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Abstract: Accurately evaluating rockburst intensity has attracted much attention in these recent
years, as it can guide the design of engineering in deep underground conditions and avoid injury to
people. In this study, a new ensemble classifier combining a random forest classifier (RF) and beetle
antennae search algorithm (BAS) has been designed and applied to improve the accuracy of rockburst
classification. A large dataset was collected from across the world to achieve a comprehensive
representation, in which five key influencing factors were selected as the input variables, and the
rockburst intensity was selected as the output. The proposed model BAS-RF was then validated
by the dataset. The results show that BAS could tune the hyperparameters of RF efficiently, and
the optimum model exhibited a high performance on an independent test set of rockburst data and
new engineering projects. According to the ensemble RF-BAS model, the feature importance was
calculated. Furthermore, the accuracy of the proposed model on rockburst prediction was higher than
the conventional machine learning models and empirical models, which means that the proposed
model is efficient and accurate.

Keywords: rockburst classification; data-driven approach; random forest; beetle antennae search
algorithm

1. Introduction

Rock stability in deep underground conditions is seriously affected by rockburst,
which still attracts a lot of attention nowadays [1,2]. In civil engineering and mining
engineering, rockburst events normally occur suddenly, causing a loss of money in working
facilities. Accurately evaluating the rockburst intensity has been a significant task as it can
be a guideline in this area and guide managers to design carefully [3,4].

Rockburst cases occur in different conditions, such as tunneling and mining [5–7].
For instance, in the deep traffic tunnel in China, there are different grades of rockburst,
which have caused different types of damage to the tunnel. Slight rockburst causes some
cracks in the concrete in the tunnel face, and moderate rockburst affects the arc cavity
pits, with depths of about 1 m, while intense rockburst affects the arc and wedge-shaped
pits with depths of about 2 m, and the extremely intense rockburst almost destroyed the
working condition, causing the depth of the pits to be about 3 m. Therefore, classifying
and predicting the rockburst intensity plays a significant role in working safety.

Nowadays, the mechanism of rockburst is still not clear, but the basic laws of it
are known as instantaneous slip and instantaneous fracturing. To control the rockburst,
different methods have been proposed, such as temporary and permanent rock support
systems; however, these approaches are not efficient as the rockburst intensity is difficult
to know properly. Thus, some monitoring methods, such as a microseismic monitoring
system, were applied to record and analyze the rockburst events [8]. The microseismic
monitoring system records the rockburst intensity after the rockburst events, and it cannot
predict the rockburst in advance. Hence, estimating and predicting rockburst intensity
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before its occurrence is of importance. Different models have been proposed, such as stress
criteria, including the Barton, Hoek and Brown, Hou, Russenes, and Turchaninov criteria.
Furthermore, the existing prediction approaches can be regarded as short-term and long-
term predictions. In short-term predictions, the rockburst occurrence is based on in-situ
site testes; however, the long-term prediction is basically according to the fundamental
methods, such as strength theory and energy theory, which are similar to simulation,
machine learning, and empirical knowledge methods [9].

Due to the uncertainties of rockburst and the unclear mechanism of occurrence, a
curtained model or method is not suitable for the accurate prediction of rockburst. The
method should consider more influencing factors related to rockburst occurrence, with
random, fuzzy, or even both mechanisms, and thus, the artificial intelligence method
can perfectly solve the problem [10,11]. For instance, there are various machine learning
methods for predicting long-term rockburst hazards, such as support vector machines,
artificial neural networks, and decision trees. The previous studies are summarized in
Table 1. It can be noted that the prediction accuracy of rockburst intensity is affected by
the number of data and different machine learning algorithms. Therefore, developing a
high-performance and less-time-consuming ensemble classifier for the larger dataset is
quite important.

Table 1. Previous studies on rockburst prediction with different machine learning methods.

Algorithms Accuracy (%) Data References

SVM
100 16 Zhao et al. [12]
93.8 45 Zhu et al. [13]

51.7–67.2 246 Zhou et al. [14]
ANFIS 66.5–95.6 174 Adoko et al. [15]

ANN

72.2 18 Chen et al. [16]
100 19 Xiao et al. [17]
100 10 Feng et al. [10]
85.2 134 Faradonbeh et al. [18]

CM
90–94.1 164 Liu et al. [19]
76.4–82 209 Zhou et al. [20]
71–76 246 Zhao et al. [14]

LR
80.2–90.9 135 Li et al. [21]

88.3 188 Afraei et al. [22]

BN
91.7 135 Li et al. [23]

53.9–65.8 246 Lin et al. [24]

KNN
53.2–67.2 246 Zhou et al. [14]
50–65.9 246 Lin et al. [24]

DT
81.5 134 Faradonbeh et al. [18]

73–93 132 Pu et al. [25]
89.2–90.2 174 Ghasemi al. [26]

Note: SVM, Support vector machines; ANFIS, adaptive neuron fuzzy inference system; ANN, Artificial neural
network; LR, Logistic regression; CM, Cloud model; BN, Bayesian network; KNN, k-nearest neighbors; DT,
Decision tree.

Random forest (RF) has been applied in rockburst classification [27]. However, the
relevant studies are fewer [14,24,28], by which their accuracy is limited by the hyperparam-
eters, i.e., the number of the trees and the minimum leaf node. To optimize the structure
of RF, there are some global optimization algorithms, such as the firefly algorithm (FA)
and particle swarm optimization (PSO). However, these algorithms are time-consuming,
and therefore, a new global algorithm should be proposed. Beetle Antennae Search (BAS),
is a biologically inspired, intelligent optimization algorithm, which is inspired by the
foraging principle of longicorn beetles. Furthermore, it has been used for tuning the
hyper-parameters of ML algorithms in recent years.

This research aims to develop a machine learning-based model to study rockburst
classification. The BAS algorithm was employed to tune the hyper-parameters of the RF
algorithm. The performance of the ensemble BAS-RF model has been compared with
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other machine learning algorithms: the support vector machine, k-nearest neighbors, and
decision tree algorithms. Furthermore, the BAS-RF has been tested against empirical
criteria as well as previously published RF models, which were developed to address the
rockburst problem.

2. Dataset Preparation

A total of 279 cases of rockburst events reported in the literature were collected to build
a dataset [14,26,29–32]. The dataset included five influencing variables, with the buried
depth of opening (H), the maximum tangential stress of the excavation boundary (σθ), the
uniaxial compressive strength of rock (σc), the tensile rock strength (σt), and the elastic
energy index (Wet) as input parameters and rockburst intensity as the output. These input
variables are commonly applied in rockburst classification and can provide fundamental
understandings about rockburst occurrence in underground conditions. According to rock
failure properties, the output parameter, i.e., rockburst intensity, contains four different
classes, namely none, light, moderate, and strong. The frequency of each input parameter
is depicted in Figure 1. The statistics of the input parameters are summarized in Table 2.
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Table 2. The collected input variables.

Parameters Min Max Mean Standard Deviation

H (m) 80 1251 682.2 291.4
σc (MPa) 3.6 306.6 118.9 69.8
σt (MPa) 0.2 21.2 8.6 6.1
σθ (MPa) 2.1 171.1 63.4 42.5

Wet 0.85 10.57 5.2 3.4

3. Algorithm Background and Ensemble Model
3.1. Algorithms Description
3.1.1. Decision Tree and Random Forest

The Decision Tree (DT) and Random Forest (RF) both have tree structures. In contrast
to the DT, the random forest uses the method of majority votes. The normal structure of
DT and RF is shown in Figure 2.
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The C 4.5 algorithm in this study was applied for the attribute selection process, which
can be expressed as follows:

GainRatio (S, A) =
Gain (S, A)

SplitIn f o (A)
(1)

where S is the training set; A is the attribute; SplitIn f o (A) is given by

SplitIn f o (A) = ∑
vεDomain (A)

∣∣SA
v
∣∣

|S| · log2

∣∣SA
v
∣∣

|S| (2)

The necessary steps are (1) selecting random K data points from the training set, (2)
building the decision trees associated with the selected data points, (3) choosing the number
of decision trees, (4) repeating steps 1 and 2, (5) finding the predictions of each decision
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tree for new data points, and assigning new data points to the category having the majority
of votes.

3.1.2. K-Nearest Neighbor

The K-Nearest Neighbor (KNN) is a non-parametric and lazy learning algorithm. K
is the number of nearest neighbors. The number of neighbors is the core deciding factor.
There are some basic steps, i.e., calculate the distance, find the closest neighbors, and vote
for labels. The structure of KNN is depicted in Figure 3.
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3.1.3. Support Vector Machines

Support Vector Machines (SVM) are considered to be a classification approach by
constructing a hyperplane in a multidimensional space to separate different classes. They
include the following steps: generate hyperplanes and select the right hyperplane with the
maximum segregation. The structure of SVM is shown in Figure 4.
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3.1.4. Beetle Antennae Search Algorithm

The Beetle Antennae Search algorithm (BAS) is an intelligent optimization algorithm,
proposed by Jiang et al. in 2017. Different from other bionic algorithms, the Beetle Antenna
Search algorithm is a monomer search algorithm with the advantages of a simple principle,
fewer parameters, and less computation. It has great advantages in dealing with low-
dimensional optimization objectives, such as low time complexity and strong searchability.
The flow chart of BAS is given in Figure 5. In this study, the iteration of BAS was set as 50,
and the step factor was set as 0.95. All algorithms were developed by Matlab software.
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3.2. The Methodology of Ensemble RF-BAS Model

There are several procedures for constructing an ensemble model.
Step 1: Splitting the dataset into a train dataset and test dataset, and normally, the

proportion is 70% and 30%, respectively. It should be pointed out that due to the rockburst
intensity being classed into four classes, the train and test dataset should also be divided
into four subsets accordingly.

Step 2: Initialing the parameters of BAS, i.e., the beetle’s position in the space, in which
the dimension of the position vector is the number of hyperparameters of the algorithm.

Step 3: Training the model and calculating the fitness value on the remaining subset
of the training set.

Step 4: The BAS will tune the hyper-parameters by decreasing the fitness value. When
the iteration of 50 is reached, the optimal hyperparameters can be found.

Step 5: The above process is repeated five times, and it can be called a fivefold
cross-validation (CV) (shown in Figure 6). The full procedure is depicted in Figure 7.
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3.3. Performance Evaluation Methods

In this study, we applied the classical methods for model evaluation. The receiver op-
erating characteristic (ROC) curve and the AUC curve (the area under the ROC) were used
in the evaluation of rockburst classification. The horizontal axis is the false positive rate
(FPR); however, the vertical axis represents the true positive rate (TPR) in the ROC curve.

4. Results
4.1. Hyper-Parameter Tuning

In this procedure, AUC was set as the objective function, and the hyper-parameters
of RF, i.e., (the number of the trees and the minimum required samples at a leaf node)
were tuned by BAS. Then, in the test process, four BAS-RF models were used to classify
the unknown samples. The AUC values and convergence showed different patterns with
different classes (given in Figure 8). With the increase of iteration, the average AUC values
increased sharply before five iterations, meaning that the BAS could tune the hyper-parameters
quickly and effectively. The hyper-parameters of RF were given in Table 3.
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Table 3. The optimum hyperparameters in each class.

Number of Input
Variables

Hyperparameter Definition Scope
Class

None Light Moderate Strong

5
tree_num The number of the trees 2–100 42 29 34 17

min_sample_leaf The minimum required
samples at a leaf node 1–10 1 1 2 1

4.2. Validation of BAS-RF

In the testing dataset, the proposed BAS-RF model was applied to validate the accuracy
on that dataset. The final results are given in Table 4. As can be seen, the accuracy was over
0.90, which means that the proposed model could be used for a new dataset.

Table 4. The confusion matrix of the proposed model on test validation.

Rockburst Actual
Predicted Percentage

Correct
Accuracy

None Light Moderate Strong

None 35 32 1 1 1 0.91

0.92
Light 20 1 19 0 0 0.95

Moderate 15 0 1 13 1 0.86
Strong 14 0 1 0 13 0.92
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4.3. The Rank of Influencing Variables

The ranking influence of each input variable on the rockburst is depicted in Figure 9. Wet
was the most important variable influencing rockburst intensity, followed by σθ , H, σc, and
σt. The results indicate that more attention should be given to Wet, σθ , and H in engineering
projects. Although some parameters, i.e., σc, and σt, have a lower influence on rockburst
intensity, they should still be taken into account when analyzing rockburst events.
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5. Discussion
5.1. Comparison of the BAS-RF with Baseline Models

The performance of the BAS-RF model was evaluated with SVM, DT, and KNN
machine learning models. The BAS-RF model was the most accurate model, having an
accuracy of 0.92 (Table 5). The DT, SVM, and KNN models had accuracies of 0.84, 0.76, and
0.71, respectively. The comparison analysis confirmed that the proposed BAS-RF model
achieved a better performance than the other machine learning classifiers. Furthermore,
the conventional RF models on rockburst assessment in previous studies were compared
with BAS-RF; the accuracy performance of BAS-RF was higher than existing RF models.
Few studies have already applied the conventional RF model for rockburst assessment. In
this section, the proposed ensemble classifier BAS-RF was compared with the findings of
the previous studies. Zhou et al. (2016) compared the performance of 10 machine learning
algorithms to analyze rockburst events. They used 246 cases and considered seven input
variables. Lin et al. (2018) investigated rockburst events using machine learning models.
They investigated 246 rockburst cases, considering six input variables. The accuracy
performances of the RF model developed by Zhou et al. (2016) and Lin et al. (2018) were
0.73 and 0.61, respectively. The BAS-RF model performed much better compared to the
existing RF models. The model was developed using a larger dataset, and thus, it can be
applied over a wider range of conditions. Although both models developed by Zhou et al.
(2016) and Lin et al. (2018), respectively, considered seven and six input variables, they still
led to a lower prediction accuracy. Furthermore, we compared the results (summarized
in Table 5) with conventional empirical models, such as the rock brittleness coefficient
criterion, burst proneness index, and Russenes criterion. The BAS-RF model performed
better than the empirical models.
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Table 5. Classification accuracy of ensemble classifiers and baseline models.

ML Models Empirical Models

BAS-RF SVM DT KNN Conventional
RF

Rock Brittleness
Coefficient
Criterion

Elastic Energy
Index

Russenes
Criterion

Burst
Proneness

Index

0.92 0.76 0.84 0.71

0.73, Zhou et al.
(2016) [14];

0.61, Lin et al.
(2018) [24]

0.32, Wang et al.
(1998) [33]

0.41,
Kidybinski
(1981) [34]

0.36,
Russenes

(1974) [35]

0.21, Singh
(1989) [36]

The TPR (True Positive Rate) and AUC values calculated for all classifiers shown
in Figure 10 indicate that the ensemble classifier BAS-RF provided the most accurate
classification. The ensemble BAS-RF led to an AUC value of 0.95, followed by DT, SVM,
and KNN. The AUC values of DT, SVM and KNN were 0.82, 0.81, and 0.7, respectively.
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Figure 10. ROC curve of the proposed ensemble BAS-RF, SVM, DT, KNN.

5.2. Cases Application

Eight rockburst events in four different tunnel and mining projects were predicted
by the BAS-RF model. The field data were collected from available literature, including
the Calling tunnel, Dongguashan mine [37], Duoxiongla tunnel [38], and Daxiangling
tunnel [30]. The prediction outcomes are summarized in Table 6, which indicated that the
rockburst intensity for all cases was predicted correctly. The results of this study confirm
that the BAS-RF model is a robust alternative tool for the rockburst assessment, and it can
be successfully applied in various geotechnical engineering projects.
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Table 6. Engineering application of the proposed BAS-RF model.

No. H (m) σθ

(MPa) σc (MPa) σt (MPa) Wet Actual Predicted

1 [37] 768 32.8 160 6.6 4.6 Light Light
2 [37] 768 50.9 160 7.5 5.3 Moderate Moderate
3 [37] 730 105.5 190.3 17.1 4.0 Moderate Moderate
4 [38] 700 87.3 137.7 9.62 7.14 Strong Strong
5 [38] 700 87.3 94.4 9.16 3.57 Light Light
6 [30] 808 45.6 114 2.3 4.7 Moderate Moderate
7 [30] 362 25.6 59.7 1.3 1.7 None None
8 [30] 981 57.2 80.6 2.5 5.5 Strong Strong

6. Summary and Conclusions

A novel ensemble classifier combining the random forest (RF) and Beetle Anten-
nae search algorithm (BAS) was proposed to classify rockburst intensity in underground
projects. The BAS algorithm was applied to tune hyperparameters of the RF. The perfor-
mance of the proposed model (BAS-RF) was evaluated by its accuracy, precision, and recall
criteria. Additionally, the ROC curve and AUC values were used to assess the rockburst
intensity. The conclusions can be summarized as follows:

• The BAS algorithm could tune hyperparameters of the RF model effectively, leading
to a satisfactory performance of the BAS-RF model in rockburst classifications.

• The BAS-RF model performed much better compared to the other classifier. The
BAS-RF was the most accurate model, followed by DT, SVM, and KNN models.

• Analyzing the relative importance of input variables based on the BAS-RF model
demonstrated that Wet has a substantial influence on rockburst.

• The BAS-RF model provided the most accurate classification as compared to the
existing RF model as well as the empirical criteria.

• We successfully applied the BAS-RF model for predicting rockburst events in new
projects. The proposed model had a high generalization ability, which facilitates its
future application in rockburst intensity assessments.

• It should be pointed out that the generalization could have been improved if we had
used a large dataset to train the model.
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