of this method on several synthetic models
and one real-world example from high-definition magnetometry.

In [5], the authors propose using the combination of upward continuation and hori-
zontal derivative to accomplish the downward continuation of potential field data. The
proposed method was demonstrated on synthetic potential field data. The method was
also applied to real potential field data, and the results show that the proposed method
accomplishes the downward continuation of the real data, stably.

An alternative method of downward continuation is proposed in [6]. The authors
use a combination of Taylor series expansion and upward continuation for computing
vertical derivatives. This method has been tested on the gravitational anomaly of infinite
horizontal cylinder in both cases with and without random noise. The vertical derivative
method is applied to calculate the downward continuation according to the Taylor series
expansion method. The method was also tested on both complex synthetic models and
real data.

In [7], the authors formulate a functional model for a spectral downward continuation
of selected gravitational field quantities to an irregular topographic surface. This functional
model is further generalized to allow for transformation between different types of gravi-
tational field quantities. In particular, spectral weights are derived for estimation of the
disturbing potential or disturbing/anomalous gravity at the Earth’s surface by combining
the first-, second- and third-order radial gradients of the disturbing potential (disturbing
gradients). The combined spectral estimator is applied to simulated satellite disturbing
gradients polluted by a realistic Gaussian noise. The spectral combination method requires
no matrix inversion.

Another example of applying regularization to inversion of potential field data is
presented in [8]. Authors have introduced a new processing and modeling technique of
magnetic data conducted over mines or near-surface geophysical targets for accurate and
precise determination of location and depth. The technique is based on the application
of the Kaczmarz regularization method to the ill-posed magnetic inverse problem. The
advantage of this method is the optimum transformation of regularized normal equations
to an equivalent augmented regularized normal system of equations. The method is
applied to an unexploded ordnance test site in the United Kingdom.

A fast algorithm for a forward gravity problem is absolutely essential for efficiently
solving the inverse problem. We build the initial density model using deep seismic sound-
ing (DSS) data along two-dimensional seismic profiles. The volume between profiles is
filled with interpolated values of density on a regular 3D grid [3]. Each cell of the grid
is a rectangular prism with constant density. The analytical form for the gravity field of
the rectangular prism is well-known [9,10]. The finite element method (FEM) in forward
modelling is used in this study. Mostafa [11] and Couder-Castañeda et al. [12] are relevant
studies that consider relatively small grid sizes: the models consist of 10,000–15,000 prisms
in each example. For our study, we required a technique that could handle more than a
billion elements in a reasonable time. Therefore, we cannot rely on parallelization alone
and it is necessary to modify the algorithm itself. We note that Dubey and Tiwari [13], Li
and Oldenburg [14] consider elements of non-equal size, and affirm that FEM can also be
applied in iterative field inversion.
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The correctness of the 3D inversion depends on the technique of mass continuation
outside the study area. One cannot simply consider that density is zero everywhere outside.
In this paper, the authors use background density, calculated by averaging the density
values of every horizontal layer of the interpolated model. This approach is similar to that
presented by Cai and Wang [15].

The paper is organized as follows: we present new mathematical algorithms for
downward continuation of the gravity field and the 3D inverse problem, and then both
algorithms are applied to the gravity anomalies of the Middle Urals region, Russia.

2. Methods
2.1. Layer-by-Layer Separation of the Local Field Component

In [16], a technique was proposed for separating the sources of the gravitational field
by depth. Examples of the implementation of the technique are given in and [17]. In this
paper, we describe an implementation of this technique based on a new and more efficient
numerical algorithm that enables parallel computing on graphics accelerators.

In order to separate the observed field anomalies by depth, we use the original
method of elevated transformations [16,18] with the modification of the computational part,
proposed by the authors of this paper, based on the method of local corrections [17,19,20].
We use this method for downward continuation and the density refinement. We assume
that the original field g(x, y, 0) is specified on the plane z = 0.

The general scheme of the method for isolating the effects of the sources in a layer
down to the certain depth (concerning the Earth’s surface) z = −H consists of three stages.

1. We construct the analytical continuation of the field upward to the height z = H:

g(x, y, 0)
up(H)
===⇒ g(x, y, H), while assuming that the influence of the local near-surface

sources (down to the depth z = −H) is significantly weakened or eliminated at all.
2. In order to hide the influence of the local sources located in the horizontal layer be-

tween the plain z = 0 and the plain z = −H, the field g(x, y, H) is recalculated upwards

is then analytically continued downward to the depth z = −H: g(x, y, H)
down(2H,κ)
======⇒

u(x, y,−H|(−∞,−H] ). Moreover, since the problem is ill-posed, it is necessary to
use methods with regularization, hence κ in the formula is a regularization parameter.
The resulting field is calculated on the plane z = −H from sources located below the
boundary z = −H.

3. At the last step, we recalculate the field u(x, y,−H|(−∞,−H] ) upward again to

the level of the plain z = 0: u(x, y,−H|(−∞,−H] )
up(H)
===⇒ u(x, y, 0|(−∞,−H] ). The

resulting field is calculated on the plane z = −H from sources located below the
boundary z = 0. Further, we subtract this field from the original one obtaining the field
for the layer z ∈ (−H, 0] : u(x, y, 0|(−H, 0] ) = g(x, y, 0)− u(x, y, 0|(−∞,−H] ).

If we want to obtain the field u(x, y, 0|(−H2,−H1] ) on the plane z = 0 from the
sources located in the depth interval z ∈ (−H2,−H1] , then we must perform three stages
of the method for the heights H1 and H2, and then take the difference between the results:
u(x, y, 0|(−H2,−H1] ) = u(x, y, 0|(−∞,−H1] )− u(x, y, 0|(−∞,−H2] ).

Thus, if the observed field g (x, y, 0) is given on the plane z = 0, and there is also
an ordered set of depths (−Hi)

L
i=0, 0 = H0 < H1 < · · · < HL, then the problem of

dividing g(x, y, 0) into components (u(x, y, 0|(−Hi+1,−Hi] ))
L−1
i=0 on the plane z = 0, cor-

responding to fields from sources located in depth intervals ((−Hi+1,−Hi] )
L−1
i=0 , can

be solved as follows. For every depth −Hi independently, the three steps of the re-
calculation method described above are performed, and the field u(x, y, 0|(−∞,−Hi] )
is obtained. In this case, at the second stage, the regularization parameter κi is used,
u(x, y, 0|(−∞,−H0] ) = g(x, y, 0) Further, the difference for the successive depths is calcu-
lated u(x, y, 0|(−Hi+1,−Hi] ) = u(x, y, 0|(−∞,−Hi] )− u(x, y, 0|(−∞,−Hi+1] ). It turns
out that g(x, y, 0) = u(x, y, 0|(−∞,−HL] ) + ∑L−1

i=0 u(x, y, 0|(−Hi+1,−Hi] ).
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2.2. Definition of the Operation Up(·)
Suppose the gravitating masses are located in the layer below the horizontal plane at

the depth z. On this plane, we denote the gravitational field by u(·, ·, z) and consider it as the
boundary function for the Dirichlet problem for the Laplace equation over a semi-infinite
domain. From the values u(·, ·, ζ) on the boundary, the solution u(·, ·, ζ) reconstructs the
harmonic field function everywhere above z. So, for the upper half-space ζ ≥ z the solution
u(·, ·, ζ) of the problem can be written in terms of the Poisson integral [21]:

u(ξ, η, ζ) =
ζ − z
2π

+∞∫
−∞

+∞∫
−∞

u(x, y, z)dxdy(
(x− ξ)2 + (y− η)2 + (z− ζ)2

) 3
2

. (1)

The operation of the upward recalculation u(·, ·, z)
up(H)
===⇒ u(·, ·, ζ) is a direct calcu-

lation of the integral in the Formula (1). The operation of the downward recalculation

u(·, ·, ζ)
down(H,κ)
======⇒ u(·, ·, z) is the solution of the Fredholm integral equation of the first

kind (1), where the values of the field u(·, ·, ζ) are assumed to be given, and the values
of u(·, ·, z) under the integral sign are to solve for. In the general case, finding a solution to
this equation is an ill-posed problem requiring regularization, which is, again, reflected in
the notation: κ is the regularization parameter.

The implementation of the up(H) operation for the upward recalculation that accounts
for the difference in heights = ζ − z ≥ 0; up(H), described in detail here, will be used later
in the paper. We assume that the field u(x,y,z) is defined everywhere on the z plane as a
piecewise constant function:

u(x, y, z) =

{
ui,j(z), (x, y) ∈ [ xi; xi+1) ×

[
yj; yj+1

)
ua, (x, y) /∈ [ xmin; xmax) × [ymin; ymax)

, (2)

where xmin = x0 < x1 < · · · < xMx = xmax, ymin = y0 < y1 < · · · < yMy = ymax, ua can be
considered as the horizontal asymptote of the field. In this case, the integral (1) is obtained
analytically in the following form:

u(ξ, η, ζ) = ua+

+ 1
2π

Mx−1
∑

i=0

My−1

∑
j=0

(
ui,j(z)− ua

)(
arctg

(
(x−ξ)(y−η)

HR

))∣∣∣∣∣∣
xi+1

x = xi

∣∣∣∣∣∣
yj+1

y = yj

,
(3)

where R =
√
(x− ξ)2 + (y− η)2 + H2.

The field asymptote does not change during recalculation. Formula (3) allows for
calculating the values u(ξ, η, ζ) of the field recalculated to the height ζ at the point. For the
downward recalculation down(·, ·) we must approximate the upward recalculated field
u(ξ, η, ζ) by a piecewise constant function at the same intervals as the field u(x, y, z). To do
this, we need to average u(ξ, η, ζ) over the said intervals:

u(ξ, η, ζ) ≈
{

un,m(ζ), (ξ, η) ∈ [ xn; xn+1) × [ym; ym+1)

ua, (ξ, η) /∈ [ xmin; xmax) × [ymin; ymax)
, (4)

un,m(ζ) =
1

(xn+1−xn)(ym+1−ym)

xn+1∫
xn

ym+1∫
ym

u(ξ, η, ζ)dηdξ =

= ua +
1

2π(xn+1−xn)(ym+1−ym)
×

×
Mx−1

∑
i=0

My−1

∑
j=0

(
ui,j(z)− ua

)
ν(x− ξ, y− η, H)

∣∣∣∣∣∣
xn+1

ξ = xn

∣∣∣∣∣∣
ym+1

η = ym

∣∣∣∣∣∣
xi+1

x = xi

∣∣∣∣∣∣
yj+1

y = yj

,

(5)
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where ν(x, y, z) = xy·arctg
( xy

zR
)
− xz

2 ln
(

R−x
R+x

)
− yz

2 ln
(

R−y
R+y

)
− zR, R =

√
x2 + y2 + z2.

Note that in the sequential calculation un,m(ζ) for all possible indices 0 ≤ n ≤ Mx − 1
and 0 ≤ m ≤ My − 1 according to the Formula (5), we would have to compute the
value of the ν function 4M2

x M2
y times. However, it is possible to reduce this number if

we assume that the field sampling grid is uniform in x and y, then ∀ 0 ≤ i ≤ Mx − 1,
0 ≤ j ≤ My − 1 : xi+1 − xi = ∆x, yj+1 − yj = ∆y and we can rewrite (5) as:

un,m(ζ) = ua +
1

2π∆x∆y
(Tn+1,m+1 − Tn+1,m − Tn, m+1 + Tn,m), (6)

Tn,m =
Mx−1

∑
i=0

My−1

∑
j=0

(
ui,j(z)− ua

)
ν(x− xn, y− ym, H)

∣∣∣∣∣∣
xi+1

x = xi

∣∣∣∣∣∣
yj+1

y = yj

. (7)

Applying the same optimization technique for calculating the convolution of functions
on a uniform grid, which was used in [20], for a fast algorithm for solving the forward
gravity problem, we can write (7) in the form:

Tn,m =
Mx−n

∑
i=−n

My−m

∑
j=−m

ui+n,j+m(z)νi,j(H), (8)

where un,m(z) = un,m(z)− un,m−1(z)− un−1,m(z)+ un−1,m−1(z), suppose that un,m(z) = ua,
if n = −1∨ n = Mx ∨m = −1∨m = My; νi,j(H) = ν(i∆x, j∆y, H).

Thus, up(H) recalculation consists of following steps.

• The preprocessing stage. This stage is done once and is suitable for any initial field,
depends only on the difference in the heights H of the recalculation and the grid dis-
cretization steps ∆x, ∆y. It is based on the fact that the elements νi,j(H) do not depend
on the input amplitudes un,m(z) of the field, only on H, ∆x, and ∆y. The stage consists

of calculating (2Mx + 1)
(
2My + 1

)
elements of the set

(
νi,j(H)

)(Mx ,My)

(i,j)=(−Mx ,−My)
. Note

that the function ν(x, y, z) is even for x and y and odd for z, hence νi,j(H) = ν−i,j(H) =
νi,−j(H) = ν−i,−j(H), so in fact, one only needs to calculate (Mx + 1)

(
My + 1

)
values

of ν(x, y, z) for different arguments, which is an order less than 4M2
x M2

y values when
calculating “directly” as per (5).

• Setup initial data: set (un,m(z))
(Mx−1,My−1)
(n,m)=(0,0) from Mx My elements (field amplitudes in

piecewise constant representation).

1. Calculation of (Mx + 1)
(

My + 1
)

elements of the set (un,m(z))
(Mx ,My)

(n,m)=(0,0).

2. Calculation of (Mx + 1)
(

My + 1
)

elements of the set (Tn,m)
(Mx ,My)

(n,m)=(0,0) (8).

3. Calculation of Mx My elements of the output set (un,m(ζ))
(Mx−1,My−1)
(n,m)=(0,0) (6).

As one can see, the preprocessing step, which is lengthy in terms of the computation
time, is not directly included in the recalculation up(H) at all (steps 1–3). This fact makes
it possible to significantly reduce the calculation time of the downward recalculation
operation down(H,κ), which is defined later.

Similar to (8), one can write the “fast” version of (3) for the upward recalculation for a
set of points of the form (ξ0 + n∆x, η0 + m∆y, ζ):

u(ξ0 + n∆x, η0 + m∆y, ζ) = ua+

+ 1
2π

Mx−n
∑

i=−n

My−m
∑

j=−m
ui+n,j+m(z)arctg

(
(i∆x−ξ0)(j∆y−η0)

HR

)
,

(9)
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where R =
√
(i∆x− ξ0)

2 + (j∆y− η0)
2 + H2. Moreover, if ξ0 and η0 are fixed,

0 ≤ n ≤ Nx − 1,0 ≤ m ≤ Ny − 1, then the value of the arctangent must be computed for
(Nx + Mx)

(
Ny + My

)
different arguments. If, under the same conditions, we use Formula

(3), then we would need 4Nx Ny Mx My of arctangent computations. As it becomes evident,
among these 4Nx Ny Mx My values there would be no more than (Nx + Mx)

(
Ny + My

)
unique ones, which was not completely evident from the expression (3).

2.3. Description of the Operation Down(·,·)
The implementation of the down(H, κ) operation for downward recalculation for the

height difference H = ζ − z ≥ 0, with a regularization parameter κ, is described in detail
hereAs mentioned above, it is necessary to solve the Fredholm integral equation of the first
kind (1) for the unknown function u(x, y, z), where z is fixed.

We will use the same piecewise constant function representation of the field as its
parameterization as for the operation up(H), we seek u(x, y, z) in the form of (2) and
assume that the field u(ξ, η, ζ) on the left side of (1) is given by its mean values (4) within
the indicated boundaries. We seek u(x, y, z) using the modified method of local corrections,
which was described as a solution of linear inverse gravimetry problem in [20]. Its stages
for solving Equation (1) with the chosen parameterization are reproduced as follows. The
initial data at the iteration “zero” (the iteration number is denoted by the superscript in

parentheses): the set
(

δu(0)
n,m(ζ)

)(Mx−1,My−1)

(n,m)=(0,0)
of the “residual” field amplitudes at a height

ζ (we take δu(0)
n,m(ζ) = un,m(ζ)); the set

(
u(0)

n,m(z)
)(Mx−1,My−1)

(n,m)=(0,0)
of the field amplitudes at

height z (we take u(0)
n,m(z) = 0). The definition of the “residual” field is δu(θ)

n,m(ζ) at the

iteration θ: assuming that u(θ)(z)
up(H)
===⇒ u(θ)(ζ), then δu(θ)

n,m(ζ) = un,m(ζ)− u(θ)
n,m(ζ). At

each iteration the horizontal asymptote for all fields appearing in the algorithm remains
equal ua. Notice that it is not the absolute values of the fields that are important, but
their deviations from the asymptote. To explain the used notation: when we write u(θ)

n,m(z),
u(θ)

n,m(ζ), δu(θ)
n,m(ζ), w(θ)

n,m, Sn,m we mean the average value of these functions in the region
[ xn; xn+1) × [ym; ym+1) , when we write u(θ)(z), u(θ)(ζ), δu(θ)(ζ), w(θ), S (without indices)
we mean piecewise constant functions depending on x and y in the domain R2. For the
method below, it is essential that the region in x and y, on which we will vary the required
function u(x, y, z), is [ xmin; xmax) × [ymin; ymax) and coincides with the region of the actual
definition of the known field u(x, y, ζ) at the height ζ. Moreover, the values of all functions
u(θ)(z), u(θ)(ζ), δu(θ)(ζ), w(θ), S appearing in the method that are outside of the region
[ xmin; xmax) × [ymin; ymax) are set to the value of the horizontal asymptote ua. For example,
the results of up(H) recalculation outside the specified region are replaced with ua.

So, the stages of the modified method of local corrections for solving (1) with the
chosen piecewise constant parameterization are as follows:

1. Calculate operation up(·) for δu(θ−1)(ζ)
up(H)
===⇒ w(θ). On a side note, according to the

physical meaning of the up(H) recalculation, the field w(θ) is defined in the plane with
the applicate ζ + H. But in what follows, we only need w(θ) as a formal function of x
and y, its physical meaning is of no matter.

2. Calculate α(θ) and β(θ):

α(θ) = 1
Q(θ) (〈S− ua, S− ua〉〈δu(θ−1)(ζ)− ua, w(θ) − ua〉

−〈S− ua, w(θ) − ua〉〈δu(θ−1)(ζ)− ua, S− ua 〉),

β(θ) = 1
Q(θ) (〈w(θ) − ua, w(θ) − ua〉〈δu(θ−1)(ζ)− ua, S− ua〉

−〈S− ua, w(θ) − ua〉〈δu(θ−1)(ζ)− ua, w(θ) − ua〉),

Q(θ) = 〈w(θ) − ua, w(θ) − ua〉〈S− ua, S− ua〉 − 〈S− ua, w(θ) − ua〉2,
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where 〈u, w〉 =
∫ xmax

xmin

∫ ymax
ymin

u(x, y)w(x, y)dxdy for the selected parameterization will

be written in the form u, w = ∆x∆y ∑Mx−1
n=0 ∑

My−1
m=0 un,mwn,m; S is upward recalculation

for the difference in heights H of the unit field which is equal to ua + 1 if (x, y) ∈
[ xmin; xmax) × [ymin; ymax) or ua if (x, y) /∈ [ xmin; xmax) × [ymin; ymax)

S(x, y) = ua + arctg

 (x− ξ)(y− η)

H
√
(x− ξ)2 + (y− η)2 + H2

∣∣∣∣∣∣
xmax

ξ = xmin

∣∣∣∣∣∣
ymax

η = ymin

,

Sn,m = ua +
1

2π∆x∆y
ν(x− ξ, y− η, H)

∣∣∣∣∣∣
xmax

ξ = xmin

∣∣∣∣∣∣
ymax

η = ymin

∣∣∣∣∣∣
xn+1

x = xn

∣∣∣∣∣∣
ym+1

y = ym

.

3. Calculate u(θ)
n,m(z) = u(θ−1)

n,m (z) + α(θ)
(

δu(θ−1)
n,m (ζ)− ua

)
+ β(θ).

4. As we can see, u(θ)(z)
up(H)
===⇒ u(θ)(ζ) = u(θ−1)(ζ) + α(θ)

(
w(θ) − ua

)
+ β(θ)(S− ua),

hence we calculate δu(θ)
n,m(ζ) = un,m(ζ)− u(θ)

n,m(ζ) = δu(θ−1)
n,m (ζ) + u(θ−1)

n,m (ζ)− u(θ)
n,m(ζ)

= δu(θ−1)
n,m (ζ)− α(θ)

(
w(θ)

n,m − ua

)
− β(θ)(Sn,m − ua).

5. Evaluate termination criteria: ‖δu(θ)(ζ)− ua‖ =
√

δu(θ)(ζ)− ua, δu(θ)(ζ)− ua < ε

(reaching the required accuracy ε of the field approximation).

If the expressions (6, 8) are used in the algorithm above at stage 1 to recalculate
upwards, then the approximated value un,m(ζ) will denote the average of the field over
the regions [ xn; xn+1) × [ym; ym+1) , which should be obtained as a result of upward
recalculation of the required field u(z). If, at the first stage, we use the expression (9)
with the condition (ξ0, η0) ∈ [ x0; x1) × [y0; y1) , then the values un,m(ζ) will denote the
values of the recalculated field at the specific points of the form (ξ0 + n∆x, η0 + m∆y, ζ).
Both options can be used, but it is worth noting that the iterative process will be more
stable if we use the average over the region instead of the value at just one point in that
region. Also, in the second case δu(θ−1)

n,m (ζ) is the value of δu(θ−1)(ζ) at one specific point
in the region [ xn; xn+1) × [ym; ym+1) . For the operation up(H) in the chosen piecewise
constant parameterization, it is required to “continue” δu(θ−1)

n,m (ζ) over the entire region,
which introduces more error than the “fair” averaging. In addition, the formula for the dot
product 〈u, w〉 given in step 2 yields better result with averaging.

As our experiments show the above method converges even without classical regular-
ization (in both versions: with averaging and “pointwise”), but, perhaps, will not reach
zero error ε. However, for the purposes described in the next section, we introduce a formal
regularization. Since the kernel of the integral (1) is symmetric and positive definite, we
can apply Lavrentiev’s regularization [22]. The regularized equation is:

u(ξ, η, ζ) = κu(ξ, η, z) +
ζ − z
2π

+∞∫
−∞

+∞∫
−∞

u(x, y, z)dxdy(
(x− ξ)2 + (y− η)2 + (z− ζ)2

) 3
2

, (10)

where ζ and z are fixed, κ > 0 is regularization parameter. This equation has exactly one
solution in L2 for any left side function in L2. The solution depends continuously on κ [22].
The Equation (10) can be solved by the modified method of local corrections proposed
earlier for Equation (1) with piecewise constant parameterization, but requires a modified

method of calculating w(θ) on the first step: instead of δu(θ−1)(ζ)
up(H)
===⇒ w(θ) should be

δu(θ−1)(ζ)
up(H)
===⇒ ŵ(θ), w(θ) = ŵ(θ) + κδu(θ−1)(ζ).
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2.4. Applying the Recalculations to Recover the Density Model

We consider the proposed method for separating the gravitational effect
u(x, y, 0|(−∞,−H] ) of sources from the total observed field g(x, y, 0) in the half-space below

certain depth z = −H < 0: g(x, y, 0)
up(H)
===⇒ g(x, y, H)

down(2H,κ)
======⇒ u(x, y,−H|(−∞,−H] )

up(H)
===⇒ u(x, y, 0|(−∞,−H] ). Let g(x, y, 0) be specified exactly by its piecewise constant
representation. If the operations up(H) and down(H,0) were performed precisely, in the
analytical form, then the result would be u(x, y, 0|(−∞,−H] ) ≡ g(x, y, 0). In the pro-
posed recalculations, however, there are inaccuracies: the averaging of the exact results of
up(H) in the cells [ xn; xn+1) × [ym; ym+1) and equating the values up(H) and down(H,0)
to horizontal asymptote ua outside the target region [ xmin; xmax) × [ymin; ymax) .

The authors have carried out a large number of numerical experiments with the data
of the real measured fields. In the worst cases of “high-frequency” fields and large H (of
the order of 100 km), the residual ‖g(x,y,0)−u(x,y,0|(−∞,−H] )‖

‖g(x,y,0)‖ was not more than 10% and not
more than 1% for H < 40 km. So, if we strive for the greatest accuracy when implementing
the recalculation scheme using the analytic continuation of harmonic functions, then the
separation of the fields will not work. Actually, for the purposes of separation, the formal
regularization was introduced into the operation down(H,κ).

The result u(x, y, 0|(−∞,−H] ) of the three-stage recalculation scheme continuously
depends on the regularization parameter κ. We separate the observed field g(x, y, 0) along L
horizontal layers with depth intervals ((−Hi+1,−Hi] )

L−1
i=0 and consider

u(x, y, 0|(−Hi+1,−Hi] ) = u(x, y, 0|(−∞,−Hi] ) − u(x, y, 0|(−∞,−Hi+1] ) is the field of
this layer, while the fields u(x, y, 0|(−∞,−Hi] ) are obtained using the regularization pa-
rameters κi, with the exception of u(x, y, 0|(−∞,−H0] ) = g(x, y, 0), H0 = 0, κ0 = 0. If we
assume that the entire observed field is generated by the masses in the layer (−HL, 0] , then
it is necessary to ensure u(x, y, 0|(−∞,−HL] ) ≈ ua, for this κL should large enough. To
fulfill the condition of “continuous” joining of the separated fields u(x, y, 0|(−Hi+1,−Hi] )
of adjacent layers, it is required to choose κi in ascending order between κ0 = 0 and κL
without abrupt transitions from κi−1 to κi. Increasing κi with depth produces a sequence
of separated fields in accordance with the physical meaning: the deeper layers are more
“smoothed”. Of course, there are infinitely many options for “continuously” increasing
sequence of κi, and different options can give significantly different recalculations and,
accordingly, different density models. This is precisely where the non-uniqueness of the
solution to the linear inverse gravimetry problem is manifested. Here, the choice falls on
the shoulders of the interpreter and is subjective. One helpful fact is that small changes
in the sequence of κi will lead to small changes in the separated fields and the resulting
density model.

Thus, κ is used in recalculations not for regularization really, but as a continuous
smoothing factor, which cannot be replaced by, for example, several passes through the
observed field with a discrete Gaussian filter in the “time” domain, because even one such
path for the upper layers is too many. Frequency domain filters can also be used for the
purpose of separating fields, but it seems they are less justified in terms of binding to the
specific depths.

2.5. Inverse Gravity Problem for the Layered Medium Model

Calculations of the 3D density distribution ρ(x, y, z) in an inhomogeneous region D
based on field values g(ξ, η, ζ) are implemented by inversion of integral operator [21] on
the right hand side of (11), where g is a known function, γ is the gravitational constant.

g(ξ, η, ζ) = γ
∫
D

(z− ζ)ρ(x, y, z)dxdydz(
(x− ξ)2 + (y− η)2 + (z− ζ)2

) 3
2

, (11)
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Mathematically, this is an ill-posed problem and its solution depends drastically on
small variations in the initial field data g. However, if we select a density class with only
lateral density variations, the determination of the density distribution in the horizontal
layer will be stable [23]. Let D be the rectangular prism D = [ xmin; xmax) × [ymin; ymax) ×
[ zmin; zmax) filled with mass and g(ξ, η, ζ) be the observed gravity field separated for the
layer [ zmin; zmax) using described above recalculation technique. Weseek the density in the
form of ρ(x, y, z) = ρ(0)(x, y, z) + ρ0(z)Φ(x, y), where ρ(0)(x, y, z) is the density of initial
model and it is assumed to be known. Further, we assume ρ0(z) may be approximated by
some kind of the initial model analysis.

The 2D function Φ(x, y) is defined based on the Fredholm integral equation:

δg(0)(ξ, η, ζ) = γ

xmax∫
xmin

ymax∫
ymin

Φ(x, y)K(x, y, ξ, η, ζ)dydx, (12)

where

K(x, y, ξ, η, ζ) =

zmax∫
zmin

(z− ζ)ρ0(z)(
(x− ξ)2 + (y− η)2 + (z− ζ)2

)3/2 dz,

δg(0)(ξ, η, ζ) = g(ξ, η, ζ)−U(0)(ξ, η, ζ),

U(0)(ξ, η, ζ) = γ
∫
D

(z− ζ)ρ(0)(x, y, z)(
(x− ξ)2 + (y− η)2 + (z− ζ)2

)3/2 dxdydz,

where U(0)(ξ, η, ζ) is the field of the initial model.
The numerical solution of the Equation (12) is based on the local corrections method [20].

This approach allows one to solve the problem without usage of non-linear minimization
and, thus, reduce the calculation time. Iterative algorithm for the refinement values of
Φ(x, y) minimizes the discrepancy ‖δg‖ of the observed g(ξ, η, ζ) and model U(ξ, η, ζ)
fields. First, the field of the initial model U(0)(ξ, η, ζ) is calculated. Thus, the resid-
ual field is δg(0) = g − U(0). We assume that Φ(0) ≡ 0, ζ = const, ζ /∈ (zmin, zmax),
(ξ, η) ∈ [xmin, xmax]× [ymin, ymax].

The following steps are repeated in a loop (for the iterations θ ≥ 1).

1. Calculate

δU(θ)(ξ, η) = γ

xmax∫
xmin

ymax∫
ymin

δg(θ−1)(x, y, ζ)K(x, y, ξ, η, ζ)dydx.

2. Determine α(θ) and β(θ):

α(θ) =
1

Q(θ)

(
〈S, S〉〈δg(θ−1), δU(θ)〉 − 〈S, δU(θ)〉〈δg(θ−1), S〉

)
,

β(θ) =
1

Q(θ)

(
〈δU(θ), δU(θ)〉〈δg(θ−1), S〉 − 〈S, δU(θ)〉〈δg(θ−1), δU(θ)〉

)
,

Q(θ) = 〈δU(θ), δU(θ)〉〈S, S〉 − 〈S, δU(θ)〉2,

S(ξ, η) = γ

xmax∫
xmin

ymax∫
ymin

K(x, y, ξ, η, ζ)dydx.

3. Calculate Φ(θ) = Φ(θ−1) + α(θ)δg(θ−1) + β(θ).
4 Calculate δg(θ) = δg(θ−1) − α(θ)δU(θ) − β(θ)S.
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5. Evaluate termination criteria: ‖δg(θ)‖ =
√

δg(θ), δg(θ) < ε (achieving the required
accuracy ε of the field approximation).

Once the loop is complete, the excess density distribution ρ0(z)Φ(θ)(x, y) approxi-
mates (up to a constant) the difference δg(0) between the observed and initial model fields.
After summing the initial model with obtained distribution, we obtain the density model
with the field that differs from the observed one by the amount of error of ‖δg(θ)‖.

The described algorithm relies on the solution of the forward problem only (step 1).
The lateral density is calculated using the difference between the observed field and the
model field at each iteration step. For this reason, no classical regularization (in Tikhonov
sense) is required. One can regulate convergence of the iterative process by coefficients
α(θ) and β(θ). Thus, the problem of calculation of corrective additive could be solved
independently for all layers. Therefore, the uniqueness of the solution to the equation of
the inverse problem for the lateral density [23] and the whole problem is guaranteed.

3. Experimental Results. Three-Dimensional Density Model of Middle-Urals Region

In this section, we demonstrate the described method on the case study of Middle-
Urals, Russia, and neighboring regions. The territory is located at 56–60◦ N and 54–66◦ E,
the model thickness is 80 km down from the Earth’s surface level. The given grav-
ity field with a complete Bouguer correction (the combined global gravity field model
XGM2019e_2159 [24]) is presented in Figure 1. The position of DSS profiles is drawn as
black and white lines. The maximum depth of the profile sections is 80 km [25].
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Figure 1. DSS profiles scheme with a map of a gravity field anomaly (XGM2019e_2159) in the Bouguer reduction. (1) Granit
+ Rubin-2; (2) Krasnouralskiy + Khanty-Mansiyskiy; (3) VNTO; (4) N. Sosva–Yalutorovsk; and (5) Rubin-1; (6) Sverdlovskiy.

The initial density model frame is formed with the 2D density cuts along the regional
profiles (Figure 2). The data between profiles are interpolated values (layer by layer) [3].



Mathematics 2021, 9, 2966 11 of 19

The mean value of density ρ0(z) (Figure 3) is calculated for each depth of the initial model
(Figure 4). This 1D density distribution is continued outside the study volume and the
excess density is calculated relative to it. As we seek 3D density distribution as a product
of this function, ρ0(z) and some 2-dimensional corrective addition Φ(x, y), the inverse
problem for lateral density in a flat layer will be sufficiently stable [23,26].
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The described interpretation algorithm of the gravity data was applied to the difference
δg(0) of the observed field and the initial model field (Figure 5).
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Figure 5. Gravity field: (1) observed; (2) initial model; and (3) difference.

In order to evaluate the acceleration of calculations using the graphics accelerator
(GPU) in comparison with the central processing unit (CPU), a series of field upward
recalculations was carried out with different sampling grid resolutions. It should be noted
that in the calculations, the discretization parameters of the grids of the recalculated and
resulting fields were the same. Discretization parameters and computation times are shown
in Table 1. The calculations were carried out with 24 cores (48 threads) of the AMD EPYC
7451 processor with a clock frequency of 2.9 GHz and one GPU AMD Radeon VII (Vega 20).
Figures 6 and 7 show the corresponding graphs of performance.
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Table 1. Dependence of the computation time on the discretization parameters of the field
evaluation grid.

Nx × Ny N = Nx × Ny,
106 Points

CPU Calculation
Time, min

GPU Calculation
Time, min

200 × 200 0.04 7.3 × 10−4 5 × 10−5

500 × 500 0.25 0.072 4.9 × 10−3

1000 × 1000 1 0.95 0.065
2000 × 2000 4 16.5 0.86
3000 × 3000 9 99.6 4.4
4000 × 4000 16 354.6 13.9
5000 × 5000 25 958.7 34.5
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The Figures 8 and 9 show the results of the layer-by-layer separation of the field δg(0).
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Figure 8. Examples of the different field separations. The minimum and maximum of amplitude of the field are also shown.
The ranges of depths of the layer are (1) H ∈ [0, 5] km, ∆g ∈ [−8.8, 15.1] mGal; (2) H ∈ [5, 20] km, ∆g ∈ [−35.3, 54.3] mGal;
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Figure 9. “Cuboid of the separated fields”. The Layers are 1 km thick.

A density model that satisfies the observed data was constructed using the described
method. The initial ρ0(z) distribution (Figure 3) was used as the input data. Result-
ing density model (Figure 10) consists of prismatic elements; resolution of this model is
1236 × 1314 × 80. Figure 11 shows the change in the intervals of densities between the
initial and the fitted model.
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(black line) density of the initial (dash line) and fitted (solid line) models on the depth.

The stability of the proposed method is demonstrated here. To the observed field
(Figure 5-(1)), at a random 33% of all points, we add Gaussian noise with zero mean and
standard deviation of 6.72 mGal (33% of the standard deviation of the field). Figure 12
shows the result.
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Figure 12. Noised observed field.

We calculate the difference between the noised field and the initial model field, shown
in Figure 5-(2) Then, we apply the above-described recalculation filter to this difference
for the layer-by-layer separation of the field up to 80 km in depth with a step of 1 km.
Leaving the set {κi}80

i=0 of smoothing parameters the same as in the example without noise,
the separation result for four thick layers is shown in Figure 13. “Cuboid of the separated
fields” for 1 km thick layers is shown in Figure 14.
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Figure 13. Examples of the noised different field separation. The ranges of depths of the layer are (1) H ∈ [0, 5] km,
∆g ∈ [−9.7, 13.8] mGal; (2) H ∈ [5, 20] km, ∆g ∈ [−33.0, 50.2] mGal; (3) H ∈ [20, 40] km, ∆g ∈ [−25.6, 33.5] mGal; and
(4) H ∈ [40, 80] km, ∆g ∈ [−11.8, 17.1] mGal.
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Figure 14. “Cuboid of the separated fields”. The layers are 1 km thick.

As can be seen, most of the noise has been filtered out. This is not surprising, because
the basis of our filter is Lavrentiev’s regularization. The remnants of the noise “penetrated”
to a depth of about 7 km. It should be noted that if we chose a set {κi}80

i=0 of smoothing
parameters specifically for this case, then the noise could be completely neutralized. This,
of course, would also be facilitated by the fact that our original observed field does not
have a “high-frequency” component. From a practical point of view, the “noisy” (Figure 15)
and “clean” (Figure 10) models coincide.
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4. Conclusions

In this study, we offered a method of gravity field interpretation, which uses complete
a priori information. The algorithm’s stability is ensured by the selection of the initial
model and solving of the problem on the correctness set. The new algorithm is suggested
as a preliminary pre-processing of gravity observations that allows the extraction of the
gravitational effect of the layers. The modified method of local corrections is developed
for the downward continuation of the gravity field. A new method for reconstruction of
density distribution using gravity data is presented. Both algorithms are applied to the
real gravity data for the Ural region, Russia.

The density model of the initial approximation and the fast original algorithms for
solving the gravity problem with high resolution (using parallel computations) allows
for the calculation of large-scale density models. Based on the results of the numerical
modeling, it is possible to construct a volumetric (gradient) model of the layer-by-layer
density distribution in the inhomogeneous layer and, within the framework of the obtained
solution, restore the zones of the local inhomogeneity. We have created such 3D model for
the study area. Volumetric density models are of considerable practical importance and
can be used to justify the location of the prospecting and exploration work in the vicinity
of promising areas.
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