
mathematics

Article

Deep Cross-Project Software Reliability Growth Model Using
Project Similarity-Based Clustering

Kyawt Kyawt San 1, Hironori Washizaki 1,* , Yoshiaki Fukazawa 1 , Kiyoshi Honda 2 , Masahiro Taga 3

and Akira Matsuzaki 3

����������
�������

Citation: San, K.K.; Washizaki, H.;

Fukazawa, Y.; Honda, K.; Taga, M.;

Matsuzaki, A. Deep Cross-Project

Software Reliability Growth Model

Using Project Similarity-Based

Clustering. Mathematics 2021, 9, 2945.

https://doi.org/10.3390/math9222945

Academic Editors: Tadashi Dohi and

Shaoying Liu

Received: 16 October 2021

Accepted: 10 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan;
kks@fuji.waseda.jp (K.K.S.); fukazawa@waseda.jp (Y.F.)

2 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan;
kiyoshi.honda@oit.ac.jp

3 e-Seikatsu Co., Ltd., Minato-ku, Tokyo 106-0047, Japan; masahiro.taga@e-seikatsu.co.jp (M.T.);
akira.matsuzaki@e-seikatsu.co.jp (A.M.)

* Correspondence: washizaki@waseda.jp

Abstract: Software reliability is an essential characteristic for ensuring the qualities of software
products. Predicting the potential number of bugs from the beginning of a development project
allows practitioners to make the appropriate decisions regarding testing activities. In the initial
development phases, applying traditional software reliability growth models (SRGMs) with limited
past data does not always provide reliable prediction result for decision making. To overcome
this, herein, we propose a new software reliability modeling method called a deep cross-project
software reliability growth model (DC-SRGM). DC-SRGM is a cross-project prediction method that
uses features of previous projects’ data through project similarity. Specifically, the proposed method
applies cluster-based project selection for the training data source and modeling by a deep learning
method. Experiments involving 15 real datasets from a company and 11 open source software
datasets show that DC-SRGM can more precisely describe the reliability of ongoing development
projects than existing traditional SRGMs and the LSTM model.

Keywords: software reliability; deep learning; long short-term memory; project similarity and
clustering; cross-project prediction

1. Introduction

Reliability is one of the most significant attributes in enhancing the quality of the
product in the software development process [1–3]. Assessing software reliability is vital
to delivering a failure-free software system. Despite the enormous amount of testing, a
number of software defects always occur in the product [4]. Software Reliability Growth
Models (SRGMs) express the number of potential errors or defects that might happen in
the future by analyzing past data, such as the cumulative number of errors, test cases, error
rate, and detection time [5]. Therefore, the application of SRGMs helps to optimize resource
planning and achieve highly reliable systems.

SRGMs are not always a reliable indicator in evaluating the situation of an ongoing
software project and may even lead to an incorrect plan for testing resources [6]. New
ongoing projects often do not have enough past data, which are needed in SRGM model
fitting. In most studies, SRGM model fitting relies on past data to predict the future for
the same project. Cross-project prediction is feasible in such cases requiring past data by
applying other projects. However, if a source project is dissimilar to the target project,
it affects prediction performance and leads to unstable future prediction results. One
challenge in the cross-project prediction is that the distribution of the source and target
project usually differ significantly [7,8].

Mathematics 2021, 9, 2945. https://doi.org/10.3390/math9222945 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1417-9879
https://orcid.org/0000-0003-0196-2108
https://orcid.org/0000-0002-7725-5031
https://doi.org/10.3390/math9222945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222945
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222945?type=check_update&version=2

Mathematics 2021, 9, 2945 2 of 22

To adopt a more reliable cross-project method of software reliability growth modeling
while eliminating the unrelated data from all source projects for each target project, this
study introduces a new SRGM method which can be utilized at the beginning stage of
ongoing projects by processing only the project data with the most common features of
the target project. For a target project with an insufficient amount of data, this method
acquires the required information and features from similar projects to use in building
the model. More specifically, a clustering method, k-means, is applied according to the
features of projects such as the correlation of datasets and the number of bugs to create a
new training data source. According to the identified clusters, the included datasets are
combined. Prediction modeling is performed by a deep long short-term memory (LSTM)
model using the merged dataset.

The goals of the study are to:

• Identify the correlation among projects by bug occurrence patterns and the same
attributes of the projects.

• Determine groups of similar projects from a defect prediction viewpoint.
• Adopt a new approach for SRGM for the initial or ongoing stage of software develop-

ment projects.

Although the idea of taking previous similar projects as a basis for the prediction of
errors is common to cross-project prediction methods, our method has a novelty in using
deep learning in combination with cluster-based project selection.

Here, we apply our proposed method, named Deep Cross-Project Software Reliability
Growth Model (DC-SRGM), to 15 cloud service development projects of a company, e-
Seikatsu, and 11 open source software (OSS) projects. Then we compare the performance
of DC-SRGM with traditional models and the deep learning LSTM models. In our case
study, DC-SRGM achieves the best scores in most cases. Hence, it can be regarded as
an effective SRGM capable of improving deep learning LSTM models. Additionally, it
significantly outperforms conventional SRGMs. Therefore, the DC-SRGM method allows
software developers and managers to understand project situations in an ongoing stage
with limited historical data.

The contributions of this work are as follows:

• A new SRGM method that uses a combination of deep learning and a cluster-based
project selection method.

• Experimental comparison to two different models using 15 empirical projects and
11 open source projects to verify the prediction accuracy of the proposed model
compared with two other models.

• Analysis of effective metrics, clustering factors, and suitable time to create reliability
growth models.

The rest of the paper is organized as follows. Section 2 reviews the background
and the related works. Section 3 presents the proposed DC-SRGM. Section 4 explains
the experimental setup, data, and design. Section 5 reports the results and evaluations.
Section 6 describes the threats to validity. Finally, Section 7 provides conclusions and
future work.

This paper is extended from our previous study [9]. We conducted additional ex-
periments to investigate the impact of clustering factors, another similarity score using
dynamic time warping, applied at different time points of ongoing projects and predictions
across organizations.

2. Background and Related Work

Studies have been conducted on SRGMs and their adoption for current project predic-
tion as well as cross-project prediction. In this section, we firstly show related works on
SRGMs in general. Secondly, we explain the current project prediction as the context of this
study. Finally, we present related works on cross-project prediction and their limitations to
motivate our method.

Mathematics 2021, 9, 2945 3 of 22

2.1. Software Reliability Growth Model

The widely used Software Reliability Models (SRMs) [10] are Software Reliability
Growth Models (SRGMs) that are used for modeling the failure or defect arrival pattern [11]
based on failure data regardless of the source code characteristics. Many SRGMs have been
studied to measure the failure process. These models require external parameters to be
estimated by the least-squares or maximum likelihood estimation to build the relevant
parameters [1]. N. Ullah et al. [11] studied different SRGMs using defect data in industrial
and open source software and performed a comparative analysis between them. To evaluate
the qualities of development projects monitored by SRGM applications, K. Honda et al. [6]
analyzed the tendencies for unstable situations in the results of different SRGM models. K.
Okumoto et al. [4] applied SRGM in developing a reliability assessment automated tool.

SRGM processes are usually performed with data from testing. Detecting and resolv-
ing failures or defects would enable software systems to be more stable and reliable. To
understand the underlying condition of the system, such processes are often described
using a mathematical expression, usually based on parameters such as the number of
failures or failure density [12]. Studies report many ways to create models based on the
model’s assumption of failure occurrence patterns.

Similar to previous studies [6,13], we focused on the Logistic model, which is the
most suitable concerning fitness for the collected experimental datasets. We employed the
model using the number of detected bugs and detected time. The Logistic model can be
expressed as

N(t) =
Nmax

1 + exp−A(t − B)
(1)

where N(t) is the number of bugs detected by time t. The parameters, Nmax, A and B were
estimated using Nonlinear Least Square Regression (NLR) function [6].

2.2. Current Project Prediction

SRGMs can be applied to current ongoing projects to allow project managers or
other stakeholders to assess the release readiness and consider optimal testing resource
allocations. Current project prediction applies existing project data as a training source
and then makes predictions for future days. Therefore, prediction models in this study are
created using only 50 percent data points of the target project’s existing data. Then these
models are used to predict the subsequent days for the rest of the data points. Each data
point refers to the cumulative number of bugs that have been reported by the corresponding
time. We considered an RNN-based LSTM as well as the Logistic model as prediction
models for current project prediction.

A Recurrent Neural Network (RNN) connects neurons with one or more feedback
loops, which is capable of modeling sequential data in sequence recognition and predic-
tion [14,15] because it includes high-dimensional hidden states with nonlinear dynamics.
These hidden states perform as the memory of the network, and its current state is con-
ditioned on its previous one [16]. A simple RNN structure has an input layer, recurrent
hidden and output layers, which accept the input sequences through time. Consequently,
RNNs are capable of storing, remembering, and processing data from past periods, which
enables the RNN to elucidate sequential dependencies [14]. However, it comes with the
challenges that the memory produced from the recurrent connections may be limited to
learning long-range sequential data.

An RNN-based LSTM network is designed to solve that problem. The LSTMs are
capable of bridging very long-time lags with an advanced RNN architecture, with self-
connected units [14,17,18]. The inputs and outputs of hidden units are controlled by gates,
which maintain the extracted features from previous time steps [14,18]. LSTM contains an
input gate, forget gate, cell state, output gate, and output response. The input gate and
forget gate manage the information flow into and out of the cell, respectively. The output
gate decides what information is passed to the output cell. The memory cell has a self-
connected recurrent edge of weight, ensuring that the gradient can pass across many time

Mathematics 2021, 9, 2945 4 of 22

steps without exploding [19]. The advantage of an LSTM model is it can keep information
over long periods by removing or adding information to the state.

For current project prediction, traditional SRGMs such as the Logistic model cannot
realize underlying project conditions if they are applied at the initial stage with limited
historical data. As a result of the preliminary experiment using one of the industrial projects
of the company, we confirmed that the Logistic model did not work well, as shown in
Figure 1a.

0 5 10 15

5
0

1
0

0
1

5
0

2
0

0

DS−F10

Time(day)

#
 o

f
B

u
g

s

Prediction

Actual

(a)

0 5 10 15

0
5

0
1

5
0

2
5

0

DS−F10

Time(day)

#
 o

f
B

u
g

s
Prediction

Actual

(b)

Figure 1. Applying the Logistic model and LSTM model on day 5 for ongoing project F10. (a) Logistic Model.
(b) LSTM Model.

Therefore, we applied an advanced technique LSTM model with the same amount
of data during model construction. At each step, the input layer receives a vector of the
number of bugs and passes the data to hidden layers, with four LSTM neurons in each.
An output layer generates a single output that gives the predictions for the next time step.
Although improvements occur (Figure 1b), the LSTM model does not always provide
accurate results at the beginning in cases with very little data that has different reliability
growth patterns.

2.3. Cross-Project Prediction

Ongoing projects have limited data for use as historical defect data. One alternative is
to employ a cross-project prediction, which utilizes external projects to construct a predic-
tion model for the current project [3,20]. In the literature, cross-project prediction is a very
well-studied subject by utilizing project data of different organizations. K. Honda et al. [5]
proposed a cross-project SRGM model to compare software products within the same com-
pany. However, they did not implement cross-project applications of SRGMs for ongoing
projects. Remarkably, there are a few studies in SRGM modeling using cross-project data.

The mismatch between the randomly selected source projects and the target project
affects the cross-project prediction performance and creates unstable results. Earlier studies
in [21,22] implied that usage of cross-company data without any modification degrades the
accuracy of prediction models. Irrelevant source project data may decrease the efficiency
of the cross-project prediction model. To overcome this issue, C. Liu et al. [23] considered
the Chidamber and Kemerer (CK) metric suite [24] and size metrics to implement a cross-
project model, which detects change-proneness class files. Source projects were selected by
the best-matched distribution.

To choose appropriate training data, X. Zhang et al. [7] investigated the efficiencies of
nine different relevancy filtering methods. A cross-project defect prediction model was con-
structed with a random forest classifier on the PROMISE repository. M. Jureczko et al. [25]

Mathematics 2021, 9, 2945 5 of 22

also studied a similar project clustering approach using k-means and hierarchical clus-
tering by a stepwise linear regression in the PROMISE data repository. They confirmed
that k-means could successfully identify similar project clusters from a defect prediction
viewpoint. The above studies with cross-project prediction focused on the clustering or
filtering approaches and employed a specific classifier to label defective modules or classes.
None of these methods dealt with the observed time series failure data.

J. Wang et al. [1] proposed an encoder–decoder-based deep learning model RNN
and performed analysis between non-parameter models and parameter models. They
applied the cumulative executive time and the accumulated number of defects. However,
a cross-project prediction model was not implemented.

In addition, most of the past studies have not investigated sufficiently in SRGMs
modeling that utilizes cross-project prediction. This study conducted projects reliability
assessment by SRGM modeling with a sophisticated method rather than traditional ap-
proaches using cross-project data, which were carefully selected with a project similarity
method.

In earlier studies, cross-project predictions models have been utilized to resolve the
requirement of huge historical data. However, one challenge in the cross-project prediction
is that the distribution of the source and target project usually differ significantly [7,8]. If
the training data contain all the source project data, a poor prediction quality can result.
Ideally, one defect prediction model should work well for all projects that belong to a
group [25].

3. Deep Cross-Project Software Reliability Model

To eliminate the unrelated data from all source projects for each target project, we
propose the Deep Cross-Project Software Reliability Growth Model (DC-SRGM), which
processes only the project data with the most common features of the target project. DC-
SRGM utilizes a cross-project prediction method that uses other projects; data as a training
data source with the advantage of LSTM modeling for time series data.

Figure 2 overviews the proposed model DC-SRGM. It includes three processes, simi-
larity scoring, clustering-based project selection, and prediction modeling. Figure 3 details
the process of selecting the most appropriate projects that share common characteristics
with the target project. The core feature of DC-SRGM is that it filters irrelevant projects
from training data sources and only selects projects with the most common characteristics
as the target project.

3.1. Similarity Scoring

Each project has its own features, such as the project size and the number of bugs [3].
Identifying similarities among the datasets is the basis used to eliminate differences be-
tween the data across projects. Otherwise, inappropriate source data may be chosen. To
exclude irrelevant projects from training data sources, the clustering factors include project
similarity scores. In DC-SRGM, cross-correlation is applied to identify the correlation
of projects against the target project. Furthermore, Dynamic Time Warping (DTW) is
considered as a comparative similarity measurement.

Cross-correlation: A measure of the similarity among the projects by aligning two
time series. The coefficients identify the connections between different time series of
datasets [26]. In given time series datasets for cumulative numbers of bugs, each dataset is
considered as one time series. The cross-correlation function of each pair taken from two
datasets is calculated.

Dynamic Time Warping (DTW): A well-known technique to measure the optimal
alignment or similarity between time series sequences of different lengths concerning the
shape of information and patterns [27]. It calculates the minimal distance to observe dissim-
ilarities among the datasets according to the scale and distribution of the project. Here, it is
used to compare the performances of DC-SRGM with different similarity measurements.

Mathematics 2021, 9, 2945 6 of 22

Figure 2. Overview of the DC-SRGM model.

Figure 3. Project selection process.

3.2. Project Clustering

Project clustering groups similar projects together using the k-means algorithm with
the following clustering factors:

• Cross-correlation similarity scores between the number of bug growth patterns;
• Normalized values of the maximum number of bugs;
• Normalized values of the maximum number of days.

Clustering results usually indicate three groups. Each group includes projects with
characteristics similar to the target project according to the cross-correlation scores and the
distribution of the projects, such as the number of bugs and the number of days.

3.3. Selection

To investigate whether a cluster for SRGM modeling exists, a prediction model is
created by the datasets from each same cluster. According to our initial analysis, the cluster
from the number of bugs prediction viewpoint exists only in the group with the target
project itself. Each group shares the most common attributes of the projects, such as failure
occurrence patterns, and only those within the same group are appropriate to model for
each project. In addition, only a cluster that belongs to the target project is selected. All
the containing projects in that cluster are combined, but the target project itself is excluded
when merging the data. Eventually, the merged group of projects eliminating the irrelevant
training data is used for model training.

Mathematics 2021, 9, 2945 7 of 22

3.4. Training and Prediction

To employ the LSTM model, the input to the network at each time step is a vector of
the number of bugs, and the single output is the number of bugs for the next step. Figure 4
shows the process of LSTM training at each time step. Because the ranges of the input
values can vary, the values of bugs are scaled into the range of zero to one. By considering
the prediction process as a time series, the input layer receives the values of the number of
bugs for nine days, and the single output node produces the prediction for the next day.
By shifting by one in each step, the model is trained to the maximum days of the training
dataset. The model is trained with 300 epochs because the results are similar to those using
500 epochs. The stochastic gradient descent method is employed using the mean squared
error loss function.

Figure 4. Model training process.

For a target project prediction, the trained model uses fifty percent of the data points
of its project to predict the following fifty percent of the data points because we considered
a project to be ongoing.

4. Experiment Methodology

Experiments were conducted to answer the following research questions RQ1–RQ5.
Figure 3 overviews the evaluation design for each research question. RQ1 compares two
different types of current project prediction: LSTM and Logistic models using only the first
half of the current project data to predict the second half of the same project, and DC-SRGM
using past projects’ data for training and the first half of the current project data as input
for prediction of the second half of the same project. Furthermore, RQ2–RQ5 address only
DC-SRGM using past projects’ data for training and the first half of the current project
data as input for prediction of the second half with different settings. We explained this
distinction as follows in Section 4.

• RQ1: Is DC-SRGM more effective in ongoing projects than other models?
This question evaluates the effectiveness of the DC-SRGM model compared to the
Logistic model and LSTM model (Figure 5, RQ1). That is, does the proposed method
correctly describe ongoing projects’ reliability despite insufficient data to apply in a
prediction model? Specifically, we used a case study to compare the performance of
different models for 15 industrial projects with a duration longer than 14 days and
11 OSS projects. Because the target is an ongoing project, the first half of its data is
used to obtain the similarity scores as well as for input data. Then the models are
used to predict the second half of the target data. The results should reveal whether
cluster-based similar project selection improves the LSTM model performance relative
to that of a traditional Logistic model.

• RQ2: What factors influence the performance of DC-SRGM?
This question examines the performance of DC-SRGM upon applying a different
clustering factor to the similarity scores of the projects. Domain experts indicated that
the projects are clustered according to the project domain type, and the same types of
projects are applied as the training source projects for modeling. We compared the
prediction results with similarity scores in terms of AE values to reveal how different

Mathematics 2021, 9, 2945 8 of 22

clustering factors influence the prediction results. This RQ helps to assess whether
DC-SRGM can be utilized when the same type of other projects is not available.

• RQ3: Do different similarity measurements affect the prediction quality of DC-
SRGM?
This question investigates the performances of DC-SRGM based on cross-correlation
and Dynamic Time Warping (DTW) to determine the impact of the similarity measure-
ment techniques on the model (Figure 3, RQ3). We analyzed the effect of the similarity
measurement on DC-SRGM by comparing the performance of two methods in terms
of AE values by model. In general, AE > 0.10 indicated a satisfactory model.

• RQ4: Can DC-SRGM precisely describe an ongoing project’s status?
This question explores the relation of the amount of utilized project data and the
model’s prediction capability for new initial stage projects. It aims to determine if
there is a suitable time for managers to begin to evaluate projects with acceptable
accuracy by DC-SRGM. Therefore, we applied the DC-SRGM model at different time
points in ongoing projects to assess the prediction performance and the impact of the
target project’s past data usage.

• RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial projects’
situation?
Even if previous source projects’ data are unavailable, this question evaluates whether
DC-SRGM created with OSS datasets can predict the conditions for an industrial
project. We used open source datasets to create DC-SRGM with the same setting and
procedure performed on industrial datasets. Then the results are compared to those
predicted using industrial datasets.

Figure 5. Overview of the experiment design (Research Questions).

4.1. Initial Analysis

To identify similar groups, the initial analysis used cosine similarity and DTW. How-
ever, the similarity measurements and the prediction performance were not correlated.
Therefore, the k-means clustering method was applied. Then the optimum number of
clusters, k, was determined by the Elbow method. Initially, the clustering produced biased
results on the number of days. After adding cross-correlation coefficients in clustering
factors, projects with similar characteristics were classified well.

Mathematics 2021, 9, 2945 9 of 22

4.2. Performance Measure

We evaluated the prediction capability in terms of accuracy by considering the ratio
between the difference in the error values and the prediction over a time period, namely
average error (AE) [1]. AE is defined as:

AE =
1
n

n

∑
i=1

∣∣∣Uij − Dj

Dj

∣∣∣ (2)

where Uij denotes the cumulative number of predicted bugs by time tj, Dj represents the
cumulative number of detected bugs by time tj, and n is the project size [1]. A value closer
to zero indicates a better prediction accuracy.

We employed the Friedman test with the Nemenyi test as a post hoc test to evaluate
the statistically significant difference in performances between DC-SRGM and the baseline
methods because it is better suited for non-normal distributions.

4.3. Data Collection

The datasets were from 15 industrial projects’ data with a duration longer than 14 days
from real cloud services development projects. Each dataset consisted of the time series
number of bugs per testing day. The domains of the projects were property informa-
tion management, customer relationship management, contract management, money
receipt/payment management, and content management systems [6]. To derive more
generalized results, we aimed to include as many software projects as possible. Thus,
11 datasets from Apache open source projects were also collected from apache.org using a
bug tracking system, JIRA, to study reliability growth modeling. All the issues reported in
two minor versions, which were declared as bugs or defects excluding any other categories,
were collected for each project. Tables 1 and 2 describe details of each dataset.

Table 1. Industrial project details.

Project Days # of Bugs

F01 19 91
F02 22 137
F03 12 47
F04 17 259
F05 19 188
F06 26 263
F07 15 146
F08 17 97
F09 16 99
F10 18 184
F11 14 74
F12 25 351
F13 22 187
F14 34 331
F15 18 752

Mathematics 2021, 9, 2945 10 of 22

Table 2. OSS projects details.

Project Days # of Bugs Studied Version

Camel 36 32 2.15.1 2.15.2
Ignite 48 149 2.5 2.6

Jclouds 175 25 2.1.0 2.1.1
Karaf 56 64 4.1 4.2

Lucene 91 6 6.6.0 6.6.1
Maven 160 22 3.5.1 3.5.2
Shiro 30 6 1.3.0 1.3.1
Spark 99 185 2.3.1 2.3.2

Syncope 80 36 2.0.2 2.0.3
Tez 120 27 0.6.0 0.6.1

Zookeeper 86 14 3.4.12 3.4.13

5. Experiment Results and Discussions
5.1. Project Clustering Result of Industrial Datasets

In terms of the application of DC-SRGM targeting the industrial datasets, Table 3
summarizes the clustering factors, which are the cross-correlation similarity score, the
maximum number of bugs, and maximum number of days. Table 4 summarizes the project
clustering results in the industrial datasets. The number of projects in each group differs
slightly based on the similarity scores between the candidate target and source datasets for
each target dataset. Table 4 details each cluster, including the range of the number of bugs,
number of days, and the overall number of bugs of the included projects. “Grad” indicates
a gradual increase in the detected number of bugs. “Expo” refers to an exponential rise in
bug growth. “Expo and Grad” denotes both an exponential and gradual increase in the
number of bugs.

Table 3. Summary of the clustering factors.

Similarity Max Bugs Max Days

0∼1 47∼752 14∼36

Table 4. Summary of the clustering results. Projects are generally clustered into three groups according to similarity scores
and the project scales. Grad, Expo and Grad, and Expo indicate the growth of the number of bugs is gradually increasing,
exponentially increasing and gradually increasing, and exponentially increasing.

Cluster Clustered Projects Max Bugs Max Days Growth Type

C1 F01, F02, F04, F05, F07, F08, F09, F10, F11 91∼188 14∼22 Grad Similarity
C2 F12, F15 540∼752 18∼24 Expo # Bugs
C3 F03, F06, F13, F14 47∼331 22∼36 Expo and Grad # Days

Table 5 shows the clustering results by project, where “Cluster” represents the cluster
containing the target project. Projects applied for model building are presented in Table 4
according to the expressed cluster name. “Actual Growth” describes the bug growth of
each project. “Prediction Result” shows the growth of the number of bugs by the prediction
model created by clustered projects.

Mathematics 2021, 9, 2945 11 of 22

Table 5. Summary of the clustering results by project. Grad, Expo and Grad, Expo, and Const indicate
that the number of bugs is gradually increasing, exponentially increasing and gradually increasing,
exponentially increasing, and constantly increasing.

Project Cluster Actual Growth Prediction Result

F01 C1 Grad Grad
F02 C1 Grad Grad
F03 C3 Grad Grad
F04 C1 Grad Grad
F05 C1 Grad Grad
F06 C3 Expo Expo
F07 C1 Grad and Expo Grad
F08 C2 Grad Grad
F09 C3 Expo and Grad Grad
F10 C4 Grad Grad
F11 C5 Grad Grad
F12 C2 Expo Expo and Grad
F13 C3 Expo and Grad Expo and Grad
F14 C3 Expo and Grad Const
F15 C2 Expo Expo

In this study, since the maximum number of bugs, the maximum number of days,
and cross-correlation scores for the connections between projects are used as clustering
factors, the obtained clusters are basically three main groups depending on these factors,
their similar attributes, and data patterns. The first cluster denotes a group with moderate
to strong correlation scores. The second cluster is influenced by the exponential growth of
the number of bugs. The third cluster is grouped by the distribution of the number of days
of the projects.

For example, F01 and F02 projects have the same distribution scales and a moderate
cross-correlation score. Hence, they are grouped in the same cluster. On the other hand,
the F12 project shows exponential growth for the number of bugs and a different data
occurrence pattern. Building a model for the F01 project using F12 would overestimate the
prediction result. Hence, DC-SRGM achieves better performance when applying it in the
middle of the projects to build a model using a similar group of projects.

5.2. RQ1: Effectiveness of DC-SRGM

The experiments in RQ1 compared DC-SRGM to the Logistic and LSTM models.
Tables 6 and 7 present the AE values of the three models for the industrial datasets and
OSS datasets, respectively. Table 8 describes the results of the statistical test between
DC-SRGM and the two other models. For the industrial datasets, DC-SRGM yielded the
largest improvement. On average, it improved the AE by 24.6% and 50% compared to the
LSTM and Logistic model, respectively.

Mathematics 2021, 9, 2945 12 of 22

Table 6. Comparison of DC-SRGM with the LSTM and Logistic models by the AE values. Bold
denotes the best AE values. W/L is the number of datasets that each method is better and worse
than. “# DS Threshold below 0.1” is the number of datasets for which each model’s performance is
lower than the threshold.

Project DC-SRGM LSTM Logistic

F01 0.067 0.040 0.266
F02 0.071 0.080 0.146
F03 0.192 0.130 0.142
F04 0.091 0.260 0.377
F05 0.075 0.127 0.218
F06 0.040 0.090 0.211
F07 0.329 0.500 0.146
F08 0.049 0.104 0.187
F09 0.055 0.048 0.146
F10 0.088 0.121 0.214
F11 0.068 0.073 0.074
F12 0.095 0.161 0.359
F13 0.211 0.243 0.348
F14 0.107 0.020 0.183
F15 0.126 0.201 0.191

Average 0.110 0.146 0.220

Improved% - +24.6% +50%

W/L 10/5 4/11 1/14

DS Threshold below 0.1 10 6 1

Table 7. Prediction Accuracy of the models on OSS datasets by the AE values. Bold denotes the best
AE Values. W/L is the number of datasets for which each method is better and worse than. “# DS
Threshold below 0.1” is the number of datasets that each model’s performance is lower than the
threshold.

Project DC-SRGM LSTM Logistic

Camel 0.081 0.099 0.440
Ignite 0.067 0.063 0.110

Jclouds 0.190 0.029 0.260
Karaf 0.035 0.105 0.830

Lucene 0.270 0.438 0.950
Maven 0.120 0.122 0.240
Shiro 0.100 0.139 0.110
Spark 0.201 0.139 0.190

Syncope 0.240 0.128 0.220
Tez 0.037 0.180 0.780

Zookeeper 0.133 0.190 0.140

Average 0.134 0.148 0.388

Improved% - +9.45% +65.4%

W/L 7/4 4/7 0/11

DS Threshold below 0.1 5 3 1

Mathematics 2021, 9, 2945 13 of 22

Table 8. Statistic results with the Nemenyi test for the effectiveness of DC-SRGM. * and ** denote
that there were significant differences in the groups as the significance levels were 0.1 and 0.01,
respectively.

Models p_Value

Industry DC-SRGM and LSTM 0.0710 *
DC-SRGM and Logistic 0.0045 **

OSS DC-SRGM and LSTM 0.3657
DC-SRGM and Logistic 0.0288 *

Table 6 compares the number of datasets where each model obtained better or worse
(win or lose) scores across datasets. If a model achieved a score below the threshold (0.1), it
was considered as an indicator of good accuracy. In most cases, DC-SRGM achieved better
AE values. Figure 6a also expresses the median of AE values among the three models.
The red line represents the threshold. The DC-SRGM model had lower AE values with
a median below 0.1, implying a higher accuracy than the other two models. The LSTM
model was close to the threshold, and the Logistic model showed the worst performance.

(a) (b)

Similarity Project Type

0
.1

0
.3

0
.5

0
.7

Clustering Factor

Models
(c)

Cross−correlation DTW

0
.0

0
.4

0
.8

Similarity Scores

Models

(d)

Figure 6. Cont.

Mathematics 2021, 9, 2945 14 of 22

Day 7 Day 10 Day 12 Day 13 Day 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Applying at different time points

Models

(e) (f)

Figure 6. Comparison of the model prediction accuracy in terms of average error, AE. (a) Performance
in industrial datasets (DS), (b) Performance in OSS datasets, (c) DC-SRGM based on project similarity
and project domain type, (d) DC-SRGM based on cross-correlation and DTW, (e) DC-SRGM applied
at the different number of days, and (f) DC-SRGM across organizations.

In the case of the OSS datasets (Figure 6b and Table 7), the results slightly differed,
which is most likely due to the difference in the project nature between industrial and OSS
projects. DC-SRGM achieved the best score. It showed 65.4% improvement compared to
the Logistic model in terms of AE average and better scores in terms of W/L. However,
the performance with the LSTM model did not pass the significant test, and its boxplot
was bigger than the LSTM model. The LSTM model increased its accuracy in the OSS
environment due to the larger amount of training data. OSS datasets have a different
development environment and style; specifically, having a larger project size provides
better accuracy for the LSTM model using the current project prediction method.

There are two exceptional cases where the proposed DC-SRGM was less accurate: F03
and F14 prediction. In the clustering result, the F03 project was grouped in the third cluster,
which was grouped according to the number of days despite having a strong correlation
with the projects in the first cluster. This impacted F03 modeling and is why DC-SRGM
provided less accurate results than the LSTM and Logistic models. In terms of the F14
project, its domain differed from the other projects, and it had a long duration, according
to the domain experts of these experimental projects.

Figure 7a–d plot the results when applying DC-SRGM, LSTM, and Logistic models to
the F02, F03, F04, and F10 datasets at the middle of the projects, respectively. The predicted
number of bugs by DC-SRGM described the potential number of bugs more correctly than
the other two models. Hence, the industrial and OSS datasets results indicated that DC-
SRGM outperformed LSTM and the Logistic model and improved the prediction accuracy
when applied in an ongoing stage of industrial development. For OSS projects, DC-SRGM
significantly outperformed the Logistic model, and, on average, DC-SRGM was better than
LSTM. However, its performance slightly decreased in the industrial environment while
the performances of the LSTM model increased.

Mathematics 2021, 9, 2945 15 of 22

0 5 10 15 20

5
0

1
0
0

1
5
0

Prj−F02

Time (day)

#
 o

f
B

u
g

s
Actual

DC−SRGM

LSTM

SRGM

(a)

0 5 10 15 20 25 30 35

1
0

2
0

3
0

4
0

5
0

6
0

Prj−F03

Time (day)

#
 o

f
B

u
g

s

Actual

DC−SRGM

LSTM

SRGM

(b)

0 5 10 15

0
5
0

1
5
0

2
5
0

Prj−F04

Time (day)

#
 o

f
B

u
g

s

Actual

DC−SRGM

LSTM

SRGM

(c)

0 5 10 15

0
5

0
1

5
0

2
5

0

Prj−F10

Time (day)

#
 o

f
B

u
g

s

Actual

DC−SRGM

LSTM

SRGM

(d)

Figure 7. Predicted number of bugs at the middle of the projects. Actual, DC-SRGM, LSTM, SRGM
represent the actual detected number of bugs, the prediction by DC-SRGM, the LSTM model, and the
Logistic SRGM model, respectively. (a) Project F02, (b) F03, (c) F04, and (d) F10.

RQ1: Is DC-SRGM more effective in ongoing projects than other models?
The proposed DC-SRGM outperforms the LSTM and Logistic models for most datasets

as it has a lower mean AE value. The improvements are significant in industrial datasets.
Hence, DC-SRGM is more effective in describing the future number of bugs correctly for
ongoing software development projects.

5.3. RQ2: Impact of Clustering Factors on DC-SRGM

RQ2 examined the prediction accuracy of two different clustering factors on DC-SRGM.
Two models were built. One used the project similarity score, a cross-correlation, and the
other used the project domain type to identify important factors for modeling. Figure 6c
shows boxplots for AE values from the predictions using the two different clustering
factors. “Project Similarity” and “Project Domain Type” in Table 9 report the details of the
AE values, where bold denotes the better result. Blank cells are projects which cannot be
determined in the selected experiment datasets. The project similarity-based DC-SRGM
obtained better scores in most cases, and the median was below the threshold.

Mathematics 2021, 9, 2945 16 of 22

Table 9. Comparison of the prediction accuracy of DC-SRGM using project similarity and project
domain type as clustering factors. W/L is the number of datasets that each method is better and worse
than. “# DS Threshold below 0.1” is the number of datasets for which each method’s performance is
lower than the threshold.

Project Project Similarity Project Domain Type

F01 0.067 0.074
F02 0.071 0.091
F03 0.192 0.129
F04 0.091 0.137
F05 0.075 –
F06 0.040 0.119
F07 0.329 0.714
F08 0.049 0.186
F09 0.055 0.113
F10 0.088 0.096
F11 0.068 0.066
F12 0.095 –
F13 0.211 0.239
F14 0.107 –
F15 0.126 0.080

Average 0.110 0.170

W/L 9/3 3/9

DS Threshold below 0.1 10 7

On the other hand, the project domain type-based model was close to the threshold.
Hence, project clustering by similarity scores affected the model’s ability to obtain suitable
project data to learn the number of bugs. Although the domain was the same, clustering by
project domain type did not affect the model performance. There are irrelevant projects
with very different growth patterns for bugs even though they are in the same domain.
Therefore, DC-SRGM modeling should be performed using the project similarity scores as
the priority rather than the project domain type.

RQ2: What factors influence the performance of DC-SRGM?
In most cases, DC-SRGM clustered by project similarity scores outperforms the model

clustered by project domain type on AE values, indicating that project similarity is an
important factor in the clustering process for good predictions results.

5.4. RQ3: Impact of Similarity Measurements on DC-SRGM

RQ3 compared the performances of DC-SRGM based on cross-correlation and DTW
to assess the similarity measurement technique’s impact and determine a better similarity
measurement for DC-SRGM. Figure 6d shows boxplots for AE values of both methods.
DC-SRGM based on the cross-correlation had lower AE values with a median below
the threshold. On the other hand, the DTW-based model was close to the threshold,
implying that cross-correlation shows a better performance. “Cross-correlation” and DTW
in Table 10 represent details of the AE values, where bold denotes the better method.
Across 15 datasets, although there is no obvious difference between the two methods
in the number of datasets with the lower AE value, the cross-correlation-based model
outperformed the DTW-based model on average and achieved a value lower than the
threshold in more cases.

Mathematics 2021, 9, 2945 17 of 22

Table 10. Comparison of the prediction accuracy DC-SRGM using cross-correlation and DTW as
similarity measures. W/L is the number of datasets that each method is better and worse than. “# DS
Threshold below 0.1” is the number of datasets for which each method’s performance is lower than
the threshold.

Project Cross-Correlation DTW

F01 0.067 0.037
F02 0.071 0.039
F03 0.192 0.499
F04 0.091 0.081
F05 0.075 0.048
F06 0.040 0.170
F07 0.329 0.988
F08 0.049 0.166
F09 0.055 0.089
F10 0.088 0.115
F11 0.068 0.169
F12 0.095 0.115
F13 0.211 0.165
F14 0.107 0.060
F15 0.126 0.089

Average 0.110 0.188

W/L 8/7 7/8

DS Threshold below 0.1 10 7

Clustering based on DTW could not always classify relevant datasets or eliminate the
irrelevant datasets for the target project. One reason is that the DTW function returned
the scores based on the shape of the dataset sequence, whereas cross-correlation returned
the scores based on the value and pattern of the dataset. Another reason is that the cross-
correlation scores can describe the correlation level, such as significant or non-significant.
In DTW, it is difficult to identify the threshold in the variations of datasets. Therefore,
changing the applied similarity measurement technique impacted the model performance.
To identify similar project groups correctly, the cross-correlation technique is better suited
for DC-SRGM.

RQ3: Do different similarity measurements affect the prediction quality of DC-SRGM?
Cross-correlation-based DC-SRGM achieves better accuracy than DTW. To enhance

source project selection, cross-correlation is a better technique for DC-SRGM from the
SRGM modeling viewpoint.

5.5. RQ4: Impact of Applying DC-SRGM at Different Time Points

To determine the impact of the amount of data from an ongoing project applied
in DC-SRGM modeling, the experiment was conducted using the target datasets from
industrial data on days 7, 10, 12, 13, and 14. The model’s performances at different time
points were compared to determine a suitable time frame to apply DC-SRGM in ongoing
development stages. Table 11 shows the AE values of the models at each time point.
Figure 6e compares the median of AE values at each prediction time point. Accurate results
were not obtained when applying DC-SRGM on day 7 of ongoing projects, but a few
projects had significant improvement upon using them on day 10. Applying the model on
day 12 or later improved the AE values. Overall, the proposed method can identify the
correct clusters and achieve stable results starting from day 12. Therefore, DC-SRGM can
be applied to ongoing software development projects beginning on day 12.

Mathematics 2021, 9, 2945 18 of 22

Table 11. Comparison of DC-SRGM for different numbers of days. “# DS Threshold below 0.1” is the
number of datasets for which each model’s performance is lower than the threshold.

Project Day 7 Day 10 Day 12 Day 13 Day 14

F01 0.070 0.078 0.072 0.060 0.060
F02 0.050 0.030 0.045 0.040 0.050
F03 0.580 0.377 0.167 0.160 0.170
F04 0.100 0.087 0.073 0.031 0.028
F05 0.130 0.070 0.029 0.024 0.020
F06 0.140 0.225 0.039 0.043 0.030
F07 1.140 0.780 0.333 0.270 0.140
F08 0.410 0.098 0.009 0.011 0.015
F09 0.160 0.111 0.007 0.005 0.005
F10 0.190 0.112 0.143 0.110 0.079
F11 0.140 0.020 0.006 0.007 0.007
F12 0.190 0.230 0.058 0.066 0.060
F13 0.430 0.190 0.025 0.260 0.270
F14 0.130 0.100 0.131 0.120 0.100
F15 0.080 0.190 0.125 0.087 0.050

Average 0.262 0.179 0.090 0.092 0.072

DS Threshold below 0.1 4/15 7/15 10/15 10/15 12/15

RQ4: Can DC-SRGM precisely describe ongoing projects’ status?
The model applied on day 12 of the ongoing projects provides a more stable and

improved accuracy than the other models. Hence, managers can start using DC-SRGM on
day 12 to describe the reliability of a project correctly.

5.6. RQ5: Predicting the Performance by Cross Organization Datasets

For RQ5, the experiment was designed to validate the effectiveness of the DC-SRGM
model applied using cross-organization OSS datasets for predictions of industrial projects.
DC-SRGM models trained by OSS datasets were used to predict the second half of the
industrial datasets. The performance was compared with the results of models trained by
industrial datasets.

Table 12 shows the AE values predicted utilizing industrial datasets and OSS datasets
along with the performances of the LSTM model and Logistic model. Figure 6f shows the
median of AE values. Among the models, DC-SRGM based on industrial datasets achieved
the best performance on average. However, the industry-based model and OSS-based
model produced the same number of best cases. Therefore, OSS datasets can be applied to
predict industrial projects when source project data is unavailable.

RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial project’s situation?
DC-SRGM trained with OSS datasets obtains a better accuracy than LSTM and Logis-

tic models. However, its accuracy is not better than the industrial projects-based model.
Thus, OSS projects can be applied when previous source project data are unavailable.

Mathematics 2021, 9, 2945 19 of 22

Table 12. Accuracies of DC-SRGM built with industrial datasets and cross-organization datasets
(OSS) are compared with the LSTM model and Logistic model. W/L is the number of datasets that
each method is better and worse than. “Threshold below 0.1” is the number of datasets for which
each method’s performance is lower than the threshold.

Project
DC-SRGM

LSTM Logistic
Industry DS Cross-org DS

F01 0.067 0.051 0.040 0.266
F02 0.071 0.104 0.080 0.146
F03 0.192 0.107 0.130 0.142
F04 0.091 0.124 0.260 0.377
F05 0.075 0.049 0.127 0.218
F06 0.040 0.136 0.090 0.211
F07 0.329 0.196 0.500 0.146
F08 0.049 0.333 0.104 0.187
F09 0.055 0.196 0.048 0.146
F10 0.088 0.120 0.121 0.214
F11 0.068 0.066 0.073 0.074
F12 0.095 0.066 0.161 0.359
F13 0.211 0.205 0.243 0.348
F14 0.107 0.172 0.020 0.183
F15 0.126 0.196 0.201 0.191

Average 0.110 0.141 0.146 0.220

W/L 6/9 6/9 2/13 1/14

DS Threshold below 0.1 10 4 6 1

5.7. Case Study

Practitioners from e-Seikatsu Co., Ltd. wanted to focus on the situation of the on-
going software development projects because it helps with effective test planning and
resource arrangements.

Because the traditional reliability growth model could not describe the growth of the
number of bugs for a project, we attempted to model with an advanced methodology, a
deep learning-based LSTM model. However, due to the lack of training data of the same
project, the model’s performance required additional refinement.

Fortunately, the company had a lot of data from previously developed and released
projects. Thus, by applying data from previous projects, we developed the DC-SRGM
to use in the middle or earlier stages of development projects. By implementing DC-
SRGM in the ongoing projects of e-Seikatsu, the proposed model provided a more accurate
prediction than the other models considered. This case study confirmed that the proposed
approach is applicable when the past data are unavailable in the initial stage of the current
development projects.

6. Threats to Validity

In this study, we treated the number of bugs growing as a time-dependent variable
for model construction. However, there may be other related factors. For example, the
number of detected bugs may depend upon testing efforts. In addition, the experiment
was conducted with one LSTM architecture, although the LSTM network architecture may
impact its prediction performance. Moreover, when collecting data from open sources, data
validity in reporting defect data [28] may be an issue. These are threats to internal validity.

We tested only DC-SRGM with two datasets from two organizations. This is in-
sufficient to make generalizations. In the future, testing of more datasets from many
organizations needs to be performed. Additionally, when comparing models, the Logistic
model was used as a traditional method since it has been well adopted in SRGMs [11,13,29]

Mathematics 2021, 9, 2945 20 of 22

and is the most suitable for fitness for the collected experimental datasets. However, the
literature reports many other traditional SRGMs. These are threats to external validity.

The training process of our method would not take much time since it usually uses
a set of time series sequences where each sequence would be around a few dozen days
to several hundred days at most, depending on the length of each similar past project. In
contrast, the project clustering process may take some time and manual efforts if various
other factors are examined for clustering. This is another threat to external validity from
the viewpoint of the practical usefulness of our method.

One threat to construct validity is that we supposed that identifying correct clusters
means the group of projects with the same or similar attributes, such as the project scale
and growth pattern of the number of bugs rather than the project domains. Therefore, the
project domains may differ within the same cluster in actual cases.

7. Conclusions and Future Work

Herein we proposed a new software reliability growth modeling method DC-SRGM
using a combination of an LSTM model and a cluster-based project selection method based
on similar characteristics of projects via a similarity scoring process. This proposed method
alleviates issues regarding insufficient previous data and is an improvement compared to
traditional methods for reliability growth modeling.

We conducted experiments using both industrial and OSS data to evaluate DC-SRGM
with a statistical significance test. The case studies showed that DC-SRGM is superior to all
other evaluated models. It achieved the highest accuracy in industrial datasets, indicating
that the project similarity is more important than the project domain type when clustering
projects. Moreover, cross-correlation performed better than DTW in specifying project
similarity from a defect prediction viewpoint. The experiment involving different time
points indicated that DC-SRGM can be used for a project with 12 days of defect data to
stably and accurately predict the number of bugs that might be encountered in subsequent
days. Finally, DC-SRGM in ongoing projects can assist managers in decision-making for
testing activities by understanding reliability growth.

As our future work, we will explore other process metrics (such as testing efforts)
and product metrics [30,31] (such as code size) for project clustering and prediction model
construction. We plan to extend experiments to confirm the usefulness and generalizability
of our method by testing more datasets from many organizations and comparing with
other prediction models, including other traditional machine learning-based approaches
reported in the literature.

From the viewpoint of practical usage, our method is expected to be implemented
within existing development tools and environments, especially continuous integration
tools with quality dashboards [32,33] to monitor cumulative numbers of bugs and continu-
ous future prediction on a daily basis. Such tool integration should also facilitate the adop-
tion of measurements and records of necessary failure and related data of (un)distributed
team development projects in target organizations.

Furthermore, to improve the quality and continuous monitoring, our method should
be extended to provide more reliability metrics beyond predicting the number of bugs.

Author Contributions: Conceptualization and methodology, K.K.S.; literature review and analysis,
all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 2945 21 of 22

References
1. Wang, J.; Zhang, C. Software reliability prediction using a deep learning model based on the RNN encoder-decoder. Reliab. Eng.

Syst. Saf. 2018, 170, 73–82. [CrossRef]
2. Washizaki, H.; Honda, K.; Fukazawa, Y. Predicting Release Time for Open Source Software Based on the Generalized Software

Reliability Model. In Proceedings of the 2015 Agile Conference, AGILE 2015, National Harbor, MD, USA, 3–7 August 2015;
pp. 76–81. [CrossRef]

3. Xu, Z.; Pang, S.; Zhang, T.; Luo, X.; Liu, J.; Tang, Y.; Yu, X.; Xue, L. Cross Project Defect Prediction via Balanced Distribution
Adaptation Based Transfer Learning. J. Comput. Sci. Technol. 2019, 34, 1039–1062. [CrossRef]

4. Okumoto, K.; Asthana, A.; Mijumbi, R. BRACE: Cloud-Based Software Reliability Assurance. In Proceedings of the 2017 IEEE
International Symposium on Software Reliability Engineering Workshops, ISSRE Workshops, Toulouse, France, 23–26 October
2017; pp. 57–60. [CrossRef]

5. Honda, K.; Nakamura, N.; Washizaki, H.; Fukazawa, Y. Case Study: Project Management Using Cross Project Software Reliability
Growth Model Considering System Scale. In Proceedings of the 2016 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSRE Workshops 2016, Ottawa, ON, Canada, 23–27 October 2016; IEEE Computer Society: Washington,
DC, USA, 2016; pp. 41–44. [CrossRef]

6. Honda, K.; Washizaki, H.; Fukazawa, Y.; Taga, M.; Matsuzaki, A.; Suzuki, T. Empirical Study on Tendencies for Unstable Situations
in Application Results of Software Reliability Growth Model. In Proceedings of the 2018 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSRE Workshops, Memphis, TN, USA, 15–18 October 2018; Ghosh, S., Natella, R.,
Cukic, B., Poston, R.S., Laranjeiro, N., Eds.; IEEE Computer Society: Washington, DC, USA, 2018; pp. 89–94. [CrossRef]

7. Bin, Y.; Zhou, K.; Lu, H.; Zhou, Y.; Xu, B. Training Data Selection for Cross-Project Defection Prediction: Which Approach Is
Better? In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM 2017, Toronto, ON, Canada, 9–10 November 2017; Bener, A., Turhan, B., Biffl, S., Eds.; IEEE Computer Society: Washington,
DC, USA, 2017; pp. 354–363. [CrossRef]

8. Turhan, B.; Menzies, T.; Bener, A.B.; Stefano, J.S.D. On the relative value of cross-company and within-company data for defect
prediction. Empir. Softw. Eng. 2009, 14, 540–578. [CrossRef]

9. San, K.K.; Washizaki, H.; Fukazawa, Y.; Honda, K.; Taga, M.; Matsuzaki, A. DC-SRGM: Deep Cross-Project Software Reliability
Growth Model. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE
Workshops 2019, Berlin, Germany, 27–30 October 2019; Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M., Natella, R., Ivaki,
N.R., Laranjeiro, N., Eds.; IEEE Computer Society: Washington, DC, USA, 2019; pp. 61–66. [CrossRef]

10. Goel, A.L. Software Reliability Models: Assumptions, Limitations, and Applicability. IEEE Trans. Softw. Eng. 1985, 11, 1411–1423.
[CrossRef]

11. Ullah, N.; Morisio, M. An Empirical Study of Reliability Growth of Open versus Closed Source Software through Software
Reliability Growth Models. In Proceedings of the 19th Asia-Pacific Software Engineering Conference, APSEC 2012, Hong
Kong, China, 4–7 December 2012; Leung, K.R.P.H., Muenchaisri, P., Eds.; IEEE Computer Society: Washington, DC, USA, 2012;
pp. 356–361. [CrossRef]

12. Rana, R.; Staron, M.; Berger, C.; Hansson, J.; Nilsson, M.; Törner, F. Evaluating long-term predictive power of standard reliability
growth models on automotive systems. In Proceedings of the IEEE 24th International Symposium on Software Reliability
Engineering, ISSRE 2013, Pasadena, CA, USA, 4–7 November 2013; IEEE Computer Society: Washington, DC, USA, 2013;
pp. 228–237. [CrossRef]

13. Honda, K.; Washizaki, H.; Fukazawa, Y. Generalized Software Reliability Model Considering Uncertainty and Dynamics: Model
and Applications. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 967. [CrossRef]

14. Salehinejad, H.; Baarbe, J.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2017,
arXiv:1801.01078.

15. Bengio, Y.; Simard, P.Y.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef] [PubMed]

16. Mikolov, T.; Joulin, A.; Chopra, S.; Mathieu, M.; Ranzato, M. Learning Longer Memory in Recurrent Neural Networks. In
Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 Workshop Track Proceedings, San
Diego, CA, USA, 7–9 May 2015.

17. Zhang, X.; Ben, K.; Zeng, J. Cross-Entropy: A New Metric for Software Defect Prediction. In Proceedings of the 2018 IEEE
International Conference on Software Quality, Reliability and Security, QRS 2018, Lisbon, Portugal, 16–20 July 2018; pp. 111–122.
[CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
19. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie, X. Co-Occurrence Feature Learning for Skeleton Based Action Recognition

Using Regularized Deep LSTM Networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, 12–17 February 2016; Schuurmans, D., Wellman, M.P., Eds.; AAAI Press: Palo Alto, CA, USA, 2016; pp. 3697–3704.

20. Porto, F.R.; Minku, L.L.; Mendes, E.; Simão, A. A Systematic Study of Cross-Project Defect Prediction with Meta-Learning. arXiv
2018, arXiv:1802.06025.

21. Kitchenham, B.A.; Mendes, E.; Travassos, G.H. Cross versus within-Company Cost Estimation Studies: A Systematic Review.
IEEE Trans. Softw. Eng. 2007, 33, 316–329. [CrossRef]

http://doi.org/10.1016/j.ress.2017.10.019
http://dx.doi.org/10.1109/Agile.2015.19
http://dx.doi.org/10.1007/s11390-019-1959-z
http://dx.doi.org/10.1109/ISSREW.2017.48
http://dx.doi.org/10.1109/ISSREW.2016.45
http://dx.doi.org/10.1109/ISSREW.2018.00-25
http://dx.doi.org/10.1109/ESEM.2017.49
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1109/ISSREW.2019.00044
http://dx.doi.org/10.1109/TSE.1985.232177
http://dx.doi.org/10.1109/APSEC.2012.80
http://dx.doi.org/10.1109/ISSRE.2013.6698922
http://dx.doi.org/10.1142/S021819401750036X
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1109/QRS.2018.00025
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/TSE.2007.1001

Mathematics 2021, 9, 2945 22 of 22

22. Lokan, C.; Mendes, E. Investigating the Use of Chronological Splitting to Compare Software Cross-company and Single-company
Effort Predictions. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering,
EASE 2008, Workshops in Computing, Bari, Italy, 26–27 June 2008; Visaggio, G., Baldassarre, M.T., Linkman, S.G., Turner, M.,
Eds.; BCS: London, UK, 2008.

23. Liu, C.; Yang, D.; Xia, X.; Yan, M.; Zhang, X. Cross-Project Change-Proneness Prediction. In Proceedings of the 2018 IEEE
42nd Annual Computer Software and Applications Conference, COMPSAC 2018, Tokyo, Japan, 23–27 July 2018; Reisman, S.,
Ahamed, S.I., Demartini, C., Conte, T.M., Liu, L., Claycomb, W.R., Nakamura, M., Tovar, E., Cimato, S., Lung, C., et al., Eds.; IEEE
Computer Society: Washington, DC, USA, 2018; Volume 1, pp. 64–73. [CrossRef]

24. Chidamber, S.R.; Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
25. Jureczko, M.; Madeyski, L. Towards identifying software project clusters with regard to defect prediction. In Proceedings of

the 6th International Conference on Predictive Models in Software Engineering, PROMISE 2010, Timisoara, Romania, 12–13
September 2010; Menzies, T., Koru, G., Eds.; p. 9. [CrossRef]

26. Egri, A.; Horváth, I.; Kovács, F.; Molontay, R.; Varga, K. Cross-correlation based clustering and dimension reduction of
multivariate time series. In Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems
(INES), Larnaca, Cyprus, 20–23 October 2017; pp. 000241–000246. [CrossRef]

27. Izakian, H.; Pedrycz, W.; Jamal, I. Fuzzy clustering of time series data using dynamic time warping distance. Eng. Appl. Artif.
Intell. 2015, 39, 235–244. [CrossRef]

28. Herzig, K.; Just, S.; Zeller, A. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In Proceedings of the
35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, 18–26 May 2013; Notkin, D., Cheng,
B.H.C., Pohl, K., Eds.; IEEE Computer Society: Washington, DC, USA, 2013; pp. 392–401. [CrossRef]

29. Huang, C.; Lyu, M.R.; Kuo, S. A Unified Scheme of Some Nonhomogenous Poisson Process Models for Software Reliability
Estimation. IEEE Trans. Softw. Eng. 2003, 29, 261–269. [CrossRef]

30. Tsuda, N.; Washizaki, H.; Honda, K.; Nakai, H.; Fukazawa, Y.; Azuma, M.; Komiyama, T.; Nakano, T.; Suzuki, H.; Morita, S.; et al.
WSQF: Comprehensive software quality evaluation framework and benchmark based on SQuaRE. In Proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
15–31 May 2019; Sharp, H., Whalen, M., Eds.; pp. 312–321. [CrossRef]

31. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.
Technol. 2015, 59, 170–190. [CrossRef]

32. Honda, K.; Nakai, H.; Washizaki, H.; Fukazawa, Y.; Asoh, K.; Takahashi, K.; Ogawa, K.; Mori, M.; Hino, T.; Hayakawa, Y.;
et al. Predicting Time Range of Development Based on Generalized Software Reliability Model. In Proceedings of the 21st
Asia-Pacific Software Engineering Conference, APSEC 2014, Jeju, Korea, 1–4 December 2014; Volume 1: Research Papers; Cha,
S.S., Guéhéneuc, Y., Kwon, G., Eds.; IEEE Computer Society: Washington, DC, USA, 2014; pp. 351–358. [CrossRef]

33. Nakai, H.; Honda, K.; Washizaki, H.; Fukazawa, Y.; Asoh, K.; Takahashi, K.; Ogawa, K.; Mori, M.; Hino, T.; Hayakawa, Y.; et al.
Initial Industrial Experience of GQM-Based Product-Focused Project Monitoring with Trend Patterns. In Proceedings of the 21st
Asia-Pacific Software Engineering Conference, APSEC 2014, Jeju, Korea, 1–4 December 2014; Volume 2: Industry, Short, and
QuASoQ Papers; Cha, S.S., Guéhéneuc, Y., Kwon, G., Eds.; pp. 43–46. [CrossRef]

http://dx.doi.org/10.1109/COMPSAC.2018.00017
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1109/INES.2017.8118563
http://dx.doi.org/10.1016/j.engappai.2014.12.015
http://dx.doi.org/10.1109/ICSE.2013.6606585
http://dx.doi.org/10.1109/TSE.2003.1183936
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00045
http://dx.doi.org/10.1016/j.infsof.2014.11.006
http://dx.doi.org/10.1109/APSEC.2014.59
http://dx.doi.org/10.1109/APSEC.2014.91

	Introduction
	Background and Related Work
	Software Reliability Growth Model
	Current Project Prediction
	Cross-Project Prediction

	Deep Cross-Project Software Reliability Model
	Similarity Scoring
	Project Clustering
	Selection
	Training and Prediction

	Experiment Methodology
	Initial Analysis
	Performance Measure
	Data Collection

	Experiment Results and Discussions
	Project Clustering Result of Industrial Datasets
	RQ1: Effectiveness of DC-SRGM
	RQ2: Impact of Clustering Factors on DC-SRGM
	RQ3: Impact of Similarity Measurements on DC-SRGM
	RQ4: Impact of Applying DC-SRGM at Different Time Points
	RQ5: Predicting the Performance by Cross Organization Datasets
	Case Study

	Threats to Validity
	Conclusions and Future Work
	References

