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Abstract: Composite materials consisting of a dielectric matrix with conductive inclusions are
promising in the field of micro- and optoelectronics. The properties of a nanocomposite material are
strongly influenced by the characteristics of the substances included in its composition, as well as the
shape and size of inclusions and the orientation of particles in the matrix. The use of nanocomposite
material has significantly expanded and covers various systems. The anisotropic form of inclusions
is the main reason for the appearance of optical anisotropy. In this article, models and methods
describing the electrical conductivity of a layered nanocomposite of a self-similar structure are
proposed. The method of modeling the electrical conductivity of individual blocks, layers, and
composite as a whole is carried out similarly to the method of determining the dielectric constant.
The advantage of the method proposed in this paper is the removal of restrictions imposed on the
theory of generalized conductivity associated with the need to set the dielectric constant.

Keywords: composite materials; mathematical modeling; electrical conductivity; layered nanocomposites;
periodic structure

1. Introduction

Lately, there has been a rapid growth of research related to the synthesis of new mate-
rials with a hierarchical structure and individual properties. The process of designing and
developing these new materials is becoming increasingly expensive and complex, and the
use of known materials with the required properties for the formation of nanocomposites
is becoming an increasingly accessible way for new opportunities. There is a wide range
of innovative applications of nanocomposites, due to the fact that they have significantly
improved properties due to the hardening of nanoparticles. Further use depends on the
study of their structure, for this it is necessary to apply modeling to understand the behav-
ior of nanocomposites. Nanocomposites are capturing new areas of application. Due to the
fact that the requirements for materials are growing now, in particular, the need for light
weight and high strength materials, nanocomposites are attractive for such industries as
biomedical engineering, aerospace, and automotive. The study and identification of pat-
terns of interaction of a high-frequency electromagnetic field with various media, including
nanostructures, is a modern topical area of research. This is due to both the fundamental
nature of the problem and the possibility of using nanocomposites in applied tasks (creation
of radar elements and devices, synthesis of absorbing and selective materials, etc.). In order
to get the right functionality to meet different applications, we need innovations on the
frontiers of materials science, chemistry, physics, theory, and engineering that can facilitate
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the design and manufacture of materials. Practical realization of such tasks is possible only
on the basis of a detailed understanding of the fundamental phenomena of the interaction
of the electromagnetic field with matter: resonant bursts of dielectric permittivity; the Kerr
effect; quantum-dimensional, surface effects.

Despite the abundance of works on this topic, there are practically no mathematical
models of layered nanocomposites with a periodic structure. An important feature of
nanocomposites with a periodic structure is that in some directions and scales it is necessary
to take into account nanoscales, and in others—micro-dimensions. In such systems, the
anisotropy of geometric and electrical characteristics cannot be neglected. Thus, the
development of mathematical models and a software package for the study of the electrical
properties of anisotropic nanocomposites with a periodic structure is an urgent task.

In this paper, models and methods describing the electrical conductivity of a layered
nanocomposite of a self-similar structure are proposed. In [1], the authors explain the
basic concepts of the theory of statistical percolation and percolation transfer, which are
subsequently applied to specific experiments on heterogeneous ionic conductors. The
method of modeling the electrical conductivity of individual blocks, layers and composite
as a whole is carried out similarly to the method of determining the dielectric constant [2–4].
The work also presents a two-dimensional finite element model to study the effect of
interphase zones on the general properties of the composite, the simulation results clearly
show that the loss moduli of composites are either expanded or shifted, which corresponds
to the absence or presence of a geometrically percolating interphase network [5].

To determine the electrical conductivity of blocks with a width of 0.5–8 nm, where
dimensional effects can be significant, a quantum mechanical [6–8] was used. Based on
the Kubo-Greenwood equations, a model of the electrical conductivity of the block has
been developed, taking into account the anisotropy of electrical and geometric properties
and electron spin. The model assumes the presence of information about the electron
energy of the normal and excited states, as well as about the filling numbers determined
by the Fermi distribution for the normal and excited states. To obtain them, the method
of electronic minimization was used. The Hartree-Fock method is used to obtain wave
functions. To calculate the electrical conductivity of plane-parallel layers, including blocks
with a width of 0.5–32 nm, a model of an effective medium for electrical conductivity
was used. To determine the electrical conductivity of plane-parallel layers, including
blocks with a width of 64–256 nm and the composite as a whole, the method of equivalent
substitution schemes was used. The results obtained using the method proposed in this
paper for determining electrical conductivity are compared with the results obtained using
the currently known theory of generalized conductivity [9–11]. The results obtained are in
good agreement. The advantage of the method proposed in this paper is the removal of
restrictions imposed on the theory of generalized conductivity associated with the need to
set the dielectric constant.

2. Materials and Methods
2.1. Mathematical Modeling and Method for Determining the Electrical Conductivity of a Layered
Nanocomposite with a Periodic Structure

The method of modeling the electrical conductivity of individual blocks, layers, and
the composite as a whole (for example, a nanocomposite consisting of 10 layers, see Table 1)
is carried out analogously to the method of determining the dielectric permittivity [12–14]
and is divided into 3 stages:

(1) to determine the electrical conductivity of blocks with a width of 0.5 nm (10th layer),
1 nm (9th layer), 2 nm (8th layer), 4 nm (7th layer), 8 nm (6th layer), where dimensional
effects can be significant, a quantum mechanical calculation method (Kubo-Greenwood
approach) was used. For blocks with a width of 16 nm (5th layer), 32 nm (4th layer), 64 nm
(3rd layer), 128 nm (2nd layer), 256 nm (1st layer), the parameters of materials obtained
experimentally are taken as initial conductivity data;

(2) to calculate the electrical conductivity of plane-parallel layers, including blocks
with a width of 0.5 nm (10th layer), 1 nm (9th layer), 2 nm (8th layer), 4 nm (7th layer), 8 nm
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(6th layer), 16 nm (5th layer), 32 nm (4th layer), an effective medium model for electrical
conductivity was used;

(3) to determine the electrical conductivity of plane-parallel layers, including blocks
with a width of 64 nm (3rd layer), 128 nm (2nd layer), 256 nm (1st layer), and the composite
as a whole, the method of equivalent substitution schemes was used.

Table 1. Method for determining the electrical conductivity of a layered nanocomposite with a periodic structure.

n
Layer

∆ the Block Included
in the Layer, nm

Quantity Blocks in a
Layer

the Method of
Determining the σ

of the Block

Method of
Determination

Layer σ

Method for
Determining the σ of

the Entire
Nanocomposite

10 0.5 1024

Kubo-Greenwood
equations effective

environment
model method

of equivalent circuits

9 1 512
8 2 256
7 4 128
6 8 64
5 16 32

experimental
values

4 32 16
3 64 8 method

of equivalent
circuits

2 128 4
1 256 2

The essence of the theory of generalized conductivity is that a particular result of
studying some properties of the composite (for example, the dielectric constant) can be
extended to other characteristics of the composite [15] (for example, electrical conduc-
tivity, thermal conductivity, magnetic permeability, etc.) if the equations describing the
regularities of the considered processes are mathematically equivalent. The task is to find
the electrical conductivity of the investigated nanocomposite by the known values of the
dielectric constant and information on the structure of the nanocomposite. Maxwell’s
equations describing the conducting and dielectric properties of a heterogeneous system
are as follows (Table 1):

Due to the equivalence of mathematical equations (Table 2), the relationship between
the electrical conductivity σ and the dielectric constant ε will be determined by the relation:
σ = ε(ε0iω), where ε0 is the dielectric constant [16].

Table 2. Analogy between the equations describing the conductive and dielectric properties of a
material (Delectric induction, j—current density, ϕ potential).

Physical Property of the Material Equations for a Heterogeneous System

Electrical permittivity ε D = −ε×∇E;
divD = 0.

Electrical conductivity σ j = −σ×∇ϕ;
divj = 0.

2.2. Mathematical Model of Electrical Conductivity of a Layered Nanocomposite of a Self-Similar
Structure Based on the Kubo-Greenwood Equations

A quantum mechanical approach is used to find the electrical conductivity of the
nanocomposite blocks included in layers 10 to 6 in.

Since the structure under study is anisotropic, the electrical conductivity of the
nanocomposite will be represented by a second-rank tensor:

σij =

 σxx 0 0
0 σyy 0
0 0 σzz

 (1)
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The nanocomposite block, which is affected by an alternating electric field, is consid-
ered E(t), under the action of which an electric current density pulse occurs in the system
J(t). According to [17], E(t), J(t) can be written as Fourier integrals:

E(t) =
+∞∫
−∞

Eωe−iωt dω

2π
, J(t) =

+∞∫
−∞

Jωe−iωt dω

2π
(2)

Based on Ohm’s law, the complex electrical conductivity is a coefficient in a complex
form σ(ω) = σ/(ω) + iσ//(ω) between Fourier components Eω u Jω. Accordingly:

Jω =
(

σ/(ω) + iσ//(ω)
)

Eω (3)

The total energy absorbed by all the electrons of the elementary cells included in the
nanocomposite block will be written as:

E f ull = V
+∞∫
−∞

J(t)E(t)dt = V
+∞∫
−∞

σ/(ω)
∣∣Eω

∣∣2 dω

2π
(4)

Thus, the contribution value of each Fourier component is characterized by the real
part of the complex electrical conductivity.

To simulate the electrical conductivity of a nanocomposite block, we will use the Kubo-
Greenwood approach [18–21], based on the calculation of the total energy absorbed by the
electrons of the system under study, which is represented as an integral

∫ +∞
−∞ σ/(ω)

∣∣Eω

∣∣2 dω
2π ,

from the coefficients of which it will be possible to find the real part of the complex
electrical conductivity.

In the general case, a system of stationary equations is considered, which are deter-
mined by the energies of electrons εn, εm normal and excited states, respectively. The
corresponding wave functions are assigned to the electron energies Ψn and Ψm. A dis-
turbing operator acts on the system V̂p. Since an anisotropic medium is considered, it
is necessary to take into account the directions of the electric field along each axis. The
perturbing operator along each axis will have the form:

V̂p = eE(t)x̂, V̂p = eE(t)ŷ, V̂p = eE(t)ẑ. (5)

The total probability of transition from level n to level m will be equal to:

P(n→m)x
= e2

}2 〈Ψn|x̂|Ψm〉2
∣∣∣E εm−εn

}

∣∣∣2
P(n→m)y

= e2

}2 〈Ψn|ŷ|Ψm〉2
∣∣∣E εm−εn

}

∣∣∣2
P(n→m)z

= e2

}2 〈Ψn|ẑ|Ψm〉2
∣∣∣E εm−εn

}

∣∣∣2
(6)

When moving from one level to another, the total energy of the system increases by:

E f ull
(n→m)x

= e2

}2 (εm − εn)〈Ψn|x̂|Ψm〉2|E εm−εn
}
|2

E f ull
(n→m)y

= e2

}2 (εm − εn)〈Ψn|ŷ|Ψm〉2|E εm−εn
}
|2

E f ull
(n→m)z

= e2

}2 (εm − εn)〈Ψn|ẑ|Ψm〉2|E εm−εn
}
|2

(7)



Mathematics 2021, 9, 2948 5 of 12

In statistical analysis, the expression (7) must be multiplied by the fill numbers f (εn),
f (εm), determined by the Fermi distribution for the normal and excited states, respectively.
The total energy absorbed by the system will have the form:

E f ull
x = e2

2}2 ∑
nm

(εm − εn)〈Ψn|x̂|Ψm〉2|E εm−εn
}
|2( f (εm)− f (εn))

E f ull
y = e2

2}2 ∑
nm

(εm − εn)〈Ψn|ŷ|Ψm〉2|E εm−εn
}
|2( f (εm)− f (εn))

E f ull
z = e2

2}2 ∑
nm

(εm − εn)〈Ψn|ẑ|Ψm〉2|E εm−εn
}
|2( f (εm)− f (εn))

(8)

In order to represent expressions (8) in integral form, it is necessary to use the δ
-function. We get:

E f ull
x =

∫ e2

2}2 ∑
nm

(εm − εn)〈Ψn|x̂|Ψm〉2|Eω |2( f (εm)− f (εn)) δ
(
ω− εm−εn

}
)
dω

E f ull
y =

∫ e2

2}2 ∑
nm

(εm − εn)〈Ψn|ŷ|Ψm〉2|Eω |2( f (εm)− f (εn)) δ
(
ω− εm−εn

}
)
dω

E f ull
z =

∫ e2

2}2 ∑
nm

(εm − εn)〈Ψn|ẑ|Ψm〉2|Eω |2( f (εm)− f (εn)) δ
(
ω− εm−εn

}
)
dω

(9)

To obtain an expression for electrical conductivity, we substitute (9) into (7) and
integrate the equations. The integration is carried out by the Simpson method, with a step
of 0.1 nm. As a result, we obtain modified Kubo-Greenwood equations describing the
electrical conductivity of the nanocomposite block and taking into account the anisotropy
of electrical conductivity and electron spin:

σxx = 2πe2}3

m2
e V

(
∂Ψn
∂x + ∂Ψm

∂x

)2 f (εm)− f (εn)
εm−εn

δ(εm − εn − }ω);

σyy = 2πe2}3

m2
e V

(
∂Ψn
∂y + ∂Ψm

∂y

)2 f (εm)− f (εn)
εm−εn

δ(εm − εn − }ω);

σzz =
2πe2}3

m2
e V

(
∂Ψn
∂z + ∂Ψm

∂z

)2 f (εm)− f (εn)
εm−εn

δ(εm − εn − }ω),

(10)

where εn, εm—the electron energies of the normal and excited states, respectively; f (εn),
f (εm)—the fill numbers determined by the Fermi distribution for the normal and excited
states, respectively.

The model assumes the presence of information about the energy of electrons in
the normal and excited states (εn, εm), and also about the filling numbers f (εn), f (εm),
determined by the Fermi distribution for the normal and excited states. To obtain them,
the method of electronic minimization is used. Differentiation is performed by a four-point
method with a step of 0.1 nm. Values of wave functions ΨnΨm and the other parameters
included in Equation (10) are taken the same as in the Agranovich-Ginzburg approach
used to calculate the permittivity [21–27].

For the blocks included in layers 1 to 5, in accordance with the above, the parameters
of materials obtained experimentally are taken as the initial data of electrical conductivity.

3. Algorithm for Reconstructing the Electrical Conductivity Tensor from the Values of
the Electric Field Potential

In a composite medium a × c (Figure 1) with anisotropic electrical properties, the
following coefficient inverse charge transfer problem by determining the electrical conduc-
tivity tensor is considered.
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σ =

[
σ11(ϕ) σ12(ϕ)
σ21(ϕ) σ21(ϕ)

]
∂

∂x

(
σ11(ϕ)

∂ϕ
∂x

)
+ ∂

∂x

(
σ12(ϕ)

∂ϕ
∂x

)
+ ∂

∂y

(
σ21(ϕ)

∂ϕ
∂x

)
+ ∂

∂y

(
σ22(ϕ)

∂ϕ
∂x

)
= eCρ

∂ϕ
∂t ,

x ∈ (0; a), y ∈ (0; c), t > 0,
ϕ(x, 0, t) = ϕ(x, c, t) = ϕ(0, y, t) = ϕ(a, y, t) = ϕ|S

ϕ(x, y, 0) = ϕ0

(11)
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The boundary conditions are taken as the maximum value of the field potential
ϕ|S = ϕmax , and the initial one is taken as the minimum ϕ|0 = ϕmin , i.e., ϕmin ≤ ϕ ≤ ϕmax.
To close the coefficient inverse problem of charge transfer in an anisotropic composite
medium, the values of the electric field strength at nine points are set as a function of
time ϕ((x, y)ξ , tη) = ϕ̃ξ,η , ξ = 1, 9, η = 1, H. The values of the electric field strength are
calculated based on the data on the dielectric constant of the nanocomposite obtained.

A two-dimensional case is considered; therefore, the number of points with the
values of the electric field strength in the direction of each coordinate axis should be at
least two; and, since the composite medium is anisotropic, then, in accordance with the
spatial template for finite-difference schemes, the number of these points in the coordinate
directions should be at least three. Thus, the minimum possible number of spatial points is
assumed, equal to nine, with field strength values depending on time [28].

The nonlinear components of the electrical conductivity tensor are determined through
the principal coefficients σα, σβ and the orientation angle ϕ of the principal axes Oα and Oβ
as follows:

σ11(ϕ) = σα(ϕ)cos2 ϕ + σβ(ϕ)sin2 ϕ

σ22(ϕ) = σα(ϕ)sin2 ϕ + σβ(ϕ)cos2 ϕ

σ12(ϕ) = σ21(ϕ) = σα(ϕ)− σβ(ϕ)) sinϕ cosϕ

(12)

To solve the problem, the method of parametric identification is used, in which
the sought functions σ11(ϕ), σ12(Eϕ) = σ21(ϕ), σ22(ϕ) are found in the form of a lin-
ear combination of basis functions Gn(E) defined on finite elements as finite segments
∆ϕn, n = 1, N − 1 (ϕmin ≤ ϕ ≤ ϕmax), and these basis functions are assigned to each node:

ϕn = ϕmin +
n

∑
a=1

∆ϕa−1 (∆ϕ0 = 0) (13)
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n = 1, N and orthogonal on the segment ϕ ∈ [ϕmin, ϕmax]. The following linear-continuous
basis functions are used:

Gn(E) =



0, ϕ < ϕn−1

ϕ−ϕn−1
ϕn−ϕn−1

, ϕn−1 ≤ ϕ ≤ ϕn

ϕn+1−ϕ
ϕn+1−ϕn

, ϕn ≤ ϕ ≤ ϕn+1

0, ϕ > ϕmax

n = 1, N (14)

The field-dependent nonlinear components of the electrical conductivity tensor are repre-
sented in the parametric identification method as linear combinations of basis functions Gn(ϕ):

σ11(ϕ) ≈
N
∑

n=1
σn

11Gn(ϕ),

σ22(ϕ) ≈
N
∑

n=1
σn

22Gn(ϕ),

σ12(ϕ) ≈
N
∑

n=1
σn

12Gn(ϕ),

(15)

where the coefficients of the linear combinations σn
11, σn

22, σn
12 at each n-th finite ele-

ment n = 1, N − 1 are the required quantities. Based on the maximum principle, it
can be argued that the electric field strength inside the region will satisfy the inequality
ϕmin ≤ ϕ(x, y, t) ≤ ϕmax.

By designating σm
11 = σ11(ϕmin), σm

12 = σ12(ϕmin), σm
21 = σ21(ϕmin), σm

22 = σ22(ϕmin),
σM

11 = σ11(ϕmax), σM
12 = σ12(ϕmax), σM

21 = σ21(ϕmax), σM
22 = σ22(ϕmax), to determine the

constant components of the tensor

σ =

[
σm

11 . . . σM
11 σm

12 . . . σM
12

σm
21 . . . σM

21 σm
22 . . . σM

22

]
(16)

into expressions (12), the quadratic functional is introduced:

S(σ) =
1
2

9

∑
ξ=1

H

∑
η=1

[
Eξ,η(σ)− Ẽξ,η

]2
(17)

To minimize the functional, an implicit gradient descent method is used:

σ(n+1) = σ(n) − lngrad S
(

σn+1
)

(18)

where n is the iteration number; δn—parametric steps (δn > 0).

S(l(n+1)) < S(σ(n)) (19)

The initial values l0, based on condition (19), can be chosen arbitrarily. If, as a result of
iteration, condition (19) is not met, then ln decreases at this iteration, and the calculation
is repeated on it; otherwise, when (19) is fulfilled for the next iteration, ln increases. The
end of the iterative process is set close to zero grad S

(
σn+1), i.e., under the condition∣∣grad S

(
σn+1) ∣∣ ≤ µ, where µ is the specified accuracy.

Thus, this article proposes an algorithm for the numerical solution of the inverse
coefficient problem of charge transfer in an anisotropic composite medium; the input data
can be changed in accordance with a physical experiment.



Mathematics 2021, 9, 2948 8 of 12

4. Mathematical Model of Nanocomposite Electrical Conductivity Based on the
Theory of Effective Medium

The modeling of the electrical conductivity of layers from the 4th to the 10th, including
blocks with sizes from 0.5 to 32 nm, was carried out. For this purpose, an effective
environment model is used. The TiO2-Al2O3 composite is considered as an example,
with the material TiO2 denoted in blue, and Al2O3 in yellow. Such materials are used
in photochemical batteries—Gratzel cells and are of great interest for research [18]. This
approach of modeling the electrical conductivity of anisotropic composites was used in [20];
however, the author considered composites with cylindrical and spherical inclusions.

In this paper, based on this approach, modeling of a layered nanocomposite with a
periodic structure is carried out (Figure 2). Since an anisotropic medium is considered in
this paper, the complex electrical conductivity will be represented by a tensor:

σe f fij
=

 σe f fxx 0 0
0 σe f fyy 0
0 0 σe f fzz

 = f
(
σij1 , σij2 ,4

)
(20)

where σij1 , σij2—the electrical conductivity tensor of blocks of the 1st and 2nd type of
material, respectively. The effective conductivity is found from the basic macroscopic
equations rot E = 0, divj = 0 and Ohm’s law: j = σE.
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Let’s average the vector J over the volume V of the object of study J = j− σE. For a
nanocomposite consisting of n layers

〈j− σE〉 = −
n

∑
i
(σ− σi)

1
V

σE∫
Vi

EdV (21)

where σi—the conduction tensor of the block, and the integral is taken by its volume Vi.
According to Maxwell ‘s equations, the average value is J = 0, accordingly, the left side of
the equation is also zero. Thus, expression (21) takes the form:

n

∑
i=1

Ni(σ− σi)〈
∫ σ

Vi

EdV〉i = 0 (22)

where Ni—the number of blocks in the layer, integration is carried out by the volume of
the block. By νi the averaging of the i-th component is implied.

The approximation of the effective medium model consists in replacing the average
value 〈

∫ σ
Vi

EdV〉i on the integral of the electric field strength Ei inside a separate i-th block
placed in a layer with a conductivity tensor σe f f . Thus, the basic equation of the effective
medium model will have the following form:

n

∑
i=1

νi(σe f f − σi)〈E〉i = 0 (23)
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where νi—dimensionless concentration of the i-th component (∑n
i=1 νi = 1). For a layered

nanocomposite comprising blocks of two types of materials νi = 41 +42. 〈E〉i—the
average value of the electric field strength.

Models for the layered structure corresponding to the components σeffxx , σeffyy , have
the form:

J = (41σxx1+42 σxx2)E (24)

σe f fxxu = 41σxx1+42 σxx2 (25)

For components σe f fzz :

E = J
(
41

σzz1

+
42

σzz2

)
(26)

σe f fzz =
σzz1 σzz2

41σzz1 +42σzz2

(27)

Next, to calculate the components of the electrical conductivity tensor of layers 1
through 3 and the composite as a whole, we use the method of equivalent circuits.

Considering that σ = 1
Z , using the equivalent scheme, we obtain:

σ/
xx,yy =

[
σ/

1 d1

(
σ/2

2 + σ//2
2

)
+ σ//

2 d2

(
σ/2

1 + σ//2
1

)]
(d1 + d2)(

σ/
2 d1 + σ

/
1 d1

)2
+
(
σ//

2 d2 + σ
//
1 d2

)2 ;σ/
zz =

(
σ/

1 d1 + σ
/
2 d2

)
(d1 + d2)

; (28)

σ//
xx,yy =

[
σ//

1 d1

(
σ/2

2 + σ//2
2

)
+ σ//

2 d2

(
σ/2

1 + σ//2
1

)]
(d1 + d2)(

σ/
2 d1 + σ

/
1 d2

)2
+
(
σ//

2 d1 + σ
//
1 d2

)2 ; σ//
zz =

(
σ//

1 d1 + σ
//
2 d2

)
(d1 + d2)

. (29)

5. Result

The dependences of conductivity on the electric field strength are modeled by the
method proposed in the work and using the theory of generalized conductivity. The results
obtained are shown in Figure 3. We wanted to show the effect of a small magnitude of
the electric field voltage. This is due to the study of fundamental physical phenomena, in
particular, the study of the electrocaloric (EC) effect in nanocomposites with a periodic
structure [28]. It is the strength of a small electric field that makes it possible to detect such
effects in periodic structures. At high electric field strengths, this effect can be neglected.
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A simulation of a nanocomposite with a periodic structure is carried out, the equivalent
scheme of which has the form (Figure 4).
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The impedance of the circuit is described in [22] and depends on the parameters of
the equivalent electrical circuit, fragmentation and fractality. A software application has
been developed that allows modeling the frequency dependences of the impedance, the
simulation results are presented on Figure 5.
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The qualitative change in the impedance dependence at different frequencies indicates
that the system under study is self-similar. The self-similarity of the properties of an object
at different scales indicates that a composite material, the equivalent scheme of which has
a hierarchical structure, can be considered as a fractal formation.

To study the electrical conductivity of layered nanocomposites with a periodic struc-
ture, a number of computational experiments were carried out for the first time, as a result
of which the following properties and regularities were established. It was found that
a layered nanocomposite with a periodic structure has electrical properties that differ
significantly from the properties of homogeneous materials. The fractality level of the
nanocomposite and its geometric configuration significantly affect the electrical conduc-
tivity. A shift of the curves is observed in the regions of electronic and ionic polarizations,
which is presumably associated with relaxation losses.

The scientific significance is determined by the fact that the mathematical models
and methods proposed in this work make it possible to study fundamental physical
phenomena occurring in layered nanocomposites with a periodic structure in an external
electromagnetic field.

The practical significance is due to the results obtained in the course of the study,
which open up the possibility of using layered nanocomposites with a periodic structure in
modern absorbing and reflecting devices. In particular, the nonlinear nature of electrical
conductivity in such a nanocomposite medium was discovered, and the possibility of con-
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trolling resonance bursts, which would allow the design of materials with predetermined
electrical properties.

6. Conclusions

The presented method of modeling the electrical conductivity based on the Kubo-
Greenwood equations effective environment model method of equivalent circuits use will
allow making predictions to describe the electrical conductivity of the nanocomposite under
study. This can be useful when creating smart materials with specified electrophysical
properties, thyristors, absorbing screens, and elements of radar devices.

Based on the results obtained, it can be seen that the dependences obtained using the
method proposed in this article are in good agreement with the results obtained using the
theory of generalized conductivity. The advantage of the proposed method is the removal
of restrictions imposed on the theory of generalized conductivity associated with the need
to set the permittivity.
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