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Abstract: This paper addresses the fusion estimation problem in tessarine systems with multi-sensor
observations affected by mixed uncertainties when under Tk-properness conditions. Observations
from each sensor can be updated, delayed, or contain only noise, and a correlation is assumed
between the state and the observation noises. Recursive algorithms for the optimal local linear
filter at each sensor as well as both centralized and distributed linear fusion estimators are derived
using an innovation approach. The Tk-properness assumption implies a reduction in the dimen-
sion of the augmented system, which yields computational savings in the previously mentioned
algorithms compared to their counterparts, which are derived from real or widely linear processing.
A numerical simulation example illustrates the obtained theoretical results and allows us to visu-
alize, among other aspects, the insignificant difference in the accuracy of both fusion filters, which
means that the distributed filter, although suboptimal, is preferable in practice as it implies a lower
computational cost.

Keywords: centralized fusion estimation; delayed observations; distributed fusion estimation;
multi-sensor systems; tessarine signal processing; Tk-properness; uncertain observations

1. Introduction

In the scientific community, there has recently been increasing interest in approaching
different estimation problems in systems with observations proceeding from multiple
sensors. Evidently, this availability yields better estimations, since the information supplied
from several sensors may compensate for the possible adverse effects of some faulty sensors,
communication errors, or defects when using a single sensor. According to the way that
information is fused, the estimation techniques can be categorized into two large groups:
centralized and distributed methods. In the former group, all the observations from all the
sensors are directly sent to the fusion center to be processed in a single fusion estimator.
In the latter, the observations at each sensor are independently processed, providing a local
estimator, and, afterwards, in the fusion center, a single distributed fusion estimator is built
from these local estimators. Both fusion “architectures” have strengths and weaknesses,
meaning that they can be used alternatively in practice, depending on the problem at hand.
As is already known, the centralized method provides a theoretical, optimal solution to
the estimation problem; in contrast, this may imply a heavy computational burden, and a
high bandwidth may be required. Moreover, the architecture cannot be changed [1–4].
In contrast, the situation with the distributed fusion method the opposite. This method
has great advantages over the centralized one due to the fact that it requires a lower
computational load and communication costs, and is more robust in terms of failure and
flexibility. However, the disadvantage of this method is that the optimality condition of
the estimators is lost [2,5,6]. Nevertheless, this weakness is acceptable when considering
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the advantages that this methodology presents, accounting for the slight difference that
there may be in practice between the estimators obtained by both methods.

Furthermore, in data transmission problems, random delays, packet dropouts, or miss-
ing measurements frequently occur. These problems are caused by limited communication
capabilities or some failures in transmission components. In the real domain, there is
a wide-ranging literature on signal linear processing under uncertain outputs based on
both centralized (see, e.g., [7–9], among others) and distributed fusion methods (see,
e.g., [10–14]). In all of them, different scenarios concerning the initial state-space model and
the characteristics of the observations from the sensors are considered. More specifically,
by considering these three mixed uncertainties, the centralized fusion linear optimal estima-
tion problem has been solved in [8]. In multi-sensor systems with missing measurements,
the centralized and distributed fusion estimators have been obtained in [9] and [11,12],
respectively, by assuming different conditions for the noise variances and updating the
state at each sensor. An analysis of the effects of these packet losses has been developed
in [15] for the centralized Kalman filtering and [12,16] for the distributed fusion filtering
problem. Moreover, the distributed fusion estimation problem has also been studied in
networked systems, for a class of uncertain sensor networks with multiple delays [7,10],
and assuming correlated noises [13,14]. In the above references, the situations referring to
the uncertainties in the observations are usually modeled by Bernoulli random parameters
with known probabilities. Indeed, this is the most common probability distribution to
describe the different types of uncertainty.

In the last two decades, the interest in hypercomplex domains has considerably grown
due to their adequacy in describing a high number of physical phenomena. Their useful-
ness lies in the fact that they operate in higher-dimensional spaces, and are thus able to
explain the relationships between the dimensions. As an example, we can mention the
use of hypercomplex domains in virtual reality [17,18], acoustic applications [19,20], com-
munication [21,22], image processing [23,24], seismic phenomena [25,26], robotics [27,28],
materials [29,30], avionics [31,32], etc.

At the same time, the need to address, among other aspects, the signal processing
problem by using 4D hypercomplex algebras arises. To date, quaternion algebra has
been the most commonly used type of algebra in signal processing, since it is a normed
division algebra. Specifically, in the optimal signal estimation problem, under the so-called
widely linear (WL) processing, the signal quaternion and its three involutions have to be
considered. Nevertheless, the processes involved in the model can present some properties
that lead to a reduction in the dimension of the model by considering the quaternion
signal itself, called strictly linear (SL) processing, or a two-dimensional vector given by the
quaternion signal and its involution over the pure unit quaternion, named semi-widely
linear (SWL) processing. This reduction in the dimension of the model entails a major
decrease in the computational burden. In this framework, the WL estimation problem has
been studied in [17,19,31] for different real problems, and algorithms based on the Kalman
filter have been proposed in the quaternion field. Moreover, in multi-sensor systems,
the WL distributed fusion estimation problem has been addressed in [33–37]. In addition,
for systems with missing observations, WL and SWL filtering, prediction and smoothing
algorithms have been designed in [38] and [39], respectively, with correlation hypotheses
on the state and observation noises considered in the latter. Additionally, the WL estimation
problem in multi-sensor systems with random delays, packet dropouts, and uncertain
observations has been studied in [40]. It should be highlighted that quaternion processing
is not always the most appropriate methodology. In fact, the use of tessarine signals can
bring, under certain conditions, a better performance of the estimators, as has been tested
in [41–43].

However, the signal estimation problem in the tessarine domain has hardly been
studied at all. This is due to the fact that the set of tessarine random variables does not
have a Hilbert space structure; therefore, it is difficult to calculate the LS linear estimator.
Recently, in [41], a metric has been defined in the tessarine domain that satisfies the
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properties necessary to guarantee the existence and uniqueness of the projection. Moreover,
by making an analogy with the quaternion domain, the authors define T1-properness,
and prove that the tessarine widely linear (TWL) estimation error coincides with that of T1,
which yields a considerable reduction in the computational cost of obtaining the optimal
solution. Later, the T2-properness definition is established in [42], obtaining the same
result for the TWL and T2 estimation errors. These types of Tk-properness have been used
in [43] to approach the LS linear centralized fusion estimation problem of signals from
multi-sensor observations with random delays.

Considering these benefits for the Tk-properness, in this paper, we address both dis-
tributed and centralized fusion LS estimation problems in tessarine systems with mixed
uncertainties of randomly delayed and missing observations proceeding from multiple
sensors. At each sensor and instant of time, each tessarine component can be updated,
delayed, or contain only noise, independently of the remaining sensors. We have also
assumed a correlation between the signal and observation noises, which is a very desir-
able property for multi-sensor systems, since the observations act as output feedback [14].
By using an innovation approach, recursive algorithms are derived to compute the LS
distributed and centralized fusion filters. These have been characterized for both Tk-proper
scenarios, where the reduction in the system dimension is clearly reflected. A decrease in
the computational burden can also be observed by using the distributed filtering algorithm
instead of the centralized one and, although the distributed algorithm provides subopti-
mal estimators, a simulation example shows that the differences between them may be
insignificant in practice.

The rest of the paper is organized as follows. In Section 2, the notation that will
be used throughout the paper is established, as well as a revision of the main con-
cepts and results in the tessarine domain. Next, in Section 3, the tessarine state and
observation equations (both the real and available ones) are established, as well as
the hypotheses on the processes involved. The different mixed uncertainties are mod-
elled by using Bernoulli random variables with known parameters, whose values of
one or zero determine if an observation is updated, delayed, or contains only noise.
Then, the augmented model (by considering the three conjugations) is presented in
Section 4, and the conditions for the processes which guarantee Tk-properness are stud-
ied. The reduction in the model under these Tk-properness conditions is shown and,
in this scenario, a recursive algorithm is proposed to obtain the local optimal LS linear
filtering estimators. Subsequently, in Section 5, by considering the compact model, that
is, the observations from all the sensors, a recursive algorithm is devised to obtain the
optimal LS linear centralized fusion filter under Tk-properness conditions. Adittionally,
a method for the recursive computation of the Tk distributed fusion filter as the LS matrix-
weighted linear combination of the optimal local LS linear estimators is proposed in
Section 6. Afterwards, a numerical simulation example in Section 7 illustrates several
items: (i) the superiority of both fusion filters over the local ones, (ii) the performance
of the fusion filters increases as the updating and delay probabilities become greater
and by comparing the same probability that the observation is updated or delayed;
(iii) the accuracy of the centralized fusion filter is better than the distributed one, but the
difference is almost insignificant. Finally, a section of conclusions (Section 8) and two
appendixes with the proofs of all the results in the paper have been included.

2. Preliminaries

In this section, we introduce the basic notation that will be used in this paper. Matrices
will be written in bold, upper-case letters, column vectors in bold, lower-case letters,
and scalar quantities in lightfaced letters. We will use the superscripts “∗”, “T” and “H”
to represent the tessarine conjugate, transpose and conjugate transpose, respectively. For
0n×m, we will denote the n×m zero matrix, In the identity matrix of dimension n, and 1n
and 0n, the column vector of dimension n with all its elements 1 or 0, respectively. Letters
Z, R and T will represent the set of integer, real and tessarine field, respectively. Moreover,
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A ∈ Rn×m (respectively, A ∈ Tn×m) means that A is a real (respectively, tessarine) n×m
matrix. Similarly, r ∈ Rm (respectively, r ∈ Tm) means that r is a m-dimensional real
(respectively, tessarine) vector.

In addition, E[·] and Cov(·) will denote the expectation and covariance operators and
diag(·) is a diagonal matrix with the elements specified on the main diagonal. Finally, “◦”
and “⊗” denote the Hadamard and Kronecker products, respectively, and δts, the Kronecker
delta function. We will use the following property of the Hadamard product:

Property 1. If A ∈ Rn×n and b ∈ Rn, then diag(b)A diag(b) =
(
bbT) ◦A.

Throughout this paper, and unless otherwise stated, all the random variables are
assumed to have zero-mean. Next, we present a review of the tessarine domain.

Definition 1. A tessarine random signal x(t) ∈ Tn is a stochastic process of the form [41]

x(t) = xr(t) + ηxη(t) + η′xη′(t) + η′′xη′′(t), (1)

where xν(t) ∈ Rn, for ν = r, η, η′, η′′, are real random signals and the imaginary units {η, η′, η′′}
satisfy the identities:

ηη′ = η′′, η′η′′ = η, η′′η = −η′, η2 = η′′ 2 = −1, η′ 2 = 1.

These properties of the imaginary units guarantee the commutative property of the
product, implying a great advantage over the quaternion algebra, in which that property is
not met. In contrast, the involutions defined in the quaternion domain cannot be defined
in the tessarine one because they are auto-involutive. The conjugate of the tessarine signal
given in (1) is defined as

x∗(t) = xr(t)− ηxη(t) + η′xη′(t)− η′′xη′′(t),

and the auxiliary tessarines as

xη(t) = xr(t) + ηxη(t)− η′xη′(t)− η′′xη′′(t),
xη′′(t) = xr(t)− ηxη(t)− η′xη′(t) + η′′xη′′(t).

It is also defined the real vector formed with the components of x(t) in (1), xr(t) =[
xTr (t), xTη(t), xTη′(t), xTη′′(t)

]T
, and the augmented tessarine signal vector constituted by

the tessarine signal x(t) and its conjugations, i.e., x̄(t) =
[
x
T
(t), x∗

T
(t), xηT(t), xη′′T(t)

]T
.

The relationship between both vectors is given by the following expression

x̄(t) = 2T nxr(t),

where T n = 1
2A⊗ In, with

A =


1 η η′ η′′

1 −η η′ −η′′

1 η −η′ −η′′

1 −η −η′ η′′

.

This property is satisfied: T H
nT n = I4n.

As in the quaternion field ([38]), we define the following product between tessarines,
which will be crucial to model the intermittency and delay in the observations.
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Definition 2. The product ? between two tessarine signals x(t), y(s) ∈ Tn is defined as

x(t) ? y(s) = xr(t) ◦ yr(s) + ηxη(t) ◦ yη(s) + η′xη′(t) ◦ yη′(s) + η′′xη′′(t) ◦ yη′′(s).

The following property of the product ? is easy to check.

Property 2. The augmented vector of x(t) ? y(s) is x(t) ? y(s) = Dx(t)ȳ(s), where Dx(t) = T n
diag(xr(t))T H

n.

Definition 3. The pseudo autocorrelation function of the random signal x(t) ∈ Tn is defined
as Γx(t, s) = E

[
x(t)xH(s)

]
, ∀t, s ∈ Z, and the pseudo cross-correlation function of the random

signals x(t) ∈ Tn and y(t) ∈ Tm is defined as Γxy(t, s) = E
[
x(t)yH(s)

]
, ∀t, s ∈ Z.

The concept of T1 and T2-properness we next define, was recently introduced in [41]
and [42], respectively, and consists of the vanishing of some of the pseudo correlation
functions of the signal with its conjugations, in an analogous manner to what was in the
quaternion domain.

Definition 4. A random signal x(t) ∈ Tn is said to be T1-proper (respectively, T2-proper) if,
and only if, the functions Γxxν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′), vanish for all
t, s ∈ Z. Similarly, two random signals x(t) ∈ Tn and y(t) ∈ Tm are cross T1-proper (respectively,
cross T2-proper) if, and only if, the functions Γxyν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′),
vanish for all t, s ∈ Z. Finally, x(t) and y(t) are jointly T1-proper (respectively, jointly T2-proper)
if, and only if, they are T1-proper (respectively, T2-proper) and cross T1-proper (respectively, cross
T2-proper).

Note that, in TWL processing, the fact that Tk-properness is satisfied, causes a consid-
erable reduction in the dimensions of the processes involved, with the consequent decrease
in the computational cost. More specifically, in the most general case, TWL processing
uses the augmented vectors formed by the process and its three conjugations. However,
if tessarine linear processing is applied by considering only the process or the process
and its conjugate, then they are denominated T1 and T2 linear processing, respectively.
In [41], the authors prove that, in general, the TWL estimation error is lower than that of T1,
but under T1-properness conditions, both the TWL and T1 estimators coincide. Analogous
considerations about T2 processing are shown in [42]. Moreover, both papers propose
statistical tests to experimentally check if a signal is Tk-proper, for k = 1, 2, and prove that,
under certain conditions, the tessarine processing can obtain better estimators than the
quaternion one. The statements above justify that the Tk-properness conditions are very
desirable in practice. In this sense, it will be of great interest to determine under what
conditions Tk-properness is guaranteed.

3. Model Formulation

Consider a tessarine state x(t) ∈ Tn satisfying the following state equation:

x(t + 1) = F1(t)x(t) + F2(t)x∗(t) + F3(t)xη(t) + F4(t)xη′′(t) + u(t), t ≥ 0, (2)

where Fi(t) ∈ Tn×n, for i = 1, . . . , 4, are deterministic matrices and u(t) ∈ Tn is a tes-
sarine noise.

We also assume that R sensors exist, providing each of them with a real observation,
z(i)(t) ∈ Tn, satisfying the following equation:

z(i)(t) = x(t) + v(i)(t), t ≥ 1, i = 1, . . . , R, (3)

with v(i)(t) ∈ Tn a tessarine noise.
As it occurs in multiple practical situations, due to failures in communication channels,

network congestion or some other causes, the available observations can suffer delays and
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even contain only noise in an intermittent manner. This fact can be modelled by the follow-
ing equation for the available observation in each sensor, y(i)(t) ∈ Tn, for i = 1, . . . , R:

y(i)(t) = γ
(i)
1 (t) ? z(i)(t) + γ

(i)
2 (t) ? z(i)(t− 1)

+ (1n − γ
(i)
1 (t)− γ

(i)
2 (t)) ? v(i)(t), t ≥ 2;

y(i)(1) = z(i)(1).

(4)

For each sensor i = 1, . . . , R and for j = 1, 2, γ
(i)
j (t) = [γ

(i)
j1
(t), . . . , γ

(i)
jn (t)]T ∈ Tn is

a tessarine random vector whose components are composed by independent Bernoulli
random variables γ

(i)
jm ,ν(t), with m = 1, . . . , n, ν = r, η, η′, η′′ with known probabilities

p(i)jm ,ν(t), respectively. Values of one or zero for these Bernoulli variables indicate if the
corresponding component of the available observation is updated, one-step delayed or
only contains noise. These variables must satisfy that, for each i = 1, . . . , R, m = 1, . . . , n,
ν = r, η, η′, η′′, γ

(i)
1m ,ν(t) + γ

(i)
2m ,ν(t) = 1 or γ

(i)
1m ,ν(t) + γ

(i)
2m ,ν(t) = 0 at each instant of time;

that is, if one of them takes value 1, the other one is 0, or both are 0; moreover, p(i)1m ,ν(t) +

p(i)2m ,ν(t) ≤ 1. In this sense, if γ
(i)
1m ,ν(t) = 1, then y(i)m,ν(t) = z(i)m,ν(t); that is, it contains the

updated observation component; if γ
(i)
2m ,ν(t) = 1, then y(i)m,ν(t) = z(i)m,ν(t− 1), the available

observation component is that delayed one instant of time and, finally, if γ
(i)
1m ,ν(t) =

γ
(i)
2m ,ν(t) = 0, then y(i)m,ν(t) = v(i)m,ν(t); that is, it contains only noise. Observe that the initial

available observation is updated.
We assume the following hypotheses for the model defined in (2)–(4):

Hypothesis 1 (H1). {u(t); t ≥ 0} and {v(i)(t); t ≥ 1}, i = 1, . . . , R are white noises with
pseudo variances Q(t) and R(i)(t), respectively. Moreover, they are correlated at the same instant
of time, with E

[
u(t)v(i)H(t)

]
= S(i)(t).

Hypothesis 2 (H2). v(i)(t) is independent of v(j)(t) for i, j = 1, . . . , R, with i 6= j.

Hypothesis 3 (H3). For each sensor i = 1, . . . R, and j = 1, 2, the Bernoulli variables in γ
(i)
j (t)

are independent of those in γ
(i)
j (s), for s 6= t. The same hypothesis for γ

(i)
j (t) and γ

(l)
j (t) with i 6= l.

Hypothesis 4 (H4). The initial state, x(0), (whose pseudo variance is denoted by P0) and the
noises {u(t); t ≥ 0}, {v(i)(t); t ≥ 1} and {γ(i)

j (t); t ≥ 2}, for j = 1, 2, i = 1, . . . , R, are
mutually independent.

An example of the above scenario can be found in the problem of dynamic targeting
tracking (see, e.g., [13]) and, in particular, in the problem of tracking the rotations of an
aircraft [35,36].

4. Local Tk-Proper LS Linear Filtering Problem

In this section, the local LS linear filtering problem is studied for the tessarine model
described above; that is, for each sensor i = 1, . . . , R, the optimal lineal estimation problem
of the signal x(t) is addressed from the observations provided by that sensor i. For this
purpose, firstly, the model is formulated at each sensor, by considering both delays and the
internittency in the avilable observation equation. Moreover, due to the great computational
advantages, the conditions on the processes involved to ensure Tk-properness are proposed.
Once the model has been formulated, a recursive algorithm is presented to obtain the
optimal local LS linear filters. In Section 6, this algorithm will be necessary to address the
distributed fusion LS linear filtering problem.
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4.1. Local Tk-Proper Model Formulation

For each sensor i = 1, . . . , R, the augmented version of the model defined in
Equations (2)–(4) is as follows

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0,

z̄(i)(t) = x̄(t) + v̄(i)(t), t ≥ 1,

ȳ(i)(t) = Dγ
(i)
1 (t)z̄(i)(t) +Dγ

(i)
2 (t)z̄(i)(t− 1)

+D1−γ
(i)
1 −γ

(i)
2 (t)v̄(i)(t), t ≥ 2; ȳ(i)(1) = z̄(i)(1),

(5)

where

Φ̄(t) =


F1(t) F2(t) F3(t) F4(t)
F∗2(t) F∗1(t) F∗4(t) F∗3(t)
Fη

3(t) Fη
4(t) Fη

1(t) Fη
2(t)

Fη′′

4 (t) Fη′′

3 (t) Fη′′

2 (t) Fη′′

1 (t)

,

with Dγ
(i)
j (t), for j = 1, 2, and D1−γ

(i)
1 −γ

(i)
2 (t), defined in Property 2. Moreover, the pseudo

variances of the augmented white noises ū(t) and v̄(i)(t) are denoted by Q̄(t) and R̄(i)(t),
respectively, E

[
ū(t)v̄(i)H(s)

]
= S̄(i)(t)δt,s, and E

[
x̄(0)x̄H(0)

]
= P̄0.

Next, conditions for the processes involved in (5), which guarantee a Tk-properness
scenario, are given in Property 3.

Property 3. Consider the model described in Equation (5):

1. If x(0) and u(t) are T1-proper, and Φ̄(t) is a block diagonal matrix of the form

Φ̄(t) = diag
(

F1(t), F∗1(t), Fη
1(t), Fη′′

1 (t)
)

,

then x(t) is T1-proper. If additionally p(i)jm,r(t) = p(i)jm,η(t) = p(i)jm,η′(t) = p(i)jm,η′′(t) ≡

p(i)jm(t), ∀t, j, m, i, v(i)(t) is T1-proper, and u(t) and v(i)(t) are cross T1-proper, then x(t)

and y(i)(t) are jointly T1-proper. In this scenario,

Π
γ
(i)
j (t) = E

[
Dγ

(i)
j (t)

]
= I4 ⊗Π

j(i)
1 (t), i = 1, . . . , R, j = 1, 2,

with
Π

j(i)
1 (t) = diag

(
p(i)j1,r(t), . . . , p(i)jn,r(t)

)
, i = 1, . . . , R, j = 1, 2.

Moreover, Π1−γ
(i)
1 −γ

(i)
2 (t) = E

[
D1−γ

(i)
1 −γ

(i)
2 (t)

]
= I4n −Πγ

(i)
1 (t)−Πγ

(i)
2 (t).

2. By substituting in the last item T1 by T2 and the matrix Φ̄(t) by this other

Φ̄(t) = diag
(

Φ2(t), Φ
η
2(t)

)
, with Φ2(t) =

[
F1(t) F2(t)
F∗2(t) F∗1(t)

]
, (6)

and assuming that the Bernoulli parameters now satisfy that p(i)jm,r(t) = p(i)jm,η(t) and

p(i)jm,η′(t) = p(i)jm,η′′(t), ∀t, j, m, i, an identical property can be established for the joint

T2-properness of x(t) and y(i)(t). In this case, the expectation of the multiplicative noises are
given by

Π
γ
(i)
j (t) = diag

(
Π

j(i)
2 (t), Π

j(i)
2 (t)

)
, i = 1, . . . , R, j = 1, 2,

Π1−γ
(i)
1 −γ

(i)
2 (t) = I4n −Πγ

(i)
1 (t)−Πγ

(i)
2 (t), i = 1, . . . , R,
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with

Π
j(i)
2 (t) =

1
2

 Π
j(i)
a (t) Π

j(i)

b (t)

Π
j(i)

b (t) Π
j(i)
a (t)

, i = 1, . . . , R, j = 1, 2,

and

Π
j(i)
a (t) = diag

(
p(i)j1,r(t) + p(i)j1,η′(t), . . . , p(i)jn,r(t) + p(i)jn,η′(t)

)
, i = 1, . . . , R, j = 1, 2,

Π
j(i)

b (t) = diag
(

p(i)j1,r(t)− p(i)j1,η′(t), . . . , p(i)jn,r(t)− p(i)jn,η′(t)
)

, i = 1, . . . , R, j = 1, 2.

Note that these Tk-property conditions allow us to reduce the dimension of the

available observations; that is, y(i)
1 (t) , y(i)(t) and y(i)

2 (t) ,
[
y(i)T

(t), y(i)H(t)
]T

, for T1

and T2-proper scenarios, respectively, and hence, the observation equation given in (5) is
now expressed in the following terms:

y(i)
k (t) = Dγ

(i)
1

k (t)z̄(i)(t) +Dγ
(i)
2

k (t)z̄(i)(t− 1)

+D1−γ
(i)
1 −γ

(i)
2

k (t)v̄(i)(t), t ≥ 2; y(i)
k (1) =

[
Ikn, 0kn×(4−k)n

]
z̄(i)(1),

(7)

where

D
γ
(i)
j

k (t) = T k diag
(

γ
(i)r

j (t)
)
T H

n, i = 1, . . . , R, j = 1, 2,

D1−γ
(i)
1 −γ

(i)
2

k (t) = T k diag
(

14n − γ
(i)r

1 (t)− γ
(i)r

2 (t)
)
T H

n, i = 1, . . . , R,

with
T k =

1
2
Bk ⊗ In, (8)

and

Bk =


[1 η η′ η′′], for k = 1[

1 η η′ η′′

1 −η η′ −η′′

]
, for k = 2.

Moreover, under Tk-properness, for i = 1, . . . , R and j = 1, 2,

Π
γ
(i)
j

k (t) = E

[
D

γ
(i)
j

k (t)

]
=

[
Π

j(i)

k (t), 0kn×(4−k)n

]
,

Π
1−γ

(i)
1 −γ

(i)
2

k (t) = E
[
D1−γ

(i)
1 −γ

(i)
2

k (t)
]
=
[
Ikn −Π1(i)

k (t)−Π2(i)
k (t), 0kn×(4−k)n

]
,

(9)

where the matrices Π
j(i)

k (t), for k = 1, 2, are defined in Property 3.

Remark 1. Let us observe that the Tk-properness also causes a dimension reduction in the remaining
processes and matrices involved in Equation (5). More specifically, in the T1-proper scenario, x̄(t),
ū(t) z̄(i)(t), v̄(i)(t) and Φ̄(t), are substituted by x1(t) , x(t), u1(t) , u(t), z(i)1 (t) , z(i)(t),

v(i)
1 (t) , v(i)(t) and Φ1(t) , F1(t); and, in the T2-proper scenario, by x2(t) ,

[
x(t), xH(t)

]T,

u2(t) ,
[
u(t), uH(t)

]T, z(i)2 (t) ,
[
z(i)(t), z(i)

H
(t)
]T

, v(i)
2 (t) ,

[
v(i)(t), v(i)H(t)

]T
and Φ2(t)

(given in (6)). The corresponding pseudo variance matrices of the noises uk(t) and v(i)
k (t) as well as its

pseudo cross-covariance matrix, will be denoted by Qk(t), R(i)
k (t), and S(i)

k (t), respectively; moreover,
P0k = E

[
xk(0)xHk (0)

]
.
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4.2. Local LS Filtering Estimators

Given the model described in (5), with the available observation equation in (7) for the
Tk-proper scenarios, a recursive algorithm to calculate the local LS filtering estimators is
presented in this section. This estimator, denoted by x̂(i)

Tk (t|t), represents at each sensor i,
the optimal LS linear estimator of the signal x(t) from the observations

{
y(i)

k (1), . . . , y(i)
k (t)

}
.

Note that this estimator can be obtained by projecting x(t) over the linear space spanned by
the observations

{
y(i)

k (1), . . . , y(i)
k (t)

}
. At the tessarine domain, the existence and uniqueness

of this projection is guaranteed ([41]). To derive this algorithm, the innovations are used,
instead of the observations, defined as ε

(i)
k (t) = y(i)

k (t)− ŷ(i)
k (t|t− 1), with ŷ(i)

k (t|t− 1) the

optimal LS linear estimator of the observation y(i)
k (t) from the observations until the previous

instant, that is,
{

y(i)
k (1), . . . , y(i)

k (t− 1)
}

.

Theorem 1. For each sensor i = 1, . . . , R, the optimal filter, x̂(i)
Tk (t|t), is obtained by extracting

the first n components of x̂(i)k (t|t), which satisfies this expression

x̂(i)k (t|t) = x̂(i)k (t|t− 1) + L(i)
k (t)ε(i)k (t), t ≥ 1, (10)

where x̂(i)k (t + 1|t), can be recursively calculated as

x̂(i)k (t + 1|t) = Φk(t)x̂
(i)
k (t|t) + H(i)

k (t)ε(i)k (t), t ≥ 1, (11)

with initial conditions x̂(i)k (1|0) = x̂(i)k (0|0) = 0kn, L(i)
k (t) = Θ

(i)
k (t)Ω(i)−1

k (t) and H(i)
k (t) =

S(i)
k (t)

(
Ikn −Π2(i)

k (t)
)

Ω
(i)−1

k (t).

The innovations, ε
(i)
k (t), satisfy this relation

ε
(i)
k (t) = y(i)

k (t)−Π1(i)
k (t)x̂(i)k (t|t− 1)

−Π2(i)
k (t)

(
x̂(i)k (t− 1|t− 1) + G(i)

k (t− 1)ε(i)k (t− 1)
)

, t ≥ 2,
(12)

with initial condition ε
(i)
k (1) = y(i)

k (1) and G(i)
k (t) = R(i)

k (t)
(

Ikn −Π2(i)
k (t)

)
Ω

(i)−1

k (t).

Moreover, the matrices Θ
(i)
k (t) are obtained by this expression

Θ
(i)
k (t) = P(i)

k (t|t− 1)Π1(i)
k (t) + Φk(t− 1)P(i)

k (t− 1|t− 1)Π2(i)
k (t)

−H(i)
k (t− 1)

(
Θ

(i)
k (t− 1) + G(i)

k (t− 1)Ω(i)
k (t− 1)

)H
Π2(i)

k (t)

+
(

S(i)
k (t− 1)−Φk(t− 1)Θ(i)

k (t− 1)G(i)H

k (t− 1)
)

Π2(i)
k (t), t ≥ 2;

Θ
(i)
k (1) = Dk(1),

(13)

with
Dk(1) =

[
Ikn, 0kn×(4−k)n

]
D̄(1)

[
Ikn, 0kn×(4−k)n

]T
, (14)

and D̄(1) given in (16).

The pseudo-covariance matrix of the innovations, Ω
(i)
k (t) = E

[
ε
(i)
k (t)ε(i)

H

k (t)
]
, is calculated

as follows
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Ω
(i)
k (t) = Ψ

(i)
1k
(t) + Ψ

(i)
2k
(t) + Ψ

(i)H
2k

(t) + Ψ
(i)
3k
(t) + Ψ

(i)
4k
(t)

+ Π1(i)
k (t)P(i)

k (t|t− 1)Π1(i)
k (t) + Π1(i)

k (t)J(i)k (t− 1)Π2(i)
k (t)

+ Π2(i)
k (t)J(i)

H

k (t− 1)Π1(i)
k (t) + Π2(i)

k (t)
(

P(i)
k (t− 1|t− 1)

−Θ
(i)
k (t− 1)G(i)H

k (t− 1)−G(i)
k (t− 1)Θ(i)H

k (t− 1)

− G(i)
k (t− 1)Ω(i)

k (t− 1)G(i)H

k (t− 1)
)

Π2(i)
k (t), t ≥ 2;

Ω
(i)
k (1) = Dk(1) + R(i)

k (1),

(15)

with the matrices Ψ
(i)
lk
(t), for l = 1, 2, 3, 4, given by

Ψ
(i)
1k
(t) = T k

(
Cov

(
γ
(i)r

1 (t)
)
◦
(
T H

nD̄(t)T n
))

T H
k ,

Ψ
(i)
2k
(t) = T k

(
Cov

(
γ
(i)r

1 (t), γ
(i)r

2 (t)
)
◦
{
T H

n

(
Φ̄(t− 1)D̄(t− 1) + S̄(i)(t− 1)

)
T n

})
T H

k ,

Ψ
(i)
3k
(t) = T k

(
Cov

(
γ
(i)r

2 (t)
)
◦
(
T H

nD̄(t− 1)T n
))

T H
k ,

Ψ
(i)
4k
(t) = T k

(
E
[(

1− γ
(i)r

2 (t)
)(

1− γ
(i)r

2 (t)
)T]
◦
(
T H

nR̄(i)(t)T n

))
T H

k

+ T k

(
E
[

γ
(i)r

2 (t)γ(i)rT

2 (t)
]
◦
(
T H

nR̄(i)(t− 1)T n

))
T H

k ,

and J(i)k (t), by this other relation

J(i)k (t) = Φk(t)P
(i)
k (t|t)−H(i)

k (t)Θ(i)H

k (t)−Φk(t)Θ
(i)
k (t)GH

k (t)

+ S(i)
k (t)−H(i)

k (t)Ω(i)
k (t)G(i)H

k (t).

Moreover, D̄(t) satisfies the following recursive formula

D̄(t) = Φ̄(t− 1)D̄(t− 1)Φ̄H(t− 1) + Q̄(t− 1), t ≥ 1; D̄(0) = P̄0. (16)

Finally, the pseudo covariance matrices of the filtering errors, P(i)Tk (t|t), are obtained from
P(i)

k (t|t), which satisfies the following recursive formula

P(i)
k (t|t) = P(i)

k (t|t− 1)−Θ
(i)
k (t)Ω(i)−1

k (t)Θ(i)H

k (t), t ≥ 1, (17)

with P(i)
k (t + 1|t), calculated by this other equation

P(i)
k (t + 1|t) = Φk(t)P

(i)
k (t|t)ΦH

k (t)−Φk(t)Θ
(i)
k (t)H(i)H

k (t)

−H(i)
k (t)Θ(i)H

k (t)ΦH
k (t)−H(i)

k (t)Ω(i)
k (t)H(i)H

k (t) + Qk(t), t ≥ 1,
(18)

and initial conditions P(i)
k (0|0) = P0k , and P(i)

k (1|0) = Dk(1).

The proof is deferred to the Appendix A.

Remark 2. Notice that, similarly to QWL processing, TWL processing is isomorphic to the real
processing;thus, any WL algorithm could be equivalently expressed through a real formalism.
In other words, the three approaches (QWL, TWL and R4) are completely equivalent. However, this
equivalence vanishes under properness conditions.

Effectively, under Tk, for k = 1, 2, properness conditions, the dimension of the observation
vector is reduced 4/k times, which leads to estimation algorithms with a lower computational load
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with respect to the ones derived from a TWL approach (see [44] for further details). Specifically, this
computational load is of order O(64n3) for the TWL local LS filtering algorithm, whereas this is of
order O(k3n3) for the Tk, for k = 1, 2, algorithms.

Similar comments can be applied to the following Tk centralized and distributed fusion
filtering algorithms.

5. Tk-Proper Centralized Fusion Linear Filtering Problem

In this section, we approach the centralized fusion LS linear filtering problem, that is,
by using the observations from all the sensors jointly. For this purpose, we consider the
augmented vector for both real and available observation, denoted by

~z(t) =
[
z̄(1)

T
(t), . . . , z̄(R)T(t)

]T
, and ~y(t) =

[
ȳ(1)T(t), . . . , ȳ(R)T(t)

]T
, respectively. In this

way, the observation equations now are given as follows

~z(t) = Ξnx̄(t) +~v(t), t ≥ 1,

~y(t) = D̄~γ1(t)~z(t) + D̄~γ2(t)~z(t− 1) + D̄1−~γ1−~γ2(t)~v(t), t ≥ 2; ~y(1) =~z(1),
(19)

where Ξn = 1R ⊗ I4n, D̄~γj(t) = Υn diag
(
~γr

j(t)
)

ΥH
n, for j = 1, 2, and D̄1−~γ1−~γ2(t) = Υn

diag(14Rn −~γr
1(t)−~γr

2(t))Υ
H
n, with ~γr

j (t) =

[
γ
(1)rT

j (t), . . . , γ
(R)rT

j (t)
]T

, Υn = IR ⊗ T n.

Moreover, ~R(t) = E
[
~v(t)~vH(t)

]
= diag

(
R̄(1)(t), . . . , R̄(R)(t)

)
, and E

[
ū(t)~vH(s)

]
= ~S(t)δts,

with the matrix~S(t) given by~S(t) =
[
S̄(1)(t), . . . , S̄(R)(t)

]
.

However, as previously commented on in Section 4.1, under Tk-properness conditions,
it is possible to reduce the dimension of the available observation equation, which can be
expressed as follows:

yk(t) = D̄~γ1
k (t)~z(t) + D̄~γ2

k (t)~z(t− 1) + D̄1−~γ1−~γ2
k (t)~v(t), t ≥ 2; yk(1) = ∆k~z(1), (20)

where D̄
~γj
k (t) = Υk diag

(
~γr

j (t)
)

ΥH
n, D̄1−~γ1−~γ2

k (t) = Υk diag(14Rn −~γr
1(t)−~γr

2(t))Υ
H
n, with

Υk = IR ⊗ T k, T k given in (8), and ∆k = IR ⊗
[
Ikn, 0kn×(4−k)n

]
. Moreover,

Π̄
~γj
k (t) =E

[
D̄

~γj
k (t)

]
= diag

(
Π

γ
(1)
j

k (t), . . . , Π
γ
(R)
j

k (t)

)
,

Π̄
1−~γ1−~γ2
k (t) =E

[
D̄1−~γ1−~γ2

k (t)
]
= diag

(
Π

1−γ
(1)
1 −γ

(1)
2

k (t), . . . , Π
1−γ

(R)
1 −γ

(R)
2

k (t)
)

,

with Π
γ
(i)
j

k (t) and Π
1−γ

(i)
1 −γ

(i)
2

k (t), for i = 1, . . . , R, given in (9).
Note that the centralized fusion LS linear filter under Tk-properness conditions,

x̂Tk (t|t), is the optimal LS linear estimator of the signal x(t) from the observations
{yk(1), . . . , yk(t)}. This optimality condition is harmed by the computational complexity,
especially as the number of the sensors increases.

The next corollary contains a recursive algorithm to determine the centralized fusion
linear filter, for the state equation in (5), and the real and available observation equations
described in (19) and (20), respectively, which can be derived by following an analogous
proof to that used in Theorem 1.

Corollary 1. For previously described model, the optimal centralized fusion filter, x̂Tk (t|t), is
obtained by extracting the first n components of x̂k(t|t), which are recursively calculated as follows

x̂k(t|t) = x̂k(t|t− 1) + Lk(t)εk(t) t ≥ 1,
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where x̂k(t + 1|t) satisfies this formula

x̂k(t + 1|t) = Φk(t)x̂k(t|t) + Hk(t)εk(t) t ≥ 1,

with initial conditions x̂k(1|0) = x̂k(0|0) = 0kn. Moreover, Lk(t) = Θk(t)Ω−1
k (t),

Hk(t) = Sk(t)
(
IknR −Π2

k(t)
)
Ω−1

k (t), where Sk(t) = [S(1)
k (t), . . . , S(R)

k (t)], with S(i)
k (t), for

i = 1, . . . , R, defined in Remark 1, and Π
j
k(t) = diag

(
Π

j(1)

k (t), . . . , Π
j(R)

k (t)
)

, for j = 1, 2, with

Π
j(i)

k (t) given in Property 3.
The innovations, εk(t), are obtained as follows

εk(t) = yk(t)−Π1
k(t)Ξk x̂k(t|t− 1)

−Π2
k(t)(Ξk x̂k(t− 1|t− 1) + Gk(t− 1)εk(t− 1)), t ≥ 2,

with εk(1) = yk(1), Ξk = 1R ⊗ Ikn, and Gk(t) = Rk(t)
(
IknR −Π2

k(t)
)
Ω−1

k (t), with

Rk(t) = diag
(

R(1)
k (t), . . . , R(R)

k (t)
)

, and R(i)
k (t), for i = 1, . . . , R, defined in Remark 1.

The matrices Θk(t) satisfy this relationship

Θk(t) = Pk(t|t− 1)ΞT
k Π1

k(t) + Φk(t− 1)Pk(t− 1|t− 1)ΞT
k Π2

k(t)

−Hk(t− 1)(ΞkΘk(t− 1) + Gk(t− 1)Ωk(t− 1))HΠ2
k(t)

+
(
Sk(t− 1)−Φk(t− 1)Θk(t− 1)GH

k (t− 1)
)
Π2

k(t), t ≥ 2;

Θ(1) = 1TR ⊗Dk(1),

with Dk(1) given in (14).
The pseudo covariance matrix of the innovations, Ω(t), is obtained from this expression

Ωk(t) = Ψ1k (t) + Ψ2k (t) + ΨH
2k
(t) + Ψ3k (t) + Ψ4k (t)

+ Π1
k(t)ΞkPk(t|t− 1)ΞT

k Π1
k(t) + Π1

k(t)Jk(t− 1)Π2
k(t)

+ Π2
k(t)J

H
k (t− 1)Π1

k(t) + Π2
k(t)

(
ΞkPk(t− 1|t− 1)ΞT

k

− ΞkΘk(t− 1)GH
k (t− 1)−Gk(t− 1)ΘH

k (t− 1)ΞT
k

− Gk(t− 1)Ωk(t− 1)GH
k (t− 1)

)
Π2

k(t), t ≥ 2;

Ωk(1) = IR ⊗Dk(1) + Rk(1),

where

Ψ1k (t) = Υk
(
Cov(~γr

1(t)) ◦
(
ΥH

nΞnD̄(t)ΞT
nΥn

))
ΥH

k ,

Ψ2k (t) = Υk

(
Cov(~γr

1(t),~γ
r
2(t)) ◦

{
ΥH

nΞn

(
Φ̄(t− 1)D̄(t− 1)ΞT

n +~S(t− 1)
)

Υn

})
ΥH

k ,

Ψ3k (t) = Υk
(
Cov(~γr

2(t)) ◦
(
ΥH

nΞnD̄(t− 1)ΞT
nΥn

))
ΥH

k ,

Ψ4k (t) = Υk

(
E
[
(14Rn −~γr

2(t))(14Rn −~γr
2(t))

T
]
◦
(

ΥH
n~R(t)Υn

))
ΥH

k

+ Υk

(
E
[
~γr

2(t)~γ
rT
2 (t)

]
◦
(

ΥH
n~R(t− 1)Υn

))
ΥH

k ,

with D̄(t) computed in (16), and Jk(t) given by

Jk(t) = Ξk
{(

Φk(t)Pk(t|t)−Hk(t)ΘH
k (t)

)
ΞH

k −Φk(t)Θk(t)GH
k (t)

+ Sk(t)−Hk(t)Ωk(t)GH
k (t)

}
.

Finally, the filtering error covariance matrices, PTk (t|t), are calculated from Pk(t|t), which
satisfy the following equation
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Pk(t|t) = Pk(t|t− 1)−Θk(t)Ω−1
k (t)ΘH

k (t),

where Pk(t + 1|t) can be recursively obtained from this relation

Pk(t + 1|t) = Φk(t)Pk(t|t)ΦH
k (t)−Φk(t)Θk(t)HH

k (t)

−Hk(t)ΘH
k (t)Φ

H
k (t)−Hk(t)Ωk(t)HH

k (t) + Qk(t),

with initial conditions Pk(0|0) = P0k , and Pk(1|0) = Dk(1).

6. Tk-Proper Distributed Fusion LS Linear Filter

Our aim in this section is to address the distributed fusion LS linear filter under
Tk properness conditions, x̂DTk (t|t), which in turn is calculated by extracting the first
n-components from x̂D

k (t|t). This last estimator is a linear function of the local filters{
x̂(1)k (t|t), . . . , x̂(R)

k (t|t)
}

, calculated in Section 4, whose weights are those minimizing the
mean squared error, and as is known, is of the form

x̂D
k (t|t) = E

[
xk(t)~̂xHk (t|t)

]
E
[
~̂xk(t|t)~̂xHk (t|t)

]−1
~̂xk(t|t),

where~̂x(t|t) =
[
x̂(1)

T

k (t|t), . . . , x̂(R)T

k (t|t)
]T

. Moreover, taking into account Theorem 3 in [41],
the matrices of the above expression are computed as follows

E
[
xk(t)~̂xHk (t|t)

]
=
[
K(11)

k (t), . . . ,K(RR)
k (t)

]
,

E
[
~̂xk(t|t)~̂xHk (t|t)

]
, Kk(t) =

[
K(ij)

k (t)
]

i,j=1,...,R
,

where K(ij)
k (t) = E

[
x̂(i)k (t|t)x̂(j)H

k (t|t)
]
. Moreover, the distributed fusion linear filtering

error covariance matrices under Tk properness conditions, PDTk (t|t), are obtained from
PD

k (t|t), which satisfies the equation

PD
k (t|t) = Dk(t)−

[
K(11)

k (t), . . . ,K(RR)
k (t)

]
K−1

k (t)
[
K(11)

k (t), . . . ,K(RR)
k (t)

]H
,

with Dk(t) =
[
Ikn, 0kn×(4−k)n

]
D̄(t)

[
Ikn, 0kn×(4−k)n

]T
, and D̄(t) given in (16).

Then, it will be necessary to calculate these matrices K(ij)
k (t), for i, j = 1, . . . , R,

to obtain x̂D
k (t|t). With this purpose, a recursive formula is proposed in Lemma 4, which

involves the computation of another intermediate matrices through Lemmas 1–3, as well
as some of the matrices defined in Theorem 1. The proof is deferred to the Appendix B.

Note that, in contrast to the centralized fusion LS linear filter, the distributed fusion
filter presented here loses the optimality condition; however, it does considerably reduce
the computational burden. Moreover, in many practical situations, the difference in perfor-
mance is so insignificant that this fact, in conjunction with the lower computational cost,
makes the distributed filter preferable to the centralized one.

Lemma 1. For the model described in Section 4.1, the following expressions are satisfied for the
defined expectations

(i) Θ
(i)
k (t− 1, t) = E

[
xk(t− 1)ε(i)

H

k (t)
]
, t ≥ 2.

Θ
(i)
k (t− 1, t) =

(
Dk(t− 1)−K(ii)

k (t− 1)
)

A(i)H

k (t− 1)−Θ
(i)
k (t− 1)B(i)H

k (t− 1), (21)
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where Dk(t) =
[
Ikn, 0kn×(4−k)n

]
D̄(t)

[
Ikn, 0kn×(4−k)n

]T
, A(i)

k (t) = Π1(i)
k (t + 1)Φk(t) +

Π2(i)
k (t + 1), B(i)

k (t) = Π1(i)
k (t + 1)H(i)

k (t) + Π2(i)
k (t + 1)G(i)

k (t), and K(ii)
k (t) is given

in (29).
(ii) Θ

(ij)
vk (t) = E

[
vk

(i)(t)ε(j)H

k (t)
]
, t ≥ 1.

Θ
(ij)
vk (t) = R(i)

k (t)
(

Ikn −Π2(i)
k (t)

)
δij, t ≥ 2; Θ

(ij)
vk (1) = R(i)

k (1)δij. (22)

(iii) Θ
(ij)
vk (t− 1, t) = E

[
v(i)

k (t− 1)ε(j)H

k (t)
]
, t ≥ 2.

Θ
(ij)
vk (t− 1, t) = S(i)H

k (t− 1)Π1(j)

k (t) + R(i)
k (t− 1)Π2(i)

k (t)δij

−Θ
(ij)
vk (t− 1)

(
A(j)

k (t− 1)L(j)
k (t− 1) + B(j)

k (t− 1)
)H

.
(23)

Lemma 2. Let us consider the model described in Section 4.1. Then, the matrices L(ij)
k (t) = E[

x̂(i)k (t|t− 1)ε(j)H

k (t)
]
, for i, j = 1, . . . , R, satisfy this relationship

L(ij)
k (t) =

(
K(ii)

k (t, t− 1)−K(ij)
k (t, t− 1)

)
Π1(j)

k (t)

+ Φk(t− 1)
(
K(ii)

k (t− 1)−K(ij)
k (t− 1)

)
Π2(j)

k (t)

+ H(i)
k (t− 1)

(
Θ

(i)
k (t− 1)−N (ji)

k (t− 1)
)H

Π2(j)

k (t)

+
(

C(i)
k (t− 1)Θ(ji)H

vk (t− 1)−L(ij)
k (t, t− 1)G(j)H

k (t− 1)
)

Π2(j)

k (t), t ≥ 2,

(24)

with the initial condition L(ij)
k (1) = 0kn×kn, and where N (ij)

k (t) = L(ij)
k (t) + L(i)

k (t)M(ij)
k (t),

C(i)
k (t) = Φk(t)L

(i)
k (t) + H(i)

k (t), with M(ij)
k (t) = E

[
ε
(i)
k (t)ε(j)H

k (t)
]

recursively computed as

indicated in Lemma 3, and L(ij)
k (t, t− 1) = E

[
x̂(i)k (t|t− 1)ε(j)H

k (t− 1)
]

is obtained as follows

L(ij)
k (t, t− 1) = Φk(t− 1)L(ij)

k (t− 1) + C(i)
k (t− 1)M(ij)

k (t− 1), t ≥ 2. (25)

Moreover, L(ij)
k (t− 1, t) = E

[
x̂(i)k (t− 1|t− 1)ε(j)H

k (t)
]
, is calculated from this expression

L(ij)
k (t− 1, t) =

(
K(ii)

k (t− 1)−K(ij)
k (t− 1)

)
A(j)H

k (t− 1)

+ Θ
(i)
k (t− 1)H(i)H

k (t− 1)Π1(j)

k (t) + L(i)
k (t− 1)Θ(ji)H

vk (t− 1)Π2(j)

k (t)

−N (ij)
k (t− 1)B(j)H

k (t− 1), t ≥ 2.

(26)

Lemma 3. Considering the model described in Section 4.1, the matrices M(ij)
k (t) = E[

ε
(i)
k (t)ε(j)H

k (t)
]
, for i, j = 1, . . . , R, are obtained from this equation

M(ij)
k (t) = Π1(i)

k (t)
(

Θ
(j)
k (t)−L(ij)

k (t)
)
+
(

Ikn −Π2(i)
k (t)

)
Θ

(ij)
vk (t)

+ Π2(i)
k (t)

(
Θ

(j)
k (t− 1, t) + Θ

(ij)
vk (t− 1, t)−L(ij)

k (t− 1, t)

− G(i)
k (t− 1)M(ij)

k (t− 1, t)
)

, t ≥ 2,

(27)

with initial condition M(ij)
k (1) = Dk(1) + R(i)

k (1)δij. Moreover, the following recursive formula

allows us to compute the matrices M(ij)
k (t− 1, t) = E

[
ε
(i)
k (t− 1)ε(j)H

k (t)
]
,
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M(ij)
k (t− 1, t) = Θ

(i)H

k (t− 1)A(j)H

k (t− 1)

+
(

Π1(i)
k (t− 1)S(i)H

k (t− 1)−L(ji)H

k (t, t− 1)
)

Π1(j)

k (t)

+
(

Θ
(ji)H
vk (t− 1)−N (ji)H

k (t− 1)

−M(ij)
k (t− 1)G(j)H

k (t− 1)
)

Π2(j)

k (t), t ≥ 2.

(28)

Lemma 4. For the model described in Section 4.1, the pseudo-cross-covariance matrices of the local

filters, denoted by K(ij)
k (t) = E

[
x̂(i)k (t|t)x̂(j)H

k (t|t)
]
, for i, j = 1, . . . , R, are calculated as follows

K(ij)
k (t) = K(ij)

k (t, t− 1) +N (ij)
k (t)L(j)H

k (t) + L(i)
k (t)L(ji)H

k (t), t ≥ 1, (29)

where K(ij)
k (t + 1, t) = E

[
x̂(i)k (t + 1|t)x̂(j)H

k (t + 1|t)
]

satisfies this equation

K(ij)
k (t + 1, t) = Φk(t)

(
K(ij)

k (t)ΦH
k (t) +N (ij)

k (t)H(j)H

k (t)
)

+ H(i)
k (t)L(ji)H

k (t + 1, t), t ≥ 1,
(30)

with initial conditions K(ij)
k (1, 0) = K(ij)

k (0) = 0kn×kn.

7. Numerical Simulations

Our aim in this section is to show the performance of the proposed centralized
and distributed fusion linear filters algorithms in several situations: on the one hand,
in comparison with the local LS filters obtained at each sensor; on the other, focusing on
the proposed fusion algorithms, to analyze the accuracy of the estimators by supposing
different probabilities of updating, delay, and uncertainty in the observations from the
sensors. In all of these situations, Tk-properness conditions were assumed, which entails a
considerable reduction in the computational burden.

For this purpose, let us consider the scalar tessarine model with delayed and uncertain
observations produced by five sensors, described by the Equations (2)–(4), with F1(t) = 0.5
−0.1η + 0.07η′ + 0.8η′′ ∈ T. Hypotheses (H1)–(H4), established in Section 3, are also
assumed to be satisfied. Moreover, the pseudo-covariance matrices of the noises and the
initial state were defined with a general structure, differentiating between both T1 and
T2-proper scenarios. More specifically, the covariance matrices of the real state noise is
given as follows:

E
[
ur(t)urT(s)

]
=


q11 0 q13 0
0 q22 0 q13

q13 0 q11 0
0 q13 0 q22

δts,

T1-proper case:
{

q11 = q22 = 0.9,
q13 = 0.3.

T2-proper case:


q11 = 1.9,
q22 = 1.6,
q13 = 0.3.

Moreover, the other matrices in hypothesis (H1), R(i)(t) and S(i)(t), for i = 1, . . . , 5,
are given by the following relation between the noises v(i)(t) and u(t):

v(i)(t) = aiu(t) + w(i)(t),

with ai scalar constants ( a1 = 0.4, a2 = 0.8, a3 = 0.5, a4 = 0.6, a5 = 0.2), and w(i)(t)
tessarine zero-mean white Gaussian noises, independent of u(t), with real covariance
matrices, R(i)

wr (t) = diag(bi, bi, bi, bi), where b1 = 3, b2 = 7, b3 = 15, b4 = 13, b5 = 11.
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To complete the initial conditions of the model, the variance matrix of the real initial
state is given as follows:

E
[
xr(0)xrT(0)

]
=


p011 0 p013 0

0 p022 0 p013

p013 0 p011 0
0 p013 0 p022

,

T1-proper case:
{

p011 = p022 = 1,
p013 = −1.5.

T2-proper case:


p011 = 1,
p022 = 4,
p013 = −1.5.

All these assumptions in each of the Tk-proper scenarios, as well as the values consid-
ered in the parameters of the Bernoulli random variables (detailed below, in accordance
with the conditions established in Property 3), guarantee that x(t) and y(i)(t) are jointly
Tk-proper. These parameters are assumed to be constant in time, that is, p(i)j,ν(t) = p(i)j,ν ,

for j = 1, 2, ν = r, η, η′η′′, and i = 1, . . . , 5 (Note that in the T1-proper scenario, p(i)j,ν = p(i)j ,

for all ν = r, η, η′, η′′, j = 1, 2, i = 1, . . . , 5; and, in the T2-proper scenario, p(i)j,r = p(i)j,η and

p(i)j,η′ = p(i)j,η′′ , for j = 1, 2, i = 1, . . . , 5).

Firstly, taking fixed values for the probabilities p(i)j,ν for each of the Tk-proper scenarios,
the error variances of the local filters are compared with those of the centralized and
distributed ones. These probabilities differ at each of the sensors, which allows us to make
an initial attempt to contrast the three situations referred to the model, that is, the updated,
delayed and uncertain observations. In this sense,

• In the T1-proper case:

– Sensor 1: p(1)1 = 0.9, p(1)2 = 0.05,

– Sensor 2: p(2)1 = 0.7, p(2)2 = 0.05,

– Sensor 3: p(3)1 = 0.05, p(3)2 = 0.9,

– Sensor 4: p(4)1 = 0.05, p(4)2 = 0.7,

– Sensor 5: p(5)1 = p(5)2 = 0.05.

• In the T2-proper case :

– Sensor 1: p(1)1,r = 0.9, p(1)1,η′ = 0.8, p(1)2,r = p(1)2,η′ = 0.05,

– Sensor 2: p(2)1,r = 0.7, p(2)1,η′ = 0.6, p(2)2,r = p(2)2,η′ = 0.05,

– Sensor 3: p(3)1,r = p(3)1,η′ = 0.05, p(3)2,r = 0.9, p(3)2,η′ = 0.8,

– Sensor 4: p(4)1,r = p(4)1,η′ = 0.05, p(4)2,r = 0.7, p(4)2,η′ = 0.6,

– Sensor 5: p(5)j,µ = 0.05, for j = 1, 2 and µ = r, η′.

The results are displayed in Figure 1. The superiority of both centralized and dis-
tributed fusion filters over the local ones at each sensor can be observed, as well as the fact
that these fusion filters have practically the same effectiveness, since their error variances
are very close. Moreover, the local filtering error variances reflect the previously described
three situations, considering the fact that the observations from sensors 1 and 2 are more
conducive to being updated, those from sensors 3 and 4, delayed, and the most unfavorable
case is for those from 5, since there exists a greater probability that they contain only
noise. As before, the local error variances increase; then, the performance of the local filters
becomes poorer as the situation of the updated, delayed and uncertain observations is
more likely. Analogous results can be obtained by considering other different values of the
Bernoulli parameters.
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Figure 1. Filtering error variances in the T1-proper scenario (top) and T2-proper one (bottom).

Our attention is focused on analyzing the accuracy of both centralized and distributed
fusion filters in different situations concerning the observations produced by the sensors
and in both Tk-proper scenarios. For this purpose, we have considered the following cases
with different values for the Bernoulli parameters:



Mathematics 2021, 9, 2961 18 of 34

• In the T1-proper scenario:

– Cases in which updating probabilities vary at each sensor i:

* (1): p(i)1 = 0.3, p(i)2 = 0.05, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (2): p(i)1 = 0.5, p(i)2 = 0.05, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (3): p(i)1 = 0.7, p(i)2 = 0.05, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (4): p(i)1 = 0.9, p(i)2 = 0.05, p(l)j = 0.05, for j = 1, 2 and l 6= i;

– Cases in which delay probabilities vary at each sensor i:

* (5): p(i)1 = 0.05, p(i)2 = 0.3, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (6): p(i)1 = 0.05, p(i)2 = 0.5, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (7): p(i)1 = 0.05, p(i)2 = 0.7, p(l)j = 0.05, for j = 1, 2 and l 6= i;

* (8): p(i)1 = 0.05, p(i)2 = 0.9, p(l)j = 0.05, for j = 1, 2 and l 6= i;

• In the T2-proper scenario:

– Cases in which updating probabilities vary at each sensor i:

* (1):
(

p(i)1,r, p(i)1,η′

)
= (0.3, 0.2), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (2):
(

p(i)1,r, p(i)1,η′

)
= (0.5, 0.4), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (3):
(

p(i)1,r, p(i)1,η′

)
= (0.7, 0.6), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (4):
(

p(i)1,r, p(i)1,η′

)
= (0.9, 0.8), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

– Cases in which delay probabilities vary at each sensor i:

* (5):
(

p(i)2,r, p(i)2,η′

)
= (0.3, 0.2), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (6):
(

p(i)2,r, p(i)2,η′

)
= (0.5, 0.4), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (7):
(

p(i)2,r, p(i)2,η′

)
= (0.7, 0.6), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

* (8):
(

p(i)2,r, p(i)2,η′

)
= (0.9, 0.8), p(l)j,η′ = p(l)j,r = 0.05, for j = 1, 2 and l 6= i;

Note that the cases (1)–(4) in both scenarios allow us to contrast the performance of the filters
by varying the probability that the observations are updated. Moreover, the cases (1)–(4) are
sorted in ascending order of the update probabilities. We will start with case (1), in which there
exists a low probability that the observations are updated (that is, they will most probably contain
only noise), and this probability increases until case (4), in which it is more likely that the available
observations are the updated ones. Analogous consideration about delayed observations in cases
(5)–(8). Note that (5) is the most favorable case regarding uncertain observations and (8) is the
most unfavorable case regarding uncertain observations. The error variances of both centralized
and distributed fusion filters in all the situations described above for sensors 1, 2 and 5, are
displayed in Figures 2–4, for the T1-proper scenario, and in Figures 5–7, for the T2-proper one.
In view of these figures, by first comparing the cases (1)–(4), it can be observed that the error
variances of both fusion estimators decrease and, hence, the accuracy of the filters is better, as the
probability that the observations at each sensor are updated increases. This is also true for cases
(5)–(8), with delayed observations. Secondly, we compare, in both scenarios, the cases in pairs
(1)–(5), (2)–(6), (3)–(7), (4)–(8). Note that each of these pairs represents the situations of updated
and delayed observations with the same probability. From these figures, it can be observed
that the error variances of the fusion filters are smaller when the observations are updated than
when they are delayed. Finally, in all the cases and in both scenarios, these figures show that the
filtering error variances of the centralized fusion estimators are lower than that of the distributed
fusion ones, but the difference between them is insignificant, and this is even more acceptable in
practice if we analyze the computational advantages of the calculus of the estimators by means
of the distributed fusion filtering algorithm.
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Figure 2. T1-proper fusion filtering error variances for updating probabilities: (1): p(1)1 = 0.3,

p(1)2 = 0.05; (2) :p(1)1 = 0.5, p(1)2 = 0.05; (3): p(1)1 = 0.7, p(1)2 = 0.05; (4): p(1)1 = 0.9, p(1)2 = 0.05; and

delay probabilities: (5): p(1)1 = 0.05, p(1)2 = 0.3; (6): p(1)1 = 0.05, p(1)2 = 0.5; (7): p(1)1 = 0.05, p(1)2 = 0.7;

(8): p(1)1 = 0.05, p(1)2 = 0.9.
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Figure 3. T1-proper fusion filtering error variances for updating probabilities: (1): p(2)1 = 0.3,

p(2)2 = 0.05; (2): p(2)1 = 0.5, p(2)2 = 0.05; (3): p(2)1 = 0.7, p(2)2 = 0.05; (4): p(2)1 = 0.9, p(2)2 = 0.05; and

delay probabilities: (5): p(2)1 = 0.05, p(2)2 = 0.3; (6): p(2)1 = 0.05, p(2)2 = 0.5; (7): p(2)1 = 0.05, p(2)2 = 0.7;

(8): p(2)1 = 0.05, p(2)2 = 0.9.
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Figure 4. T1-proper fusion filtering error variances for updating probabilities: (1): p(5)1 = 0.3,

p(5)2 = 0.05; (2): p(5)1 = 0.5, p(5)2 = 0.05; (3): p(5)1 = 0.7, p(5)2 = 0.05; (4): p(5)1 = 0.9, p(5)2 = 0.05; and

delay probabilities: (5): p(5)1 = 0.05, p(5)2 = 0.3; (6): p(5)1 = 0.05, p(5)2 = 0.5; (7): p(5)1 = 0.05, p(5)2 = 0.7;

(8): p(5)1 = 0.05, p(5)2 = 0.9.
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Figure 5. T2-proper fusion filtering error variances for updating probabilities: (1):
(

p(1)1,r , p(1)1,η′

)
=

(0.3, 0.2); (2):
(

p(1)1,r , p(1)1,η′

)
= (0.5, 0.4); (3):

(
p(1)1,r , p(1)1,η′

)
= (0.7, 0.6); (4):

(
p(1)1,r , p(1)1,η′

)
= (0.9, 0.8); and

delay probabilities: (5):
(

p(1)2,r , p(1)2,η′

)
= (0.3, 0.2); (6):

(
p(1)2,r , p(1)2,η′

)
= (0.5, 0.4); (7):

(
p(1)2,r , p(1)2,η′

)
=

(0.7, 0.6); (8):
(

p(1)2,r , p(1)2,η′

)
= (0.9, 0.8). In each case, the remaining probabilities are 0.05.
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Figure 6. T2-proper fusion filtering error variances for updating probabilities: (1):
(

p(2)1,r , p(2)1,η′

)
=

(0.3, 0.2); (2):
(

p(2)1,r , p(2)1,η′

)
= (0.5, 0.4); (3):

(
p(2)1,r , p(2)1,η′

)
= (0.7, 0.6); (4):

(
p(2)1,r , p(2)1,η′

)
= (0.9, 0.8); and

delay probabilities: (5):
(

p(2)2,r , p(2)2,η′

)
= (0.3, 0.2); (6):

(
p(2)2,r , p(2)2,η′

)
= (0.5, 0.4); (7):

(
p(2)2,r , p(2)2,η′

)
=

(0.7, 0.6); (8):
(

p(2)2,r , p(2)2,η′

)
= (0.9, 0.8). In each case, the remaining probabilities are 0.05.
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Figure 7. T2-proper fusion filtering error variances for updating probabilities: (1):
(

p(5)1,r , p(5)1,η′

)
=

(0.3, 0.2); (2):
(

p(5)1,r , p(5)1,η′

)
= (0.5, 0.4); (3):

(
p(5)1,r , p(5)1,η′

)
= (0.7, 0.6); (4):

(
p(5)1,r , p(5)1,η′

)
= (0.9, 0.8); and

delay probabilities: (5):
(

p(5)2,r , p(5)2,η′

)
= (0.3, 0.2); (6):

(
p(5)2,r , p(5)2,η′

)
= (0.5, 0.4); (7):

(
p(5)2,r , p(5)2,η′

)
=

(0.7, 0.6); (8):
(

p(5)2,r , p(5)2,η′

)
= (0.9, 0.8). In each case, the remaining probabilities are 0.05.

Finally, the performance of the proposed fusion filtering estimators is analyzed for
different numbers of sensors, specifically, 3, 4 and 5 sensors in the T1-proper scenario. It is
considered that the observations from all the sensors are modeled by the same observation
equation; that is, they have the same updating or delay probabilities, as well as the same
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variance and covariance of the noises. For the case of updated observations, three situations
were analyzed: p(i)1 = 0.3, 0.6, 0.9 for all i = 1, . . . , 5, and the remaining ones, 0.05; another

analogous situations for delayed observations: p(i)2 = 0.3, 0.6, 0.9 for all i = 1, . . . , 5, and the
remaining ones, 0.05. In Figures 8 and 9, the T1-proper centralized and distributed fusion
filtering error variances are displayed for the cases of updated and delayed observations,
respectively. This was identitcal to that expressed in the above figures, but a better per-
formance of both centralized and distributed filters was observed when the number of
sensors increased.
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Figure 8. T1-proper fusion filtering error variances from updated observations with 3, 4 and 5 sensors.
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Figure 9. T1-proper fusion filtering error variances from delayed observations with 3, 4 and 5 sensors.

8. Conclusions

In the last few decades, the scientific community has shown great interest in studying
the signal estimation problem from multi-sensor observations, since better estimations are
obtained with this method. The fact that there are several sensors reduces the number
of possible failures in the communication channels as well as the adverse effects of some
faulty sensors. Two methods have traditionally been used to build the fusion estimator
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from the observations of all the sensors: centralized and distributed methods. The first
one has the advantage that it provides the optimal estimator whereas, with the distributed
one, suboptimal estimators are obtained. However, the distributed method presents great
advantages over the centralized one, such as flexibility, robustness, and a major reduction
in the computational load (which is more significant with a large number of sensors),
which make it preferable in practice, especially when considering the fact that in many real
problems, the difference in performance between the estimators obtained by both methods
may be almost insignificant.

The study of the signal estimation problem in hypercomplex domains has also consid-
erably grown, since these domains allow for many real problems to be modeled in a better
way. To date, most of the estimation problems have been addressed in the quaternion do-
main since it is a normed algebra. However, the tessarine signal processing can yield better
estimators depending on the characteristics of the signal. Recently, it has been possible to
endow the tessarine domain with a metric space structure that has the properties necessary
to guarantee the existence and uniqueness of the orthogonal projection [41] which is a
way of obtaining the LS linear estimator. Therefore, the signal estimation problem was
addressed in the tessarine domain in different scenarios, and properness conditions were
defined that are analogous to those existing in the quaternion domain. This obtained a
considerable reduction in the augmented system, and it led to a consequent decrease in
computational cost.

In this paper, under Tk-properness conditions [41,42], the LS linear centralized and
distributed fusion filtering problems of tessarine signals from multi-sensor observations
have been studied, and recursive algorithms have been proposed to calculate them. The ob-
servations at each sensor and instant of time can be updated, delayed or contain only noise,
independently from the other sensors. A correlation has also been assumed between the
signal and observation noises. The Tk-properness conditions cause an important computa-
tional reduction in the calculus of the Tk-proper fusion filters in comparison with the TWL
estimators, which makes these conditions desirable in practice. The theoretical results are
illustrated in a numerical simulation example, in which the performance of the estimators
calculated by using both fusion algorithms is compared by taking different values of the
Bernoulli parameters modeling the updating, delay, or uncertainty in the observations.

Future research is planned to explore the signal estimation problem in other hyper-
complex algebras, as well as to address the decentralized fusion estimation problem under
Tk-properness scenarios and different hypotheses on the observations.
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Appendix A. Proof of Theorem 1

Appendix A.1. Preliminary Result

Property A1. For the model described in (5) with the available observation equation in (7) and the
hypotheses assumed, the following properties are satisfied:

1. E
[
ū(t)ε(i)

H

k (s)
]
=

(
S̄(i)(t)Π(1−γ2

(i))
H

k (t)
)

δt,s, t ≥ s.

2. E
[
v̄(i)(t)ε(j)H

k (s)
]
=

(
R̄(i)(t)Π(1−γ2

(i))
H

k (t)
)

δt,sδi,j, t ≥ s.

Appendix A.2. Proof of Theorem 1

As it is known, the optimal LS linear filter ˆ̄x(i)(t|t) is the orthogonal projection of
x̄(t) onto the linear space spanned by the innovations

{
ε
(i)
k (1), . . . , ε

(i)
k (t)

}
, and it can be

expressed in the following way:

ˆ̄x(i)(t|t) =
t

∑
s=1

Θ̄
(i)
k (s)Ω(i)−1

k (s)ε(i)k (s), (A1)

where Θ̄
(i)
k (s) = E

[
x̄(t)ε(i)

H

k (s)
]
, and Ω

(i)
k (s) = E

[
ε
(i)
k (s)ε(i)

H

k (s)
]
. The existence and

uniqueness of this projection in the tessarine domain is guaranteed in [41].
Firstly, from (A1), it is had that

ˆ̄x(i)(t|t) = ˆ̄x(i)(t|t− 1) + L̄(i)
k (t)ε(i)k (t), (A2)

with L̄(i)
k (t) = Θ̄

(i)
k (t)Ω(i)−1

k (t). Then, Equation (10) is immediately derived from (A2),
taking into account the characteristics of both Tk-proper scenarios. Moreover, from the
Theorem 3 in [41], the state equation in (5) and Property A1.1, it is obtained that

ˆ̄x(i)(t + 1|t) = Φ̄(t) ˆ̄x(i)(t|t) + H̄(i)
k (t)ε(i)k (t), (A3)

with H̄(i)
k (t) = S̄(i)(t)Π(1−γ2

(i))
H

k (t)Ω(i)−1

k (t). Then, by characterizing (A3) for both Tk-
proper scenarios, Equation (11) is easily obtained.

Next, to derive Equation (12), we use the Theorem 3 on [41] and the observation
equation in (7) to obtain the following expression for ŷ(i)

k (t|t− 1),

ŷ(i)
k (t|t− 1) = Π

γ
(i)
1

k (t) ˆ̄x(i)(t|t− 1)

+ Π
γ
(i)
2

k (t)
(

ˆ̄x(i)(t− 1|t− 1) + Ḡ(i)
k (t− 1)ε(i)k (t− 1)

)
,

(A4)

with Ḡ(i)
k (t) = R̄(i)(t)Π(1−γ2

(i))
H

k (t)Ω(i)−1

k (t), and where Property A1.2 and the hypotheses
on the model (H1-H4) have been used. Then, Equation (12) is easily deduced from the
definition of the innovation, and by characterizing (A4) for both Tk-proper scenarios.

In order to obtain expression (13) in an easier way, we will express the innovation
as follows
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ε
(i)
k (t) =

(
Dγ

(i)
1

k (t)−Π
γ
(i)
1

k (t)
)

x̄(t)︸ ︷︷ ︸
ε
(i)
k,a(t)

+

(
Dγ

(i)
2

k (t)−Π
γ
(i)
2

k (t)
)

x̄(t− 1)︸ ︷︷ ︸
ε
(i)
k,b(t)

+D1−γ
(i)
2

k (t)v̄(i)(t)︸ ︷︷ ︸
ε
(i)
k,c(t)

+

(
Dγ

(i)
2

k (t)−Π
γ
(i)
2

k (t)
)

v̄(i)(t− 1)︸ ︷︷ ︸
ε
(i)
k,d(t)

+ Π
γ
(i)
1

k (t) ˜̄x(i)(t|t− 1)︸ ︷︷ ︸
ε
(i)
k,e(t)

+Π
γ
(i)
2

k (t) ˜̄x(i)(t− 1|t− 1)︸ ︷︷ ︸
ε
(i)
k, f (t)

+ Π
γ
(i)
2

k (t) ˜̄v(i)(t− 1|t− 1)︸ ︷︷ ︸
ε
(i)
k,g(t)

,

(A5)

where ˜̄x(i)(s|t− 1) = x̄(s)− ˆ̄x(i)(s|t− 1), for s = t, t− 1, and ˜̄v(i)(t|t) = v̄(i)(t)− ˆ̄v(i)(t|t).
Then, from (A5), and taking into account the hypotheses on the model, the only non null

members in Θ̄
(i)
k (t) = E

[
x̄(t)ε(i)

H

k (t)
]

are those ones corresponding to the terms ε
(i)
k,e(t),

ε
(i)
k, f (t) and ε

(i)
k,g(t). More specifically, denoting by P̄(i)(s|t− 1) = E

[
˜̄x(i)(s|t− 1) ˜̄x(i)

H
(s|t− 1)

]
,

for s = t, t− 1, we obtain that E
[
x̄(t)ε(i)

H

k,e (t)
]
= P̄(i)(t|t− 1)Π

γ
(i)H
1

k (t); and, from the state
equation in (5), the hypotheses on the model (H1-H4) and Property A1, it is obtained that

E
[
x̄(t)ε(i)

H

k, f (t)
]
=
(

Φ̄(t− 1)P̄(i)(t− 1|t− 1)− H̄(i)
k (t− 1)Θ̄(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t),

E
[
x̄(t)ε(i)

H

k,g (t)
]
=
(

S̄(i)(t− 1)− Φ̄(t− 1)Θ̄(i)
k (t− 1)Ḡ(i)H

k (t− 1)

−H̄(i)
k (t− 1)Ω(i)

k (t− 1)Ḡ(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t).

Then, by reordering these terms and using the characteristics of both Tk-proper
scenarios, Equation (13) is derived. Its initial condition is immediately obtained from
y(i)

k (1) in Equation (7) and the hypotheses on the model.
Next, to derive the expression (15) for the pseudo covariance matrix of the innovation,

we have used Equation (A5) and as before, we will focus on the non null terms under the
hypotheses on the model. So,

E
[
ε
(i)
k,a(t)ε

(i)H

k,a (t)
]
= Ψ

(i)
1k
(t),

E
[
ε
(i)
k,a(t)ε

(i)H

k,b (t)
]
+ E

[
ε
(i)
k,a(t)ε

(i)H

k,d (t)
]
= Ψ

(i)
2k
(t),

E
[
ε
(i)
k,b(t)ε

(i)H

k,b (t)
]
= Ψ

(i)
3k
(t),

E
[
ε
(i)
k,c(t)ε

(i)H

k,c (t)
]
+ E

[
ε
(i)
k,d(t)ε

(i)H

k,d (t)
]
= Ψ

(i)
4k
(t)− T k

({
E[γr

2(t)]E[γ
r
2(t)]

T
}
◦(

T H
nR̄(i)(t− 1)T n

))
T H

k ,

E
[
ε
(i)
k,e(t)ε

(i)H

k,e (t)
]
= Π

γ1
(i)

k (t)P̄(i)(t|t− 1)Πγ1
(i)H

k (t),

E
[
ε
(i)
k, f (t)ε

(i)H

k, f (t)
]
= Π

γ2
(i)

k (t)P̄(i)(t− 1|t− 1)Πγ2
(i)H

k (t).

(A6)
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Moreover, from the following expression (easily obtained from (A2) and the state
equation in (5)),

˜̄x(i)(t|t− 1) = Φ̄(t− 1) ˜̄x(i)(t− 1|t− 1) + ū(t− 1)− H̄(i)
k (t− 1)ε(i)k (t− 1), (A7)

and Property A1, under the hypotheses on the model, we have that

E
[
ε
(i)
k,e(t)ε

(i)H

k, f (t)
]
= Π

γ
(i)
1

k (t)
(

Φ̄(t− 1)P̄(i)(t− 1|t− 1)

−H̄(i)
k (t− 1)Θ̄(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t),

E
[
ε
(i)
k,e(t)ε

(i)H

k,g (t)
]
= Π

γ
(i)
1

k (t)
(

S̄(i)(t− 1)− Φ̄(t− 1)Θ̄(i)
k (t− 1)Ḡ(i)H

k (t− 1)

−H̄(i)
k (t− 1)Ω(i)

k (t− 1)Ḡ(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t),

E
[
ε
(i)
k, f (t)ε

(i)H

k,g (t)
]
= −Π

γ
(i)
2

k (t)Θ̄(i)
k (t− 1)Ḡ(i)H

k (t− 1)Π
γ
(i)H
2

k (t),

E
[
ε
(i)
k,g(t)ε

(i)H

k,g (t)
]
= Π

γ
(i)
2

k (t)
(

R̄(i)(t− 1)− Ḡ(i)
k (t− 1)Ω(i)

k (t− 1)Ḡ(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t).

(A8)

Then, by using (A6) and (A8), the resulting expression is characterized to both Tk-
proper scenarios, and so, (15) is derived. Its initial condition is immediately deduced from
the model and the hypotheses assumed, as well as the recursive formula for D̄(t) = E[
x̄(t)x̄H(t)

]
in (16).

Finally, to derive the Equation (17) for P(i)
k (t|t), we have used the following expression,

immediate from (A2),

˜̄x(i)(t|t) = ˜̄x(i)(t|t− 1)− Θ̄
(i)
k (t)Ω(i)−1

(t)ε(i)k (t), (A9)

which leads to the following equation

P̄(i)(t|t) = P̄(i)(t|t− 1)− Θ̄
(i)
k (t)Ω(i)−1

k (t)Θ̄(i)H

k (t). (A10)

Then, (17) is obtained by characterizing (A10) for both Tk-proper scenarios. In an
analogous way, from (A7), the recursive formula (18) for P(i)

k (t + 1|t) is deduced. Their

initial conditions are immediately derived taking into account that x̃(i)k (0|0) = xk(0),

and x̃(i)k (1|0) = xk(1).

Appendix B. Proof of Lemmas 1–4

Appendix B.1. Proof of Lemma 1

(i) From (A4), the matrices Θ̄
(i)
k (t− 1, t) = E

[
x̄(t− 1)ε(i)

H

k (t)
]

are expressed as follows

Θ̄
(i)
k (t− 1, t) = E

[
x̄(t− 1)y(i)H

k (t)
]
− E

[
x̄(t− 1) ˆ̄x(i)

H
(t|t− 1)

]
Π

γ
(i)H
1

k (t)

−
(
K̄(ii)

(t− 1) + Θ̄
(i)
k (t− 1)Ḡ(i)H

k (t− 1)
)

Π
γ
(i)H
2

k (t),

(A11)

where K̄(ii)
(t) = E

[
ˆ̄x(i)(t|t) ˆ̄x(i)

H
(t|t)

]
. Now, taking into account the observation

Equation (7) and using (A3), it is easily deduced that

E
[
x̄(t− 1)y(i)H

k (t)
]
= D̄(t− 1)Ā(i)H

k (t− 1),

E
[
x̄(t− 1) ˆ̄x(i)

H
(t|t− 1)

]
= K̄(ii)

(t− 1)Φ̄H(t− 1) + Θ̄
(i)
k (t− 1)H̄(i)H

k (t− 1),
(A12)
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with D̄(t) computed in (16) and Ā(i)
k (t) = Π

γ
(i)
1

k (t + 1)Φ̄(t) + Π
γ
(i)
2

k (t + 1).
Then, by substituting (A12) in (A11), reordering terms and characterizing for both
Tk-proper scenarios, (21) is derived.

(ii) From (A4) and the hypotheses on the model, we obtain that

Θ̄
(ij)
vk

(t) = E
[
v̄(i)(t)ε(j)H

k (t)
]
= R̄(i)(t)Π

(
1−γ

(i)
2

)H
k (t)δij, t ≥ 2, (A13)

with Θ̄
(ij)
vk

(1) = R̄(i)(1)
[
Ikn, 0kn×(4−k)n

]T
δij. Equation (A13) is characterized for both

Tk-proper scenarios to obtain (22).

(iii) Again, from (A4), the next expression for Θ̄
(ij)
vk

(t − 1, t) = E
[
v̄(i)(t− 1)ε(j)H

k (t)
]

is
obtained

Θ̄
(ij)
vk

(t− 1, t) = E
[
v̄(i)(t− 1)y(j)H

k (t)
]
− E

[
v̄(i)(t− 1) ˆ̄x(j)H(t|t− 1)

]
Π

γ
(j)H
1

k (t)

−
(

E
[
v̄(i)(t− 1) ˆ̄x(j)H(t− 1|t− 1)

]
+Θ̄

(ij)
vk

(t− 1)Ḡ(j)H

k (t− 1)
)

Π
γ
(j)H
2

k (t).

(A14)

Moreover, from (7), the hypotheses on the model, Equations (A2) and (A3), and Prop-
erty A1.2, the following equations are obtained

E
[
v̄(i)(t− 1)y(j)H

k (t)
]
= S̄(i)H (t− 1)Πγ

(j)H

1
k (t) + R̄(i)(t− 1)Πγ

(i)H
2

k (t)δij,

E
[
v̄(i)(t− 1) ˆ̄x(j)H (t|t− 1)

]
= Θ̄

(ij)
vk

(t− 1)
(

Φ̄(t− 1)L̄(j)
k (t− 1)

+H̄(j)
k (t− 1)

)H
,

E
[
v̄(i)(t− 1) ˆ̄x(j)H (t− 1|t− 1)

]
= Θ̄

(ij)
vk

(t− 1)L̄(j)H

k (t− 1).

(A15)

Hence, Equation (23) is derived by substituting (A15) in (A14), grouping terms and
characterizing for both Tk-proper scenarios.

Appendix B.2. Proof of Lemma 2

From (A4), the matrices L̄(ij)
k (t) = E

[
ˆ̄x(i)(t|t− 1)ε(j)H

k (t)
]

can be expressed as follows

L̄(ij)
k (t) = E

[
ˆ̄x(i)(t|t− 1)y(j)H

k (t)
]
− K̄(ij)

(t, t− 1)Π
γ
(j)H
1

k (t)

−
(

E
[

ˆ̄x(i)(t|t− 1) ˆ̄x(j)H(t− 1|t− 1)
]
+ L̄(ij)

k (t, t− 1)Ḡ(j)H

k (t− 1)
)

Π
γ
(j)H
2

k (t).

(A16)

Now, by using (7), the hypotheses on the model, Equations (A2) and (A3), and
Property A1.2, we have that

E
[

ˆ̄x(i)(t|t− 1)y(j)H

k (t)
]
= K̄(ii)

(t, t− 1)Π
γ
(j)H
1

k (t)

+
(

Φ̄(t− 1)K̄(ii)
(t− 1)

+H̄(i)
k (t− 1)Θ̄(i)H

k (t− 1)
)

Π
γ
(j)H
2

k (t)

+ C̄(i)
k (t− 1)Θ̄(ji)H

vk
(t− 1)Π

γ
(j)H
2

k (t),

E
[

ˆ̄x(i)(t|t− 1) ˆ̄x(j)H(t− 1|t− 1)
]
= Φ̄(t− 1)K̄(ij)

(t− 1) + H̄(i)
k (t− 1)N̄ (ji)H

k (t− 1).

(A17)
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where C̄(i)
k (t) = Φ̄(t)L̄(i)

k (t) + H̄(i)
k (t), and N̄ (ij)

k (t) = L̄(ij)
k (t) + L̄(i)

k (t)M(ij)
k (t), with

M(ij)
k (t) = E

[
ε
(i)
k (t)ε(j)H

k (t)
]
. Then, Equation (24) is obtained from (A16) and (A17),

by using the characteristics of the Tk-proper scenarios.
Secondly, Equation (25) is easily derived by using the following expression, obtained

from (A2) and (A3),

ˆ̄x(i)(t|t− 1) = Φ̄(t− 1) ˆ̄x(i)(t− 1|t− 2) + C̄(i)
k (t− 1)ε(i)k (t− 1),

and characterizing for both Tk-proper scenarios.
Finally, by following an analogous reasoning to that used before in the derivation of

L̄(ij)
k (t) = E

[
ˆ̄x(i)(t− 1|t− 1)ε(j)H

k (t)
]
, Equation (26) is deduced from the expressions below

L̄(ij)
k (t− 1, t) = E

[
ˆ̄x(i)(t− 1|t− 1)y(j)H

k (t)
]

− E
[

ˆ̄x(i)(t− 1|t− 1) ˆ̄x(j)H(t|t− 1)
]
Π

γ
(j)H
1

k (t)− K̄(ij)
(t− 1)Π

γ
(j)H
2

k (t)

− E
[

ˆ̄x(i)(t− 1|t− 1)ε(j)H

k (t− 1)
]
Ḡ(j)H

k (t− 1)Π
γ
(j)H
2

k (t),

where, by using (7), the hypotheses on the model, Equations (A2) and (A3), and Property A1,
it is obtained that

E
[

ˆ̄x(i)(t− 1|t− 1)y(j)H

k (t)
]
= K̄(ii)

(t− 1)Ā(j)H

k (t− 1)

+ Θ̄
(i)
k (t− 1)H̄(i)H

k (t− 1)Π
γ
(j)H
1

k (t)

+ L̄(i)
k (t− 1)Θ̄(ji)H

vk
(t− 1)Π

γ
(j)H
2

k (t),

E
[

ˆ̄x(i)(t− 1|t− 1)ε(j)H

k (t− 1)
]
= N̄ (ij)

k (t− 1).

(A18)

with E
[

ˆ̄x(i)(t− 1|t− 1) ˆ̄x(j)H(t|t− 1)
]

given in (A17).

Appendix B.3. Proof of Lemma 3

Equations (27) and (28) can be easily derived by using (A4), the hypotheses on the
model, Property A1.2, and the Tk-properness characteristics.

Appendix B.4. Proof of Lemma 4

From (A2) and (A3), the expressions below for K̄(ij)
(t) = E

[
x̂(i)(t|t)x̂(j)H(t|t)

]
and

K̄(ij)
(t + 1, t) = E

[
x̂(i)(t + 1|t)x̂(j)H(t + 1|t)

]
can be obtained

K̄(ij)
(t) = K̄(ij)

(t, t− 1) + N̄ (ij)
k (t)L̄(j)H

k (t) + L̄(i)
k (t)L̄(ji)H

k (t),

K̄(ij)
(t + 1, t) = Φ̄(t)

(
K̄(ij)

(t)Φ̄H(t) + N̄ (ij)
k (t)H̄(j)H

k (t)
)
+ H̄(i)

k (t)L̄(ji)H

k (t + 1, t).

Therefore, by characterizing these equations to the Tk-proper scenarios, Equations (29) and
(30) are obtained.

References
1. Castanedo, F. A review of data fusion techniques. Sci. World. J. 2013, 2013, 704504. [CrossRef] [PubMed]
2. Fourati, H. Multisensor Data Fusion: From Algorithms and Architectural Design to Applications, 1st ed.; CRC Press, Taylor and Francis

Group LLC: Boca Raton, FL, USA, 2015.
3. Sun, S.; Lin, H.; Ma, J.; Li, X. Multi-sensor distributed fusion estimation with applications in networked systems: A review paper.

Inf. Fusion 2017, 38, 122–134. [CrossRef]

http://doi.org/10.1155/2013/704504
http://www.ncbi.nlm.nih.gov/pubmed/24288502
http://dx.doi.org/10.1016/j.inffus.2017.03.006


Mathematics 2021, 9, 2961 33 of 34

4. Abu Bakr, M.; Lee, S. Distributed multisensor data fusion under unknown correlation and data inconsistency. Sensors 2017,
17, 2472. [CrossRef]

5. Noack, B. State Estimation for Distributed Systems with Stochastic and Set-Membership Uncertainties; KIT Scientific Publishing:
Karlsruhe, Germany, 2014.

6. He, S.; Shin, H.-S.; Xu, S.; Tsourdos, A. Distributed estimation over a low-cost sensor network: A review of state-of-the-art. Inf.
Fusion 2020, 54, 21–43. [CrossRef]

7. Linares-Pérez, J.; Hermoso-Carazo, A.; Caballero-águila, R.; Jiménez-López, J.D. Least-squares linear filtering using observations
coming from multiple sensors with one- or two-step random delay. Signal Process. 2009, 89, 2045–2052. [CrossRef]

8. Ma, J.; Sun, S. Centralized fusion estimators for multisensor systems with random sensor delays, multiple packet dropouts and
uncertain observations. IEEE Sens. J. 2013, 13, 1228–1235. [CrossRef]

9. Liu, W.-Q.; Wang, X.-M.; Deng, Z.-L. Robust centralized and weighted measurement fusion Kalman estimators for uncertain
multisensor systems with linearly correlated white noises. Inf. Fusion 2017, 35, 11–25. [CrossRef]

10. Liang, J.; Shen, B.; Dong, H.; Lam, J. Robust distributed state estimation for sensor networks with multiple stochastic communica-
tion delays. Int. J. Syst. Sci. 2011, 42, 1459–1471. [CrossRef]

11. Lin, H.; Sun, S. Distributed fusion estimator for multi-sensor asynchronous sampling systems with missing measurements.
IET Signal Process. 2016, 10, 724–731. [CrossRef]

12. Sui, T.; Marelli, D.; Sun, X.; Fu, M. Multi-sensor state estimation over lossy channels using coded measurements. Automatica 2020,
111, 108561. [CrossRef]

13. Xing, Z.; Xia, Y.; Yan, L.; Lu, K.; Gong, Q. Multisensor distributed weighted Kalman filter fusion with network delays, stochastic
uncertainties, autocorrelated, and cross-correlated noises. IEEE Trans. Syst. Man Cyber. Syst. 2018, 48, 716–726. [CrossRef]

14. Zhang, J.; Gao, S.; Li, G.; Xia, J.; Qi, X.; Gao, B. Distributed recursive filtering for multi-sensor networked systems with multi-step
sensor delays, missing measurements and correlated noise. Signal Process. 2021, 181, 107868. [CrossRef]

15. Mo, Y.; Sinopoli, B. Kalman filtering with intermittent observations: Tail distribution and critical value. IEEE Trans. Autom.
Control 2012, 57, 677–689.

16. Ihler, A.; Fisher III, J.W.; Willsky, A.S. Loopy belief propagation: Convergence and effects of message errors. J. Mach. Learn.
Technol. 2005, 6, 905–936.

17. Duan, Y.; Zhang, X.; Li, Z. A new quaternion-based Kalman filter for human body motion tracking using the second estimator of
the optimal quaternion algorithm and the joint angle constraint method with inertial and magnetic sensors. Sensors 2020, 20, 6018.
[CrossRef]

18. Yao, Y.; Du, Z.; Huang, X.; Li, R. Derivation and simulation verification of the relationship between world coordinates and local
coordinates under virtual reality engine. Virtual Real. 2020, 24, 263–269. [CrossRef]

19. Ortolani, F.; Comminiello, D.; Uncini, A. The widely linear block quaternion least mean square algorithm for fast computation in
3D audio systems. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016),
Salerno, Italy, 13–16 September 2016; p. 7738842.

20. Celsi, M.R.; Scardapane, S.; Comminiello, D. Quaternion neural networks for 3D sound source location in reverberant environ-
ments. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2020), Espoo,
Finland, 21–24 September 2020; p. 9231809.

21. Grakhova, E.P.; Abdrakhmanova, G.I.; Schmidt, S.P.; Vinogradova, I.L.; Sultanov, A.K. The quadrature modulation of quaternion
signals for capacity upgrade of high-speed fiber-optic wireless communication systems. In Proceedings of the SPIE—The Society
for Optical Engineering, Munich, Germany, 23–27 June 2019; p. 11146.

22. Ahmad, Z.; Hashim, S.J.; Rokhani, F.Z.; Al-Haddad, S.A.R.; Sali, A.; Takei, K. Quaternion model of higher-order rotating
polarization wave modulation for high data rate M2M LPWAN communication. Sensors 2021, 21, 383. [CrossRef]

23. Labunets, V.G. Hypercomplex models of multichannel images. Proc. Steklow Inst. 2021, 313, S155–S168. [CrossRef]
24. Augereau, B.; Carré, P. Hypercomplex polynomial wavelet-filter bank transform for color image. Signal Process. 2017, 136, 16–28.

[CrossRef]
25. Mennano, G.M.; Mazzotti, A. Deconvolution of multicomponent seismis data by means of quaternions: Theory and preliminary

results. Geophys. Prospect. 2012, 60, 217–238. [CrossRef]
26. Bahia, B.; Sacchi, M.D. Widely linear denoising of multicomponent seismic data. Geophys. Prospect. 2020, 68, 431–445. [CrossRef]
27. Takahashi, K.; Fujita, M.; Hashimoto, M. Remarks on octonion-valued neural networks with application to robot manipulator

control. In Proceedings of the IEEE International Conference on Mechatronics (ICM 2021), Kashiva, Japan, 7–9 March 2021;
p. 9385617.

28. Takahashi, K. Comparison of high-dimensional neural networks using hypercomplex numbers in a robot manipulator control.
Artif. Life Robot. 2021, 26, 367–377. [CrossRef]

29. Dogic, Z.; Sharma, P.; Zakhary, M.J. Hypercomplex liquid crystals. Annu. Rev. Condens. Matter Phys. 2014, 5, 137–157. [CrossRef]
30. Ramírez-Tamayo, D.; Balcer, M.; Montoya, A.; Millwater, H. Mixed-mode stress intensity factors computation in functionally

graded materials using a hypercomplex-variable finite element formulation. Int. J. Fract. 2020, 226, 219–232. [CrossRef]
31. Gao, Z.Y.; Niu, X.J.; Guo, M.F. Quaternion-based Kalman filter for micro-machined strapdown attitude heading reference system.

Chin. J. Aeronaut. 2002, 15, 171–175. [CrossRef]

http://dx.doi.org/10.3390/s17112472
http://dx.doi.org/10.1016/j.inffus.2019.06.026
http://dx.doi.org/10.1016/j.sigpro.2009.04.007
http://dx.doi.org/10.1109/JSEN.2012.2227995
http://dx.doi.org/10.1016/j.inffus.2016.08.002
http://dx.doi.org/10.1080/00207721.2010.550402
http://dx.doi.org/10.1049/iet-spr.2016.0017
http://dx.doi.org/10.1016/j.automatica.2019.108561
http://dx.doi.org/10.1109/TSMC.2016.2633283
http://dx.doi.org/10.1016/j.sigpro.2020.107868
http://dx.doi.org/10.3390/s20216018
http://dx.doi.org/10.1007/s10055-019-00397-7
http://dx.doi.org/10.3390/s21020383
http://dx.doi.org/10.1134/S0081543821030160
http://dx.doi.org/10.1016/j.sigpro.2016.11.022
http://dx.doi.org/10.1111/j.1365-2478.2011.00988.x
http://dx.doi.org/10.1111/1365-2478.12850
http://dx.doi.org/10.1007/s10015-021-00687-x
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133827
http://dx.doi.org/10.1007/s10704-020-00489-5
http://dx.doi.org/10.1016/S1000-9361(11)60149-0


Mathematics 2021, 9, 2961 34 of 34

32. Martins, P.V.R.; Silva, O.M.; Lenzi, A. Insertion loss analysis of slender beams with periodic curvatures using quaternion-based
parametrization, FE method and wave propagation approach. J. Sound Vib. 2019, 455, 82–95. [CrossRef]

33. Sabatelli, S.; Sechi, F.; Fanucci, L.; Rocchi, A. A sensor fusion algorithm for an integrated angular position estimation with inertial
measurement units. In Proceedings of the Design, Automation and Test in Europe (DATE 2011), Grenoble, France, 14–18 March
2011; pp. 273–276.

34. Tannous, H.; Istrate, D.; Benlarbi-Delai, A.; Sarrazin, J.; Gamet, D.; Ho Ba Tho, M.C.; Dao, T.T. A new multi-sensor fusion scheme
to improve the accuracy of knee flexion kinematics for functional rehabilitation movements. J. Sens. 2016, 16, 1914. [CrossRef]

35. Talebi, S.; Kanna, S.; Mandic, D. A distributed quaternion Kalman filter with applications to smart grid and target tracking. IEEE.
Trans. Signal Inf. Process. Netw. 2016, 2, 477–488. [CrossRef]

36. Talebi, S.P.; Werner, S.; Mandic, D.P. Quaternion-valued distributed filtering and control. IEEE. Trans. Autom. Control 2020, 65,
4246–4256. [CrossRef]

37. Wu, J.; Zhou, Z.; Fourati, H.; Li, R.; Liu, M. Generalized linear quaternion complementary filter for attitude estimation from
multi-sensor observations: An optimization approach. IEEE. Trans. Autom. Sci. Eng. 2019, 16, 1330–1343. [CrossRef]

38. Jiménez-López, J.D.; Fernández-Alcalá, R.M.; Navarro-Moreno, J.; Ruiz-Molina, J.C. Widely linear estimation of quaternion
signals with intermittent observations. Signal Process. 2017, 136, 92–101. [CrossRef]

39. Fernández-Alcalá, R.M.; Navarro-Moreno, J.; Jiménez-López, J.D.; Ruiz-Molina, J.C. Semi-widely linear estimation algorithms of
quaternion signals with missing observations and correlated noises. J. Frankl. Inst. 2020, 357, 3075–3096. [CrossRef]

40. Navarro-Moreno, J.; Fernández-Alcalá, R.M.; Jiménez-López, J.D.; Ruiz-Molina, J.C. Widely linear estimation for multisensor
quaternion systems with mixed uncertainties in the observations. J. Frankl. Inst. 2019, 356, 3115–3138. [CrossRef]

41. Navarro-Moreno, J.; Fernández-Alcalá, R.M.; Jiménez-López, J.D.; Ruiz-Molina, J.C. Tessarine signal processing under the
T-properness condition. J. Frankl. Inst. 2020, 357, 10099–10125. [CrossRef]

42. Navarro-Moreno, J.; Ruiz-Molina, J.C. Wide-sense Markov signals on the tessarine domain. A study under properness conditions.
Signal Process. 2021, 183, 108022. [CrossRef]

43. Fernández-Alcalá, R.M.; Navarro-Moreno, J.; Ruiz-Molina, J.C. T-proper hypercomplex centralized fusion estimation for
randomly multiple sensor delays systems with correlated noises. Sensors 2021, 21, 5729. [CrossRef] [PubMed]

44. Nitta, T.; Kobayashi, M.; Mandic, D.P. Hypercomplex widely linear estimation through the lens of underpinning geometry. IEEE
Trans. Signal Process. 2019, 67, 3985–3994. [CrossRef]

http://dx.doi.org/10.1016/j.jsv.2019.05.013
http://dx.doi.org/10.3390/s16111914
http://dx.doi.org/10.1109/TSIPN.2016.2618321
http://dx.doi.org/10.1109/TAC.2020.3007332
http://dx.doi.org/10.1109/TASE.2018.2888908
http://dx.doi.org/10.1016/j.sigpro.2016.09.016
http://dx.doi.org/10.1016/j.jfranklin.2020.02.012
http://dx.doi.org/10.1016/j.jfranklin.2018.08.031
http://dx.doi.org/10.1016/j.jfranklin.2020.08.002
http://dx.doi.org/10.1016/j.sigpro.2021.108022
http://dx.doi.org/10.3390/s21175729
http://www.ncbi.nlm.nih.gov/pubmed/34502620
http://dx.doi.org/10.1109/TSP.2019.2922151

	Introduction
	Preliminaries
	Model Formulation
	Local Tk-Proper LS Linear Filtering Problem
	Local Tk-Proper Model Formulation
	Local LS Filtering Estimators

	Tk-Proper Centralized Fusion Linear Filtering Problem
	Tk-Proper Distributed Fusion LS Linear Filter
	Numerical Simulations
	ConclusionsDiscussion
	Proof of Theorem 1
	Preliminary Result
	Proof of Theorem 1

	Proof of Lemmas 1–4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	References

