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Abstract: A method of the Riemann–Hilbert problem is employed for Zhang’s conjecture 2 proposed
in Philo. Mag. 87 (2007) 5309 for a ferromagnetic three-dimensional (3D) Ising model in a zero external
magnetic field. In this work, we first prove that the 3D Ising model in the zero external magnetic field
can be mapped to either a (3 + 1)-dimensional ((3 + 1)D) Ising spin lattice or a trivialized topological
structure in the (3 + 1)D or four-dimensional (4D) space (Theorem 1). Following the procedures
of realizing the representation of knots on the Riemann surface and formulating the Riemann–
Hilbert problem in our preceding paper [O. Suzuki and Z.D. Zhang, Mathematics 9 (2021) 776], we
introduce vertex operators of knot types and a flat vector bundle for the ferromagnetic 3D Ising
model (Theorems 2 and 3). By applying the monoidal transforms to trivialize the knots/links in a
4D Riemann manifold and obtain new trivial knots, we proceed to renormalize the ferromagnetic
3D Ising model in the zero external magnetic field by use of the derivation of Gauss–Bonnet–Chern
formula (Theorem 4). The ferromagnetic 3D Ising model with nontrivial topological structures
can be realized as a trivial model on a nontrivial topological manifold. The topological phases
generalized on wavevectors are determined by the Gauss–Bonnet–Chern formula, in consideration
of the mathematical structure of the 3D Ising model. Hence we prove the Zhang’s conjecture 2
(main theorem). Finally, we utilize the ferromagnetic 3D Ising model as a platform for describing
a sensible interplay between the physical properties of many-body interacting systems, algebra,
topology, and geometry.

Keywords: ferromagnetic 3D Ising model; topological phase; Gauss–Bonnet–Chern formula; Riemann–
Hilbert problem; vertex operators; vector bundle

1. Introduction

The Ising model has attracted intensive interest since the 1920s [1], which not only
applies to the interpretation of phase transitions and critical phenomena in different fields,
but also provides a fundamental understanding on interactions and dimensionality. The
Ising model can be utilized to describe many-body interacting spin (particle) systems
in condensed matter physics, statistical physics, high energy physics, particles physics,
mathematical physics, etc. Furthermore, the Ising model can be mapped to modelling the
behaviors of systems in biology, computer sciences, economics, and sociology. A great
progress in this field is that Onsager derived the exact solution of a two-dimensional
(2D) Ising model in the zero external magnetic field, in which no nontrivial topological
structures exist [2]. The exact solution of a three-dimensional (3D) Ising model in the
zero external magnetic field had been a well-known 100-year problem in physics. The
first author (ZDZ) made an observation that nontrivial topological structures exist in the
formula of the partition functions of the 3D Ising lattices in the zero external magnetic
field for any positive inverse temperature [3,4]. Zhang conjectured that the nontrivial
knot/link structures of the ferromagnetic 3D Ising model in the zero external magnetic
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field can be trivialized in higher dimensional space and it can be realized as the free statis-
tic model on the (3 + 1)-dimensional (i.e., (3 + 1)D) space with topological/geometrical
phases on eigenvectors [3,4]. Ławrynowicz and coworkers reformulated the algebraic part
of the quaternion approach used in [3] in terms of the quaternionic sequence of Jordan
algebras, in order to investigate the geometrical aspects, related fractals, and chaos of
simple orthorhombic Ising lattices [5,6]. Zhang, Suzuki and March developed a Clifford
algebraic procedure for the ferromagnetic 3D Ising model in the zero external magnetic
field [7], in which we proved four theorems (Trace Invariance Theorem, Linearization The-
orem, Local Transformation Theorem, Commutation Theorem). The Zhang–Suzuki–March
approach [7] has rigorously proven the Zhang’s two conjectures already, verifying the
correctness of Zhang’s exact solution. In a recent work [8], the lower bound of the compu-
tational complexity of the spin-glass 3D Ising system was determined, which was based
on a deep understanding of the mathematical structure of the Ising models on 3D lattices.
More recently, the exact solution of the transverse-field ferromagnetic/antiferromagnetic
2D Ising model was derived by equivalence between this transverse-field 2D Ising model
and the ferromagnetic/antiferromagnetic 3D Ising model [9].

In the preceding paper [10] of the present series, we developed a method of the
Riemann–Hilbert problem for Zhang’s conjecture 1 proposed in [3] and rigorously proved
(by a new approach) Zhang’s conjecture 1 in the following steps [10]: (1) the Clifford
algebra Cl(I3D) is extended to the Knot/Clifford (K/C) algebra which has the original
Clifford algebra and its conjugate algebra Cl(I3D) as subalgebras [10]; and (2) The K/C
knot Zγ is extended to the K/C algebra, which is denoted by σ(Zγ, Zγ). Hence, a knot
carries the elements in K/C algebra for the partition function of the ferromagnetic 3D
Ising model [10–20]. (3) We realize the knots/links of the 3D Ising model on Riemann
surfaces as a monodromy representation [10]. (4) We formulate the Riemann–Hilbert
problem on the Riemann surfaces for the representation and obtain analytic solutions
with regular singularities at the knot/link intersection points [10,21,22]. (5) Applying the
monoidal transformation [10,23,24], which is developed by the resolution of singularities
to the functions in (4), we construct the desired trivialization in K/C algebra, which solves
Zhang’s conjecture 1. Using these processes, we prove the following theorem [10]:

Suzuki-Zhang Theorem [10]: The Zhang’s conjecture 1 proposed in [3] can be solved.
Namely, for a given K/C knot which is given by the partition function of the ferromagnetic
3D Ising model in the zero external magnetic field, we can make the trivialization by the
use of monoidal transform trivialization.

In this paper, we continue our work on the trivialization of nontrivial topological
structures of the 3D Ising model in the zero external magnetic field; however, we are
concerned mainly with Zhang’s conjecture 2 proposed in [3]. At first, in Section 2, we
investigate the 3D Ising model by a mapping between a knot and a spin lattice. The
mapping provides a concise proof of Zhang’s conjectures 1 and 2. This procedure is helpful
for understanding the contribution of nontrivial topological structures to the partition
function and physical properties of the ferromagnetic 3D Ising model, and the spontaneous
emergence of the additional dimension, and the connection between different approaches
developed based on topology and algebra. Then, we focus our interest on a detailed proof of
Zhang’s conjecture 2 by formulating the Riemann–Hilbert problem and by using the Gauss–
Bonnet–Chern formula. In Section 3, we describe the representation of the fundamental
group. Following the processes developed in [10], i.e., realizing the representation on
the Riemann surface and formulating the Riemann–Hilbert problem, we introduce vertex
operators of knot types and a flat vector bundle of the 3D Ising model in Sections 4 and 5
respectively. For constructions of the trivialization, as indicated in [10], we apply the
method of monoidal transforms to trivialize the knots/links in a 4D space and obtain new
trivial knots. In Section 6, we proceed to obtain the renormalized model of the 3D Ising
model. In order to realize models without singularities, we have to take off nontrivial
knots in a higher dimensional space. This can be performed by use of the derivation of the
Gauss–Bonnet–Chern formula. We make the renormalization of the model and have the
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curvature structure in the model. The ferromagnetic 3D Ising model in the zero external
magnetic field with nontrivial topological structures can be realized as the trivial model on
a nontrivial topological manifold, while three topological phases φx = 2π, φy = φz = π/2
appear on the quaternionic eigenvectors of the 3D Ising model. Hence we rigorously
prove Zhang’s conjecture 2 (main theorem). In Section 7, we summarize our results and
utilize the 3D Ising model to investigate the interplay between the physical properties of
many-body interacting spin systems, algebra, topology, and geometry. In Section 8, the
conclusion is given. The details for the proofs of Theorems 2 and 4 are represented in
Appendices A and B, respectively.

2. Mapping between Knots and Spin Lattices in the 3D Ising Model

In this section, we first recall the facts of topology that a knot can be mapped to a spin
lattice, and the crossings of the knot can contribute to the physical properties of the spin
lattice, the same as what spins do. Then, we apply this mapping to the ferromagnetic 3D
Ising model, and show that there are two kinds of contributions (local environments of
spin alignments and nonlocal global effects of knots) to the partition function of the 3D
Ising system. Finally, we view the 3D Ising model from two angles of the spin alignments
and the topological structures, apply the two transformations mapping from 3D to (3 + 1)D,
and prove the equivalence of the two mappings (see Theorem 1).

2.1. Mapping between a Knot and a Spin Lattice

Let us consider a knot that is embedded in a 3D space (imagine, e.g., a piece of
rope). Following the standard treatment [13–20], one can project the knot onto the plane
and obtain a 2D-knot diagram. The essential topological information about the knot is
embodied in the pattern of crossings. Clearly, a crossing takes values bk = ±1 [13–20],
which corresponds to a fact that in the 2D image, one rope segment goes over or under
another rope segment. Figure 1 shows that a crossing can be mapped to one of two spin
states (up and down) with values +1 and −1. It is well known that the crossing state
(there are two possible states for a crossing (×)) of a knot can be mapped to the spin state
(there are two possible states for an Ising spin) of a lattice, while the crossing point is
mapped to a lattice point [13–20]. There is a one-to-one mapping between a knot and a
spin lattice [13–20].

Mathematics 2021, 9, x FOR PEER REVIEW 3 of 26 
 

 

on the Riemann surface and formulating the Riemann–Hilbert problem, we introduce ver-

tex operators of knot types and a flat vector bundle of the 3D Ising model in Sections 4 

and 5 respectively. For constructions of the trivialization, as indicated in [10], we apply 

the method of monoidal transforms to trivialize the knots/links in a 4D space and obtain 

new trivial knots. In Section 6, we proceed to obtain the renormalized model of the 3D 

Ising model. In order to realize models without singularities, we have to take off nontrivial 

knots in a higher dimensional space. This can be performed by use of the derivation of the 

Gauss–Bonnet–Chern formula. We make the renormalization of the model and have the 

curvature structure in the model. The ferromagnetic 3D Ising model in the zero external 

magnetic field with nontrivial topological structures can be realized as the trivial model 

on a nontrivial topological manifold, while three topological phases ϕx = 2π, ϕy = ϕz = π/2 

appear on the quaternionic eigenvectors of the 3D Ising model. Hence we rigorously 

prove Zhang’s conjecture 2 (main theorem). In Section 7, we summarize our results and 

utilize the 3D Ising model to investigate the interplay between the physical properties of 

many-body interacting spin systems, algebra, topology, and geometry. In Section 8, the 

conclusion is given. The details for the proofs of Theorems 2 and 4 are represented in 

Appendixes A and B, respectively. 

2. Mapping between Knots and Spin Lattices in the 3D Ising Model 

In this section, we first recall the facts of topology that a knot can be mapped to a spin 

lattice, and the crossings of the knot can contribute to the physical properties of the spin 

lattice, the same as what spins do. Then, we apply this mapping to the ferromagnetic 3D 

Ising model, and show that there are two kinds of contributions (local environments of 

spin alignments and nonlocal global effects of knots) to the partition function of the 3D 

Ising system. Finally, we view the 3D Ising model from two angles of the spin alignments 

and the topological structures, apply the two transformations mapping from 3D to (3 + 

1)D, and prove the equivalence of the two mappings (see Theorem 1). 

2.1. Mapping between a Knot and a Spin Lattice 

Let us consider a knot that is embedded in a 3D space (imagine, e.g., a piece of rope). 

Following the standard treatment [13–20], one can project the knot onto the plane and 

obtain a 2D-knot diagram. The essential topological information about the knot is embod-

ied in the pattern of crossings. Clearly, a crossing takes values bk = ±1 [13–20], which cor-

responds to a fact that in the 2D image, one rope segment goes over or under another rope 

segment. Figure 1 shows that a crossing can be mapped to one of two spin states (up and 

down) with values +1 and −1. It is well known that the crossing state (there are two possi-

ble states for a crossing (×)) of a knot can be mapped to the spin state (there are two pos-

sible states for an Ising spin) of a lattice, while the crossing point is mapped to a lattice 

point [13–20]. There is a one-to-one mapping between a knot and a spin lattice [13–20]. 

 

Figure 1. Mapping between a state of crossings and a state of Ising spins. Two crossing states are 

mapped to two spin states (up and down) with values of +1 and −1, respectively. 

One can make a connection of the crossings of knots to spin glasses by assigning 

quenched random values to the crossing variables bk, leading to the links crossing above 

Figure 1. Mapping between a state of crossings and a state of Ising spins. Two crossing states are
mapped to two spin states (up and down) with values of +1 and −1, respectively.

One can make a connection of the crossings of knots to spin glasses by assigning
quenched random values to the crossing variables bk, leading to the links crossing above
and below at random. The Kauffman bracket polynomial is identical to the partition
function of a Potts model (including an Ising model), but up to an irrelevant multiplicative
factor. It was illustrated that the 2D-knot diagram lives on a lattice M consisting of lines
oriented at ±45◦, intersecting at the crossings bk, that carry the disorder. A dual lattice L,
rotated by 45◦, can be defined. Its horizontal and vertical edges (denoted bij) are in one-to-
one correspondence with the vertices bk of the lattice M [20]. Figure 2 illustrates an example
of the 2D-knot diagram with randomly distributed crossings on a lattice M, which can be
mapped to spins located on a dual lattice L with randomly distributed spin states. The
Ising spin states si are associated with knot properties in an abstract manner. Certainly, the
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duality between the knot structure and the spin lattice can be generalized to the 3D case.
The Kauffman bracket polynomial variable A can be used to describe their characterizations,
which is a weight for the manner in which a set of microstates are assembled into the 2D-
knot diagram, and vice versa (namely, the 2D-knot diagram is disassembled into a set of
microstates). Moreover, they are also correlated with the Jones’ polynomial variable t [17].
Note that the Kauffman and Jones bracket polynomials coincide when A1/4 = t [13–20].
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M [20] and a spin dual lattice L.

If the crossing states of the knot are randomly distributed, it will correspond to a
spin-glass Ising model [8] or a paramagnetic state in the ferromagnetic model. Note that
the knot state is equivalent to the spin-glass state, and even frustration may present in the
spin-glass state (see Figure 2). This is because the mapping between a knot and a spin glass
is a one-to-one mapping. The frustration presenting in the spin-glass system is just the
result of competition between randomly distributed inter-spin coupling constants, while
in knots the frustration may also be present if one considers the competitive couplings
between crossings. If the crossing states of the knot are in a certain order manner, it may
correspond to a ferromagnetic state in the Ising model.

According to the topology theory [13–20], a state of the knot diagram is very similar
to the energetic states of a physical system. As the system is deformed topologically, one
can preserve the state structure, making invariant properties of states become topological
invariants of the knot or link. For a given system, the topological evolution of states and
the integration over the space of states are complementary for investigating the topology
of knots and links. There are two choices for topologically smoothing a given crossing (×),
and thus 2N states of a diagram exist with N crossings [13–20] (same as 2N states of a spin
lattice with N spins). The bracket polynomial (namely, the state summation) for knots and
links is defined as [13–15]:

〈K〉 = ∑
σ

〈K|σ 〉d||σ|| (1)
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which is an analog of a partition function in discrete statistical mechanics. σ runs over all
the states of K. d = −A2 − B2, with A, B, and d being commuting algebraic variables. The
bracket state summation can be utilized to express the partition function for the Potts model
(with q spin states for each Potts spin) for appropriate choices of commuting algebraic
variables [13–20]. This is also true for the Ising model, since the Ising model is a Potts
model with q = 2. As revealed in [4], the nontrivial topological basis can be transformed to
the trivial topological basis by a transformation (a matrix or a rotation), and vice versa:

[
〈χ〉〈
χ−1〉 ] = [ A B

B A

] 〈
∪
∩

〉
〈)(〉

 (2)

with its reverse  〈
∪
∩

〉
〈)(〉

 =
1

A2 − B2

[
A −B
−B A

][
〈χ〉〈
χ−1〉 ] (3)

It is well known that under the Reidemeister moves II and III, the bracket with
B = A−1, d = −A2 − A−2 is invariant. As long as nontrivial knots or links exist in a system,
as revealed in [4], a matrix representing such a transformation (i.e., a rotation) intrinsically
and spontaneously may always exist, no matter how complicated the knots or links are.
This topology fact is employed in the recent work [7] to prove the Local Transformation
Theorem, in order to trivialize the nontrivial topological structure in the 3D Ising model.

Remark 1. It is hard to derive the explicit expression of the topological contribution to the
partition function and the thermodynamic properties by the above transformation from the nontrivial
topological basis to the trivial topological basis, because the nontrivial topological structures are
very complicated and it is difficulty to account every crossing term by term. One may refer to [3,7]
for the results of these physical properties obtained by the local transformation.

2.2. Mapping between Knots and Spin Lattices in the 3D Ising Model

From the facts above, we have already understood that the topological structure
can contribute to the partition function and physical properties of a physical system. In
the following, we shall show that besides the contribution of spin alignments, there is
an additional contribution, due to the nontrivial topological structure in the 3D Ising
systems. In the ferromagnetic 3D Ising model we are studying in this work, a nontrivial
topological structure in the representation of Γ-matrices exists (with Clifford algebra),
which is caused by the so-called internal factors (i.e., the nonlinear terms) in the transfer
matrices [3,4,7,10,12]. The trivial topological states are defined as a circle (or an interval)
and a knot of type I that was illustrated in Figure 2 of our preceding paper [10], which
correspond to the linear terms in the transfer matrices V1 and V2 of the ferromagnetic 3D
Ising model. The nontrivial topological states are defined as a braid with many crossings,
which is called the basic form of knot type II, as shown in Figure 3 of [10] (see also the
braid in Figure 3 of this paper). Combined with a knot γ constructed in the 3D lattice Z3
(see Figure 1 of [10]), we have the nontrivial topological states illustrated schematically in
Figure 4 of [10].

There are two kinds of contributions to the partition function of the 3D Ising sys-
tem: (1) local environments of spin alignments and (2) nonlocal global effects of knots
caused by many-body interactions and dimensionality. Only is the contribution of the
local environments of spin alignments clearly visible in the spin representation; however,
the two contributions are clearly visible in the Γ-matrix representation. In the Γ-matrix
representation, the transfer matrix V3 shows that besides the local interaction that is the
same as that in V1 and V2, a long-range effective interaction (entanglement) between
spins in a plane also exists, namely, the so-called nontrivial topological structure, and it
is represented by a braid [7,10]. Since the formulas in the two representations (i.e., spin
representation and Γ-matrix representation) are connected by a series of equalities [7], both
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the contributions exist simultaneously in the system, no matter which representation we
use. Such a long-range spin entanglement is caused by the planar character of the matrix
used for the transfer matrices in quantum statistical mechanics and the arrangement of
spins in a 3D lattice. Figure 3 illustrates a unit cell of a cubic Ising lattice, in which a spin is
located at every lattice site and a braid connects a pair of the two nearest neighboring sites
along the third dimension. The schematic representation in Figure 3 is equivalent to that
illustrated in Figure 4 of [10].
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Figure 3. A unit cell of the 3D cubic Ising lattice (black dashed lines) with spins (red arrows) located
at every lattice site and braids (blue curves) attached to every pair of the two nearest neighboring
lattice sites along the third dimension. The spins represent the linear terms in the transfer matrices,
while the braids represent the nontrivial knots, namely, the nonlinear terms of Γ-matrices of the
transfer matrices, of the 3D Ising lattice.

2.3. Viewing the 3D Ising Model from an Angle of the Spin Alignments

On the one hand, one can view the 3D Ising model from an angle of the spin alignments.
According to the topology theory [13–20], the nontrivial topological structure (i.e., nonlocal
effects) in the representation of Γ-matrices can be mapped to a spin Ising lattice. Figure 4
shows that a braid, the basic element of the nontrivial topological structure, can be mapped
to a spin-chain lattice. This means that besides the original 3D Ising lattice (with spin
alignments), an additional “imagine” Ising spin lattice also exists, which forms because of
the mapping from nontrivial knots of Γ-matrices of the transfer matrices. The original 3D
Ising lattice and the “imagine” Ising lattice together construct a composited “big” Ising
spin lattice (see Figure 5 for a cubic lattice as an example). A spin chain is attached to
every pair of the two nearest neighbors along the third dimension in the 3D Ising lattice.
For simplicity, Figure 5 just illustrates a unit cell of the 3D cubic Ising model, with the
attachments of four spin chains. One spin located at the 3D Ising lattice is attached by two
spin chains (however, it should be divided by a factor 2 to avoid over-account). Figure 5 is
obtained directly from Figure 3, by a mapping shown in Figure 4. Figure 6 shows that a
spin on the 3D Ising model is connected with eight edges, and it has eight nearest neighbors
(six from the original 3D Ising lattice and two from the spin chains). This explains the
origin of the additional dimension attached to the 3D Ising model. Therefore, the number
of the first neighboring sites of the 3D Ising model should be equal to that of the “big”
lattice, which is 8. This answers why the first term in the low-temperature expansion of the
spontaneous magnetization of the 3D Ising model should be −6x8 [3], which differs from
the leading term −2x6 of conventional low-temperature expansion.
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algebra approach [7], verifying the correctness of Zhang’s exact solution for the ferromag-
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Figure 5. A unit cell of the 3D cubic Ising lattice with an additional “imagine” Ising spin lattice.
The “imagine” spin chains, formed by the mapping from the nontrivial knots (nonlinear terms) of
Γ-matrices of the transfer matrices, are attached to every pair of the two nearest neighboring lattice
sites along the third dimension of the 3D Ising lattice. A “big” spin lattice is constructed by the
original 3D Ising lattice (red arrows with black lines) and the “imagine” spin chains (black arrows
with blue curves).
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Figure 6. A spin located in a lattice point of a “big” spin lattice has the eight nearest neighbors, six
from the original 3D Ising lattice (solid lines) and two from the “imagine” spin chains (dashed lines).

Clearly, the “big” spin lattice constructed above differs from a 4D lattice. In the “big”
lattice shown in Figure 5, the lattice points in a spin chain are not connected with those
in its neighboring spin chains. If the lattice points in a spin chain are connected with
those in their six neighboring spin chains, this will form a full 4D lattice. The “big” lattice
is denser than the original 3D lattice but more discrete than the 4D lattice. After such a
mapping, our spins (including the original ones and the “imagine” ones) do not occupy
all the lattice points of the 4D lattice, namely, the 4D lattice is not fully occupied. This
character results in the physical properties of our 3D Ising model being in between those of
the “pure” 3D (without consideration of the long-range entanglement) and 4D Ising lattices
(see Remarks 3 and 4).

Zhang, Suzuki and March proved four theorems (Trace Invariance Theorem, Lin-
earization Theorem, Local Transformation Theorem, Commutation Theorem) by a Clifford
algebra approach [7], verifying the correctness of Zhang’s exact solution for the ferromag-
netic (or antiferromagnetic without frustration) 3D Ising model in the zero magnetic field.
In what follows, we briefly introduce the Zhang–Suzuki–March approach [7]. At first,
the 3D Ising model is extended to be the (3 + 1)D one and divided to many quasi-2D
Ising models. Then, the nonlinear terms in the transfer matrices are linearized, while the
Hilbert space is split. This corresponds to cutting the spin chains in Figure 5 and rearrang-
ing the spins in the larger space. Finally, a local transformation is performed, which is
represented by a rotation in 4D or (3 + 1)D space, and serves to introduce an additional
dimension with “spins” interacting with each other, while three topological phases are

generated on quaternionic eigenvectors ψ′(3+1)D = wxψi
2D

→
i + wyψ

j
2D

→
j + wzψk

2D

→
k [3,4,7]

(see Equation (33) of [3] for details). This results in the desired solution, a (3 + 1)D Ising
lattice with the topological phases acting as a projection from 4D to 3D. The (3 + 1)D Ising
lattice is schematically illustrated in Figure 7, which is obtained by performing a local
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transformation on Figure 5. Indeed, the number of the first neighboring sites of the (3 + 1)D
Ising lattice equals 8.
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Figure 7. A unit cell of the (3 + 1)D hypercubic Ising lattice in which the spins on the original 3D
Ising lattice (black lines) are represented by red arrows and the spins in the high dimensional lattice
(blue lines) are represented by black arrows. The red dashed lines connect the vertexes in the two
cubes, representing a hypercube in 4D.

2.4. Viewing the 3D Ising Model from an Angle of the Topological Structures

On the other hand, one can view the 3D Ising model from another angle of the topolog-
ical structures. As revealed in [3,4,7,10], an intrinsic nontrivial topological structure of the
transfer matrices exists in the representation of Γ-matrices, due to the long-range effective
interaction (entanglement) between the spins in the 3D Ising lattice. In addition, all the
Ising spins located in the 3D lattice can be mapped to an “imagine” nontrivial topological
structure. Both the nontrivial topological structures join together to form a “big” topologi-
cal structure in higher dimensional space (i.e., (3 + 1)D or 4D). Figure 8 shows an example
of knots in the (3 + 1)D dimensions, which is constructed by crossings mapped from spins
in a unit cell of the 3D Ising lattice and braids originating from the nontrivial topological
structure corresponding to the nonlinear terms in the transfer matrices. Such a construction
can be extended to all the 3D Ising lattice to cover the whole (3 + 1) dimensions. The “big”
topological structure consists of an original topological structure (braids, corresponding
to the nonlinear terms in the transfer matrices) and an “imagine” topological structure
(formed by the mapping from the spin lattice, corresponding to all the linear terms in the
transfer matrices).
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Figure 8. An example of knots constructed from two parts, in which some crossings (red curves) are
mapped from spins in a unit cell (black dashed lines) of the 3D Ising lattice, and some crossings (blue
curves) are attached braids that come from the nontrivial topological structure, originating from the
nonlinear terms of the transfer matrices.

Following the Zhang–Suzuki–March approach [7], the knots can be trivialized by
performing the local transformation naturally in the (3 + 1)D or 4D space. The local
transformation transforms the braids (blue curves) in Figure 8 to the crossings in the higher
dimensional lattice, as the blue curves shown in Figure 9. This is consistent with the
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topology theory that any knots in 4D space can be opened. In Figure 9, one can view the
“big” topological structure as: the original topological structure evaluates with time to
form the “big” topological structure in (3 + 1)D or 4D, in which all the crossings may be
compensated and/or smoothed.
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Figure 9. An example of knots with crossings located on a unit cell of the (3 + 1)D hypercubic Ising
lattice. The black and blue dashed lines represent two cubes, while the red dashed lines connect
the vertexes of the two cubes, together representing a hypercube. The crossings corresponding
to the vertexes in the black cube lattice are represented by red solid curves, while the crossings
corresponding to the vertexes in the blue cube lattice are represented by blue solid curves. All the
crossings form a “big” topological structure that is trivialized naturally.

2.5. A Theorem for Zhang’s Conjectures

From these observations, we see the following theorem.

Theorem 1. The 3D Ising model (I3D) in the zero external magnetic field can be mapped to either a
(3 + 1)D Ising spin lattice or a trivialized topological structure in the (3 + 1)D or 4D space. Namely,
starting from the definition in [10]:

Cl(I3D)⊕Cl(I3D)⇔ K/C(I3D) −→ Cl∗(I3D)

we have the following mappings:

(1) Cl∗(I3D) = Cl(I3D ◦ S1)⇔ Cl(I(3+1)D) ;
(2) K/C(I3D)⇔ K/C

(
I3D ◦ S1)⇔ K/C(I(3+1)D) .

Additionally, the two mappings are equivalent and thus we have: Cl(I(3+1)D)⇔ K/C(I(3+1)D) .

Remark 2. The exact expression for the spontaneous magnetization of the simple cubic lattices is
given in Equation (101) or (102) in [3], while its low-temperature expansion with the leading term
−6 × 8 is represented in Equation (103) in [3].

Remark 3. The critical exponents of the 3D Ising model are in between the values from calculations
for the 3D Iisng lattice taking into account only the contributions of the local environments of
spin alignments and those (mean-field theory) of the 4D Ising lattice. The critical exponents of
the 3D Ising model are determined to be exactly α = 0, β = 3/8, γ = 5/4, δ = 13/3, η = 1/8 and
ν = 2/3 [3,7,9].

Remark 4. In order to calculate the physical properties of the 3D Ising model by computer
simulations, one must calculate those of the (3 + 1)D lattice with spins located at the original 3D
Ising lattice and at the spin chains that are attached on every pair of two neighboring lattice sites
along the third dimension of the 3D Ising lattice, plus the local transformation with the topological
phases on the eigenvectors, which projects the system from (3 + 1)D to 3D.

Remark 5. Either the braid in Figure 3 or the spin chain in Figure 5 represents a long-range
effective interaction between spins in a plane, an entanglement involved with all spins in the
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plane, and a nontrivial topological structure [3,4,7,10], which also exists in the spin-glass 3D Ising
model [8]. It helps us to figure out that the absolute minimum core (AMC) model exists, which
consists of a spin-glass 2D Ising model interacting with its nearest neighboring plane [8]. It verifies
that the lower bound of the computational complexity of a spin-glass 3D Ising model is controlled
by the upper bound of the computational complexity of the AMC model, which is in subexponential
time, superpolynomial.

The statements above describe a scenario, giving a simplified and concise version
(actually, a schematic illustration) of proofs of Zhang’s conjectures 1 and 2. This schematic
proof is consistent with the procedures developed in our previous work [7,10]. In the
Clifford algebraic approach developed in [7], the additional dimension is introduced by
adding the direct product of many unit matrices, by performing the time average and by
performing a local transformation (a rotation in local coordinates) via a transformation
matrix. In the topological approach based on the Riemann–Hilbert problem [10], the
additional dimension is introduced by realizing the knots/links of the 3D Ising model
on Riemann surfaces, and by performing the monoidal transformation in a 4D Riemann
manifold. Therefore, the 3D Ising model provides us a platform for a deep understanding
of the spontaneous emergence of the additional dimension (i.e., time), the construction of
the (3 + 1)D framework for the space-time lattice, the mathematical base of topological
quantum statistical mechanics and even the connection between algebra, topology, and
geometry (see Section 7 for a detailed description). In the remainder of this paper, we shall
focus our interest on the application of the Riemann–Hilbert problem, to solve Zhang’s
conjecture 2 of the 3D Ising model.

3. Representation of Fundamental Group

In this section, we recall the basic facts of the representations of the fundamental
group for the ferromagnetic 3D Ising model in a zero magnetic field and construct the
representations of knots [10].

The trivial topological states are defined as a circle (or an interval) and a knot of type I,
corresponding to the linear terms in the transfer matrices V1 and V2 [10]. The nontrivial
topological states are defined as a braid with many crossings, called the basic form of
type II [10]. The nontrivial topological states for the ferromagnetic 3D Ising model are
constructed by combination of the knot γ of the 3D lattice Z3 and the trivial and nontrivial
topological states. For a detailed description of the topological structures, please refer to
Figures 1–4 of our preceding paper [10] and also Section 2 above.

We recall the basic facts on the representation of the fundamental group [10]. Let
M be a manifold, p0 ∈ M and let π1(M, p0) be the fundamental group of M based at p0.
Consider a monodromy representation: ρ : π1(M, p0)→ GL(M, C) . We choose a vector
space VM, which represents the representation:

γ∗f = ρ(γ) f (4)

where ρ(γ) is called the multiplicative factor with regular singularities at aj (j = 1, 2, . . .
. . . , M) for any closed path γ (Röhrl Theorem [21]).

According to Theorem II in the preceding paper [10], the Riemann–Hilbert problem is
applied for the representation on the ferromagnetic 3D Ising model in the zero magnetic
field. For the representation of knots/links for the ferromagnetic 3D Ising model in the zero
magnetic field, we consider 3D lattices and their periodic compactification, which is de-

noted by
−−−−−

Cub . We describe the fundamental group. It is generated by γ1, γ1, . . . , γm, γm,
which constitute the big circles. They are generated by [10] Γ1, Γ1, Γ2, Γ2, . . . , Γm, Γm. The
lattice Cl(Z) is given by:{

K1Γ1 + K1Γ1 + . . . + KmΓm + KmΓm
∣∣Ki, Ki ∈ Z

}
(5)

It is clear that Cl(I3D) is generated by Cl(Z).
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Next we pay some attentions to the singularities of the high-temperature expansions
of the free energy f. Perk argued (see Equations (6) and (7) in [25]) that βf has an absolutely
convergent series (β = 1/(kBT)), uniformly convergent in the thermodynamic limit, so that

βf = ∑∞
i=0 aiβ

i, |β| < r (6)

and that
f =

a0

β
+ ∑∞

i=1 aiβ
i−1, 0 < |β| < r (7)

is a convergent Laurent series. The question is whether f is totally equivalent to βf, es-
pecially at β = 0. Perk argued that the pole at β = 0 has no significance [25]. Actually,
there are two kinds of singularities in the 3D Ising model at the zero magnetic field. One
is the singularity (pole) at β = 0, and another is the singularity caused by crossings in
the nontrivial knots. For the singularity at β = 0, when we solve the Riemann–Hilbert
problem [21,22] for f with a singularity and βf without a singularity, different results will
be obtained upon a monodromy representation:

dw
dβ

= f w =

(
a0

β
+ . . .

)
w (8)

dw′

dβ
= β f w′ = (a0 + . . .)w′ (9)

Note that a transformation β→it would transform the above equations to Schrödinger
equations. Clearly, dw

dt 6=
dw′
dt at β = 0. Thus, with the framework of quantum mechanics,

we have w 6= w′ ⇔ En 6= E′n for β > 0. In addition, the key here is that other singularities
corresponding to crossings in f (and also βf) exist for β > 0, which are not taken into
account in the conventional high-temperature expansions for βf. The correct formula
for high-temperature expansions of the free energy f (and also βf) must account for the
contributions of the singularities of these crossings.

Remark 6. The Röhrl Theorem [21] provides the possibility of the existence of a multi-valued
function with regular singularities for a given monodromy representation. For the ferromagnetic
3D Ising model in the zero magnetic field, it consists of the generation of topological phases on
the eigenvectors and the topological phase transition at/near the infinite temperature. At/near
the infinite temperature, the 3D Ising system has no nontrivial topological structure since the
interactions are comparatively small compared with the infinite temperature, and the conventional
high-temperature expansions works well in this region. However, at the finite temperature, the
interactions become dominant, introducing the nontrivial topological structure that also contributes
to the partition function and the physical properties, where the conventional high-temperature
expansion is lost. Indeed, a multi-valued function exists at/near the infinite temperature for the
ferromagnetic 3D Ising model in the zero external magnetic field, which results in different functions
at the finite temperature.

4. Vertex Operators of Knot Type and the Corresponding Description of the Representation

In this section, we introduce a concept of vertex operators of knot types for the
ferromagnetic 3D Ising model in the zero external magnetic field, which is the analogy of the
vertex operators in the Conformal Field Theory [26–39]. We can prove the following theorem:

Theorem 2. The partition function of the ferromagnetic 3D Ising model in the zero magnetic field
can be described in terms of the product of vertex operators.

The proof of Theorem 2 is represented in Appendix A.
The partition function of the ferromagnetic 3D Ising model in the zero magnetic field

can be described in terms of the transfer matrices, in which the linear and nonlinear terms
correspond to the knots of type I and type II [10]. In Appendix A, the basic forms of knot
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types I and II are described in terms of vertex operators. Thus, the partition function of the
ferromagnetic 3D Ising model in the zero magnetic field can also be described in terms of
vertex operators.

Zhang and March [40] suggested that the quaternion-based functions developed
in [3] for the ferromagnetic 3D Ising model in the zero external magnetic field can be
employed to investigate the conformal invariance in dimensions higher than two. We
summarize here the procedure Zhang and March developed in [40] for treating the 3D
conformal field theory: (1) introducing an additional dimension to construct a (3 + 1)D
framework to form the quaternionic coordinates; (2) performing a transformation, as a
rotation in (3 + 1)-dimensions, to represent states and operators in the (3 + 1)D complexified
quaternionic Hilbert space; (3) introducing complex weight factors as topological phase
factors wi, for smoothing knots/crossings; (4) decomposition of 3D conformal blocks
to 2D conformal ones; (5) dealing with 2D conformal blocks in each complex plane of
quaternionic coordinates of the complexified quaternionic Hilbert space; and (6) accounting
the summation i of 2D conformal blocks in three complex planes and considering the
contributions of the phase factors wi.

5. Flat Vector Bundle and Analytic Realization of the Integrable System of the 3D
Ising Model

In this section, a flat vector bundle is introduced from the solution of the Riemann–
Hilbert problem and the integrable system of the ferromagnetic 3D Ising model in the zero
magnetic field is shown to be equivalent to the flat vector bundle. By use of the identifica-
tion, for example, the Berry phase [41,42] and the Gauss–Bonnet–Chern formula [43,44].
The differential geometric structure of the 3D Ising model is discussed.

5.1. Flat Vector Bundle of the Monodromy Representation

In a well-known manner, we can construct a flat vector bundle [22,45] from the solution
of the Riemann–Hilbert problem. We consider the representation [10]:

ρ̃ : π1
(

Rg − {a1, . . . , aN}
)
⊗ Cl(I3D)→ CL∗(I3D) (10)

A system of the local coordinate system {Uα} of Rg is made in the following manner.
At first we choose local coordinates with the origin a1, . . . . . . aN, which are denoted by
U1, . . . . . . UN. Next, the finite local coordinate neighborhood is added to make a local
coordinate system {Uα}. Choosing a base point P0, we assume that P0 ∈ U0 with some U0.
We choose a point Pα ∈ Uα (here we assume that Pα 6= aj

(
∀j
)
).

We choose a path γj which joints P0 and Pj. It is assumed that γj
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aj(∀j). A vector
bundle can be constructed, as shown in Figure 10. We consider Uα, Uβ with Uα ∩Uβ 6= ∅
and choose ∀P ∈ Uα ∩Uβ. This makes a path γαβ(P) which joints with Pα and Pβ and
P ∈ γαβ(P).

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 26 
 

 

ρ̃: 𝜋1(𝑅𝑔 − {𝑎1, … , 𝑎𝑁}) ⊗ 𝐶𝑙(𝐼3𝐷) → 𝐶𝐿∗(𝐼3𝐷) (10) 

A system of the local coordinate system {Uα} of Rg is made in the following manner. 

At first we choose local coordinates with the origin a1, …… aN, which are denoted by U1, 

…… UN. Next, the finite local coordinate neighborhood is added to make a local coordi-

nate system {Uα}. Choosing a base point P0, we assume that P0  U0 with some U0. We 

choose a point Pα  Uα (here we assume that 𝑃𝛼 ≠ 𝑎𝑗(∀𝑗)). 

We choose a path γj which joints P0 and Pj. It is assumed that 𝛾𝑗 ∌ 𝑎𝑗(∀𝑗) . A vector 

bundle can be constructed, as shown in Figure 10. We consider Uα, Uβ with 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅ 

and choose ∀𝑃 ∈ 𝑈𝛼 ∩ 𝑈𝛽. This makes a path γαβ(P) which joints with Pα and Pβ and P  

γαβ(P). 

 

Figure 10. Construct a vector bundle. 

It leads to a closed path, 
1

       −= , here 𝛾𝛽
−1 means the path from Pβ to P0. 

Putting ( ) ( )C P  = , ( )P U U   , it determines an element in 𝐶𝐿∗(𝐼3𝐷) 

(see Equation (10)), we see that 







=

=

1



CC

CCC
 (11) 

This results in a flat vector bundle 𝐸�̃�, which is called the vector bundle of the mon-

odromy representation. For details, please refer to [21,22]. 

Some basic facts on the vector bundle are stated as follows [21,22]: 

(1) Cαβ is a constant matrix (det (𝐶𝛼𝛽) ≠ 0). Hence 𝐸�̃� becomes a locally trivial vector 

bundle. 

(2) Paths 𝛾𝛼, 𝛾𝛼𝛽 are chosen not uniquely. The different choices give equivalent vector 

bundles. 

(3) A solution W̃ of the Riemann–Hilbert problem gives rise to a meromorphic section  

of 𝐸�̃�. 

The converse is also true. The correspondence is given as follows: 

Choosing  W̃  on U0 and making analytic continuation along 𝛾𝛼 , we define 

)
~

(* W  =
. Then it is seen that C   = ; hence, one has φ ∈ Γ(𝑅𝑔 −

{𝑎1, … , 𝑎𝑁}, 𝐸𝜌). 

(4) A solution W̃ of the Riemann–Hilbert problem gives a flat connection ω of 𝐸�̃� by: 





=

=





d

W
~

dlog

 

(12) 

Note that the connection identifies the parallel displacement of a tangent vector in 

one tangent space to a tangent vector in a different tangent space in general curved spaces. 

Figure 10. Construct a vector bundle.

It leads to a closed path, γ̃αβ = γαγαβ ◦ γ−1
β , here γ−1

β means the path from Pβ to P0.
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Putting Cαβ(P) = ρ̃(γ̃αβ), (P ∈ Uα ∩Uβ), it determines an element in CL∗(I3D) (see
Equation (10)), we see that {

Cαβ · Cβγ = Cαγ

Cαβ · Cβα = 1
(11)

This results in a flat vector bundle Eρ̃, which is called the vector bundle of the mon-
odromy representation. For details, please refer to [21,22].

Some basic facts on the vector bundle are stated as follows [21,22]:

(1) Cαβ is a constant matrix (det(Cαβ) 6= 0). Hence Eρ̃ becomes a locally trivial vector bundle.
(2) Paths γα, γαβ are chosen not uniquely. The different choices give equivalent vec-

tor bundles.
(3) A solution W of the Riemann–Hilbert problem gives rise to a meromorphic section

φ of Eρ̃.
The converse is also true. The correspondence is given as follows:
Choosing W on U0 and making analytic continuation along γα, we define φα = γ∗α(W̃).
Then it is seen that ϕα = Cαβ ϕβ; hence, one has ϕ ∈ Γ

(
Rg − {a1, . . . , aN}, Eρ

)
.

(4) A solution W of the Riemann–Hilbert problem gives a flat connectionω of Eρ̃ by:{
ω = dlogW̃
dω = ω ∧ω

(12)

Note that the connection identifies the parallel displacement of a tangent vector in one
tangent space to a tangent vector in a different tangent space in general curved spaces.

5.2. Equivalence of the Integrable Systems

We can treat the ferromagnetic 3D Ising model in the zero external magnetic field as
integrable systems. We can prove that both the integrable systems which are given in the
description of Γ-matrices for the partition function and the flat vector bundle are equivalent.

Theorem 3. The integrable system of the 3D Ising model in the zero magnetic field in the description
of Γ-matrices for the partition function is equivalent to the flat vector bundle.

Proof of Theorem 3: The equivalence between the description with Γ-matrices of the
partition function and the flat vector bundle can be constructed as follows:

(1) The partition function described in terms of Γ-matrices can be represented in the
topological structures by the K/C algebra [10]. We have the representations of the
fundamental group of a manifold M, in order to construct the representation of knots.

(2) The Riemann–Hilbert problem is applied for the representation on the ferromagnetic
3D Ising model through the monodromy representations (Röhrl Theorem [21]). The
Riemann–Hilbert problem asks for the solution of a differential equation which
admits regular singularities at a set of descrete points on a manifold M. If Φ is a
ρ-multiplicative function, we will obtain the following matrix valued meromorphic
1-formω on the manifold M [21,22]:

ω = Φ−1dΦ (13)

It is remarked thatω satisfies the following integrability condition [21,22]:

dω−ω∧ω = 0 (14)

Conversely, taking a 1-formω at the regular singularities on M, with the condition
Equation (14) and the differential Equation (13), we obtain a multivalued function Φ.
Equation (14) is just the same as Equation (12) for the definition of a flat connectionω.
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(3) It is seen that Equation (13) can be written as:

dΦ = Φω (15)

It is remarkable that Equation (15) has a form that is very analogous to the famous
Schrödinger equation. In this way, the solution of a model in quantum mechanics can
be associated with the flat connection in geometry. Although, in quantum statistical
mechanics we are interested in the thermodynamical properties with the ensemble
average for the stationary Schrödinger equation HΨ = EΨ, where H is the Hamilto-
nian, E is the eigenvalues of the energy, and Ψ is the eigenvectors (wavefunctions) of
the physical system, the wavefunctions must also satisfy the Schrödinger equation:

i}∂Ψ
∂t

= HΨ (16)

Indeed, the solution of the physical system we are studying must satisfy the differ-
ential Equation (16) (the Schrödinger equation). In our previous work [3,4,7,10], we
have proven that the time average must be taken into account, while quaternionic
eigenvectors are constructed for the 3D Ising model. It indicates that time must be
considered to construct the (3 + 1)D framework to study the evolution of the 3D Ising
model. It is understood that the many-body interactions in the 3D Ising spin lattice
make the wavefunctions composed of space and time coordinates, which together
form quaternionic eigenvectors. In this sense, the wavefunctions are not stationary
but are dynamical ones.

(4) From Equation (13), performing integral and differential processes results in the
following relation:

ω = dlogΦ (17)

Again, it is consistent with Equation (12) for the definition for a flat connection ω
if one uses W to replace Φ. Clearly, from the definition above, W is a solution of
the Riemann–Hilbert problem with the monodromy representation. Note that this
solution can be seen as the gauge factor generated in the wavefunction Φ’ after a gauge
transformation, which corresponds to the monodromy representation. It gives rise to
topological/geometrical phase factors on the eigenvectors with renormalization of the
3D Ising model, derived from the curvature according to the Gauss–Bonnet–Chern
formula (see the next section).

(5) The vertex operators are introduced to establish the equivalence between the knot
structures in the descriptions of the K/C algebra and vertex operators for the partition
function (see Section 4 and Appendix A, and also [10]).

(6) The flat vector bundle is introduced to establish the equivalence between the solu-
tions of a model in quantum statistical mechanics and a differential equation which
admits regular singularities on a manifold M (see the detailed descriptions in this
section). Taking W has regular singularities into account, we can treat it as the Berry
phase [41,42]. �

6. Renormalization of the 3D Ising Model

In this section, we shall construct renormalization of the ferromagnetic 3D Ising model
in the zero external magnetic field and show that the model can be realized as a free model
on the manifold with nontrivial curvature.

6.1. Gauss–Bonnet Formula

We recall the Gauss–Bonnet formula [43,44] which derives the curvature from the
topological nontrivial field (Berry phase [41,42]):∫

M
KdA +

∫
∂M

kgds = 2πχ(M) (18)
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where dA is the element of the area of the surface, and ds is the line element along the
boundary of M. Here, χ(M) is the Euler characteristic. If the boundary ∂M is piecewise
smooth, we will interpret the second integral

∫
∂M kgds) as the sum of the corresponding

integrals along the smooth portions of the boundary, plus the sum of the angles by which
the smooth portions turn at the corners of the boundary. Chern discovered a higher-
dimensional analogue of the original Gauss–Bonnet theorem for 2D manifolds [45]:∫

M
P f (Ω)dM = (2π)mχ(M) (19)

where M is a 2m-dimensional Riemann manifold, Ω is the curvature of M given via the
Levi–Civita connection, the Pfaffian of Ω is defined by P f (Ω) = [det(Ω)]1/2 and χ(M) is
the generalized Euler characteristic, that is, Chern number for the class m.

We take a Riemann surface and take out finite points a1, . . . . . . aN. It is assumed that
a matrix valued meromorphic 1-formω exists, which admits the residue βj at each point aj
(j = 1, 2 . . . . . . N):

ω =
βj

z− aj
dz + . . . . . . (20)

This implies that a holomorphic function with regular singularities exists:

F(z) =
(
z− aj

)2πiβ j
[
α0 + αj

(
z− aj

)
+ . . . . . .

]
(21)

Hence there is a topological trivial line bundle π : Eρ → R . Next making “renormal-
ization” of the singularities, we avoid the singularities, having the nontrivial curvature.
This is nothing but the Gauss–Bonnet formula.

As we have seen in Sections 4 and 5, we can obtain a section

ϕ ∈ Γ
(

Rg − {a1, . . . , aN}, Eρ

)
(22)

from F. Putting

ϕj =

{
(z− a j)

2πiβj · ϕ
ϕ

on
on

Uj
otherwise

We have the “renormalized section” ϕ =
{

ϕj
}

. From this we can obtain the renormal-
ized line bundle: Eγ =

{
ϕij on Ui ∩Uj

}
:

ϕij = ϕ−1
i ϕj (23)

Then {vi} becomes a section of Eγ. Next the curvature is given by introducing the
metric of Eγ: a =

{
aj
∣∣aj > 0

}
is called metric of Eγ, when aj =

∣∣ϕij
∣∣2ai on Ui ∩Uj.

It is seen that φ = ai
∣∣ϕj
∣∣2 on Uj becomes a global function on the Riemann surface.

We calculate the curvature ∂∂logφ [22,43–54]:

∂∂ log φ = ∂∂ log ai + ∂∂ log
∣∣ϕj
∣∣2 = ∂∂ log ai + d(∂ log

∣∣ϕj
∣∣2) (24)

Integrating it on R− {Uε(a1) ∪ . . . . . . ∪Uε(am)}, (= Rε)

x

Rε

∂∂ log φ =
x

Rε

∂∂ log ai +
x

Rε

d(∂ log|ϕ|
2
) (25)

The second term becomes: ∫
∂Rε

∂ log|ϕi|2 =
∫

∂Rε

∂ϕi
ϕi

(26)
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Tending ε→ 0, we see:
lim
ε→0

x

Rε

∂∂ log|φ| = 0 (27)

This results in the so-called Gauss–Bonnet–Chern formula [22,43–51]:

∑N
i=1 Resi ϕ =

1
2πi

x

R

∂∂logai = c1(F) (28)

This is one of the basic approaches to the renormalization theory. By the procedures
above, we have taken off nontrivial knots in a higher dimensional space. c1(F) is the Chern
number of the first class, while Res denotes the residue.

Remark 7. The Gauss–Bonnrt–Chern formula is consistent with Fuchs relation [22,55–57] for
solutions of a differential equation which admits regular singularities on a Riemann surface.
Suzuki [22] derived a generalized Fuchs relation, in which the Chern number of the first class is
related with the order n of differential equations, the number m of singularities, and the genus g of
the manifold by the following formula: c1 = n(n−1)

2 (m + 2(g− 1)). For the present case, we may
set n = 2, m = 4, g = 0 for c1 = 2.

6.2. Gauss–Bonnet–Chern Formula for the Ferromagnetic 3D Ising Model

Applying the idea to the ferromagnetic 3D Ising model at the zero magnetic field, we
obtain the Gauss–Bonnet–Chern formula [43–50]. In consideration of the representation:

ρ0 : KL(3D) Cl(I3D) −→ Cl∗(I3D) (29)

we have
ρ̃ : π1

(
Rg − {a1, . . . , aN}

)
⊗ Cl(I3D)→ CL∗(I3D) (30)

Solving the Riemann–Hilbert problem, we have the solution F which has a regular
singularity at each ai (i = 1, . . . . . . N). Making the vector bundle of the representation
Eρ̃ and the section F̂ of Eρ̃ corresponding to F, we can obtain the Gauss–Bonnet–Chern
formula for the representation (see Appendix B for details).

From the results obtained above, the 3D Ising model with nontrivial topological
structures can be realized as a trivial model on a nontrivial topological manifold. Indeed,
a map between the trivial manifold and the nontrivial manifold exists, which correlates
the Chern numbers of the two manifolds with winding numbers. According to algebraic
topology and differential geometry [41–51], one may expect to fix the winding numbers
and topological phases for the ferromagnetic 3D Ising model in the zero magnetic field. Its
space is extended to the (3 + 1) dimensions, which can be split into three subspaces in (1 + 1)
dimensions for the 2D Ising planes [43–51,58–61]. The characteristic of the (3 + 1)D space
equals the sum of the characteristics of three (1 + 1) dimensional subspaces [43–51,58–61].

For a representation on ρ, we can calculate the winding number for each “coordinate”
→
i ,
→
j ,

→
k in the quaternionic space of the eigenvectors ψ′(3+1)D = wxψi

2D

→
i + wyψ

j
2D

→
j + wzψk

2D

→
k

of the ferromagnetic 3D Ising model [3,4,7] (see Equation (33) of [3] for details), which are
denoted by n1, n2, and n3. Note that the quaternion may be used to represent a “vector”
in a 3D space, although the quaternionic eigenvectors themselves are not vectors. We can
perform the path integrals along the three “coordinates” and then sum the results. One
of the three “coordinates” of the quaternionic space corresponds to the 2D Ising character
with the winding number n1 = 1 (for 2D rotations of Ising spins in a plane), while the other
two “coordinates” represent the 3D Ising character with the winding numbers n2 = n3 = 2
(in consideration of 3D rotations of Ising spins with Z2 symmetry). Then we obtain the
following formula:

n1κ1 + n2κ2 + n3κ3 = c1

(
E′ρ
)

(31)
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where c1

(
E′ρ
)

is the characteristic class of E′ρ. Note that the Chern number c1

(
E′ρ
)

of the
first class corresponds to the 2D manifold, which equals to two. This is because although
the 3D Iding model is on a 4D Riemann manifold as a whole (in (3 + 1)D spacetime), each

coordinate
→
i ,
→
j ,
→
k corresponds to a 2D manifold (Riemann surface), and the 4D Riemann

manifold is constructed by many 2D manifolds, as revealed already in our previous
work [7]. Meanwhile, κ1, κ2, and κ3 are the characteristic class for the three “coordinates”
(can be seen as three sub-manifolds) of the quaternionic space. Then we have

n1φx + n2φy + n3φz = 2πc1

(
E′ρ
)

(32)

where φx, φy, and φz are topological phases appearing in the quaternionic space of the
eigenvectors of the ferromagnetic 3D Ising model [3,4,7]. Thus, for the 3D Ising models
at finite temperature (with the nontrivial topological structure in the partition function),
we have n1 = 1, n2 = n3 = 2, φx = 2π, φy = φz = π/2, while c1

(
E′ρ
)

= 2. Note that the
topological phases obtained above are catalogued to be the holonomy kπ/2 (k is an integer)
of a connection, after parallel transport of a vector along a closed loop γ on a Riemann
manifold [41–51]. We have succeeded in fixing the topological phases appearing on the
quaternionic space of the eigenvectors of the ferromagnetic 3D Ising model based on the
Gauss–Bonnet–Chern formula with knowledge of the algebraic topology and differential
geometry. This agrees with the phases of the local transformation as well as the gauge
transformation, obtained in [7].

We can prove the following theorem:

Theorem 4. The 3D Ising model in the zero external magnetic field can be renormalized by
use of the derivation of Gauu–Bonnet–Chern formula as a trivialization model on a nontrivial
topological manifold.

The proof of Theorem 4 is represented in Appendix B.
As revealed above (and also in [3,4,7,10,62–65], in three dimensions the polygon

picture breaks down and one has to talk about knots. The nontrivial topological effect
indeed exists in the 3D Ising model, and the global problems arise in the language of
Γ matrices. Although the Ising model with only the nearest-neighboring interactions
looks like local in the original spin variable language, one cannot neglect the existence of
the topological global effect in the system [3,4,7,10]. The situation is very similar to the
Aharonov–Bohm (A-B) effect in which in the language of the magnetic field, no field, but
in the language of potential, the A-B effect exists [66]. However, one cannot say that the
A-B effect does not exist in the system (even in the language of the magnetic field). The
A-B effect revealed in the language of potential is an observable quantity of topological
phases with physical significance. Similarly, the nontrivial topological effect revealed in the
language of Γ matrices for the 3D Ising model is also an observable quantity with physical
significance [3,4,7,10]. One cannot neglect its existence even in the original spin variable
language. In other words, we think that the original spin variable language is not a good
representation for studying the 3D Ising models, as is the language of the magnetic field
for the A-B effect. It is our opinion that to further inspect the physical significance of the
topological phases generalized on the eigenvectors of the 3D Ising model, it is reasonable to
mention the similarity between the topological/geometrical phases in the 3D Ising model
and Chern–Simons, Yang–Mills, Aharonov–Bohm, Berry phases, etc., as did in [4,7,67].

Summarizing the discussions of this paper, we have proven the following Theorem:

Theorem 5. (Main Theorem). The Zhang’s conjecture 2 can be solved. Let M be a manifold,
p0 ∈ M and let π1(M, p0) be the fundamental group of M based at p0. Consider a monodromy
representation: ρ : π1(M, p0)→ GL(M, C) . Consider the representation for the ferromagnetic
3D Ising model in the zero external magnetic field:
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ρ̃ : π1
(

Rg − {a1, . . . , aN}
)
⊗ Cl(I3D)→ CL∗(I3D)

with singularities ai (I = 1, . . . , N). The vertex operators can be introduced to represented knots of
types I and II for the 3D Ising model. Then a solution of the Riemann– Hilbert problem gives a flat
connection. The model with can be renormalized by use of the derivation of the Gauss–Bonnet–Chern
formula in cooperation with the monoidal transforms in a 4D Riemann manifold. Three topological
phases φx = 2π, φy = φz = π/2 appear on the quaternionic eigenvectors of the 3D Ising model on a
nontrivial topological manifold in the (3 + 1) dimensions.

7. Interplay between the Physical Properties of Many-body Interacting Systems,
Algebra, Topology, and Geometry

In this section, we first summarize our results obtained in this work: a mapping
between a knot and a spin lattice can be introduced to investigate the contribution of
nontrivial topological structures to the partition function and physical properties of the
ferromagnetic 3D Ising model, and the emergence of the additional dimension. This gives
a concise proof of Zhang’s conjectures 1 and 2, and uncovers the connection between
different approaches, such as the Clifford algebra approach [7] and the Riemann–Hilbert
problem method [10], developed based on algebra and topology. We then concentrate on
a detailed proof of Zhang’s conjecture 2 by applying the Riemann–Hilbert problem and
Gauss–Bonnet–Chern formula. After describing the representation of the fundamental
group, realizing the representation on the Riemann surface and formulating the Riemann–
Hilbert problem, we introduce vertex operators of knot types and a flat vector bundle of
the 3D Ising model. By applying the monoidal transforms, we trivialize the knots/links in
a 4D Riemann manifold to obtain new trivial knots and proceed to obtain the renormalized
model of the 3D Ising model. In order to eliminate these singularities from knots, we have
to take off nontrivial knots in a higher dimensional space, by use of the derivation of Gauss–
Bonnet–Chern formula. We perform renormalization of the model and have the curvature
structure in the model. The ferromagnetic 3D Ising model in the zero external magnetic field
with nontrivial topological structures can be realized as the trivial model on a nontrivial
topological manifold. The topological phases are determined by the Gauss–Bonnet–Chern
formula, in consideration of the mathematical structure of the 3D Ising model, with regard
to algebra, topology and geometry. Hence Zhang’s conjecture 2 has been proven rigorously
by applying the Riemann–Hilbert problem and the Gauss–Bonnet–Chern formula.

In what follows, we utilize the ferromagnetic 3D Ising model in the zero magnetic field
as a platform to investigate the interplay between the physical properties of interacting
many-body systems, algebra, topology and geometry.

Algebra: (1) The Clifford algebra representation for the transfer matrices of the 3D Ising
model in the zero magnetic field reveals the nonlinear terms, which indicate the existence
of the long-range entanglement between spins and the nontrivial topologic structure of
the 3D Ising model [3,4,7,10]. (2) The K/C algebra can be defined to combine the knot
and the Clifford algebra to represent the knot structure of the 3D Ising model [10]. (3) The
Jordan algebra [68,69] is employed to deal with non-commutative operators (such as Γ-
matrices), to set up the system with the Jordan–von Neumann–Wigner framework [70],
and to include the time average [7]. (4) The Riemann–Hilbert problem method is employed
to solve the differential equation with singularities. (5) The quaternion algebra is needed to
construct quaternionic eigenvectors so that the quaternionic topological/geometric phases
emerge in quaternionic Hilbert space as a result of the topological transformation and the
monodromy representation [3,4,7]. The quaternion basis naturally represents a rotation in
(3 + 1)D space-time. (6) The Lee algebra represents the rotations in the 2D plane and also
the rotations in subspaces of the 4D Riemann manifold [3,4,7].

Topology: (1) The nontrivial topologic structure exists in the 3D Ising model with-
out the external magnetic field, which represents the long-range entanglement between
spins [3,4,7,8,10,71,72], even if only the nearest-neighboring spin interactions are consid-
ered in the system. (2) The partition function of the 3D Ising model in the zero magnetic
field consists of two kinds of components, i.e., spin alignment component and knot compo-
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nent [3,4,7,10,13–19]. (3) The “big” topological structure consists of an original topological
structure and an “imagine” topological structure is trivialized naturally in the (3 + 1)D or
4D space. (4) The topological contribution to the free energy and other thermodynamic
physical properties can be computed by a topological transformation as well as a gauge
transformation [7], or a monoidal transformation [10], which is connected to the Jones
polynomial [17,73] with the formulas of Wilson loop [74,75] and Witten integral [76–79] for
the action of the gauge group.

Geometry: (1) The 4D Riemann manifold is introduced to realize the knots on the
Riemann surface, to formulate the representation of the Riemann–Hilbert problem, to
apply the monoidal transformations at the knot intersection (singular) points, and to
produce the trivialization of the knots [10]. (2) The geometrical structure of the 3D Ising
model is described as geometric relations in hyperbolic 3-sphere (or 4-ball) represented
in a (3 + 1)D Poincaré ball model [3,4,7], which is an extension of a hyperbolic triangle in
the 2D Poincaré disk model for the 2D Ising system [2,11]. (3) The topological/geometric
phase factors are generated on the eigenvectors of the 3D Ising model in the zero external
magnetic field, which are analogous to the phase factors in the Aharonov–Bohm effect [66],
the Berry phase effect [41,42] and fractional quantum Hall effect, etc. [42].

Dimensions: The ferromagnetic 3D Ising model in the zero external magnetic field
can be solved in a 4D space. The additional dimension can be added in several ap-
proaches [3,4,7,10]: (1) the time average should be taken into account in addition to the
ensemble average and quantum-mechanical average for a quantum statistic many-body
interacting spin system, which is carried out with the Jordan–von Neumann–Wigner frame-
work with Jordan algebra [7]. (2) The dimension is expanded by adding k terms of unit
matrices in the terms of the direct product of original transfer matrices and adjusting the
sequence of the unit matrices with other matrices, while keeping the trace invariance [7].
(3) The realizations of knots in the partition function are produced on a 4D Riemann mani-
fold and by monoidal transform [10]. (4) By using a one-to-one mapping between a knot
and a spin lattice, the original 3D Ising lattice and the “imagine” Ising lattice together
construct a (3 + 1)D Ising lattice [4] (see also Section 2).

Topological transformations: (1) A topological transformation is applied by a matrix
or a rotation to transform the nontrivial topological basis to the trivial topological basis,
and vice versa [3,4,7,10]. (2) A local transformation, being a gauge transformation, is
employed to trivialize the nontrivial knot structure [7]. (3) A monoidal transform is applied
to trivialize the knots/links in a 4D Riemann manifold and obtain new trivial knots [10].
(4) Regarding the integrability of the system, the Reidemeister moves correspond to the
Yang–Baxter equations for the topological transformation in the 2D Ising models, while the
Reidemeister moves together with the disconnection and fusion of crossings correspond
to the generalized Yang–Baxter equations (namely, the tetrahedron equations) for the
topological transformation in the 3D Ising models [4].

Topological phases: (1) The topological phases are generalized on wavevectors as a
result of the time average as a monodromy representation. (2) The topological phases are
generalized by a local transformation on the gauge system. (3) The topological phases
are generalized by renormalizing the ferromagnetic 3D Ising model by application of the
Riemann–Hilbert problem method and use of the derivation of the Gauss–Bonnet–Chern
formula. (4) The topological phases are generalized by the disconnection and fusion of
crossings in the tetrahedron equations, in order to keep the integrability. (5) The topological
phases are generated by parallel displacement in general curved spaces, while the 3D Ising
model with singularities can be described by the connection on a nontrivial Z2 bundle,
with analogy to electromagnetism with monopole [80].

In our previous work [7], Zhang’s two conjectures proposed in [3] were proven
rigorously by the Clifford algebraic approach. Zhang’s two conjectures were also proven
in [10] and this work by application of the Riemann–Hilbert problem. However, the explicit
expression for the resulting partition function Z was not provided directly by the present
procedure of the Riemann–Hilbert problem, the monoidal transformations and the Gauss–
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Bonnet–Chern formula. It should be emphasized that the results obtained by applying
anyone of these approaches developed in [7,10] and this work must be equivalent. Thus,
the partition function obtained in [3,4], which has been proven rigorously by the Clifford
algebra approach [7], can be used to guard determination of the nontrivial knot components
of the partition function in the monoidal transform trivialization. It is noticed that in the
Clifford algebraic approach [7], we utilized the Largest Eigenvalue Principle that in the
thermodynamic limit, only the largest eigenvalue contributes dominantly to the partition
function of the 3D Ising model. With this constraint, we picked up the desired solution
among all 2nl possible solutions in 2nl sub-spaces produced by the direct product of all
the sub-transfer matrices. The combination of the local transformation and the Largest
Eigenvalue Principle solves the problems of overdetermined tetrahedron equations. In
the present procedure of the Riemann–Hilbert problem, we may also need to employ the
Largest Eigenvalue Principle to make a constraint on possible solutions, since the nontrivial
topological structure is very complicated and the monoidal transforms involved are indeed
too many, causing a great number of possible solutions. It will be of great interest to derive
a rigorous formulation for the nontrivial knots’ components of the partition function Z
by the procedure of the Riemann–Hilbert problem. Clearly, the 3D Ising model will be a
good platform for an interplay between the physical properties of interacting many-body
systems, algebra, topology, and geometry.

Remark 8. Wu and Yang [80] formulated the Aharonov–Bohm effect [66] in terms of a nonin-
tegrable phase factor for electromagnetism in a space-time region, regarding Dirac’ s magnetic
monopole field. It was generalized to the gauge field theory with non-Abelian groups, which resulted
in identification with the mathematical concept of connections on principal fiber bundles. Specially,
the gauge potential is identification with a connection on a principal fiber bundle. In our present
work, we established the relation between the Riemann–Hilbert problem of the 3D Ising model with
singularities, the Gauss–Bonnet–Chern formula in a monodromy representation and the parallel
displacement of a tangent vector in general curved spaces. It also sets up some correlations between
the topological phases of the 3D Ising model, the connections on flat vector bundles and the curvature.
In this way, the 3D Ising model is also associated with the gauge field theory, which can be mapped
to a 3D Z2 lattice gauge theory [81–84].

Remark 9. In this work and also [7], we have proven that the three topological phases appearing on
the quaternionic eigenvectors of the 3D Ising model are φx = 2π, φy = φz = π/2, respectively. It
should be pointed out that, usually, inter-exchanging two particles (or spins) in three dimensions
one obtains a phase factor of 2π or π for bosons or fermions, and only in 2D a fractional statistics
with a phase factor of other angles can be possible for anyons. The phase factor π/2 for the 3D Ising
model is caused by inter-exchanging two spins in the quasi-2D limit, since the 3D Ising model can
be extended to be (3 + 1)D and then separated to be many quasi-2D Ising models (see Theorem 1
in [7]). It is a global effect of many-body interactions between spins in a 3D lattice.

8. Conclusions

In conclusion, in the preceding paper [10] and this paper, we developed a method
of the Riemann–Hilbert problem to rigorously prove Zhang’s two conjectures proposed
in [3] for the ferromagnetic 3D Ising model in the zero external magnetic field. In this
work, we introduced vertex operators of the knot types and a flat vector bundle of the 3D
Ising model. By applying the monoidal transforms to trivialize the knots/links in a 4D
Riemann manifold and obtain new trivial knots [10], we renormalized the ferromagnetic
3D Ising model in the zero magnetic field by use of the derivation of the Gauss–Bonnet–
Chern formula. The 3D Ising model with nontrivial topological structures in the partition
function can be realized as a trivial model on a nontrivial topological manifold. The results
verify the correctness of Zhang’s exact solution [3], which are consistent with the Clifford
algebraic approach developed in [7]. Therefore, the exact solution of the ferromagnetic
3D Ising model in the zero external magnetic field is achieved in [3], in which one can
find the explicit expressions for the partition function and the physical properties (such as
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the free energy, the spontaneous magnetization, the susceptibility, the specific heat, the
spin correlation, the critical exponents). By inspecting/comparing the different procedures
developed in [7,10] and this paper, we showed that the 3D Ising model serves as a good
platform for describing a sensible interplay between the physical properties of interacting
many-body systems, algebra, topology, and geometry.
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Appendix A

Proof of Theorem 2. Choosing an element Γ, we introduce the vertex operator [33–39]:

V(+)
α (Γ, z) = exp

(
αΓ

∞

∑
n=1

an√
n

zn

)
(A1)

where {an} is the bosonic field:

ana∗m − a∗man = δnm1 (A2)

Other elements commute each other. By

V(−)
β

(
Γ′, w

)
= exp

(
βΓ′

∞

∑
n=1

a∗n√
n

w−n

)
(A3)

we introduce the conjugate vertex operator. The product of the vertex operators is defined
as follows:

V(+)
α (Γ, z) ◦V(−)

β

(
Γ, w

)
= exp(αΓ) ◦ exp

(
βΓ
)

exp

(
α

∞

∑
n=1

an√
n

zn

)
exp

(
β′

∞

∑
n=1

a∗n√
n

w−n

)
(A4)

Then the following equality can be proven:〈
0
∣∣∣V(+)

α (Γ, z) ◦V(−)
β

(
Γ, w

)∣∣∣0〉 = exp
(
αβΓΓ

)
·
(

1− z
w

)αβ
(A5)

By use of the vertex operators, we can describe the representation which we discussed
in Section 3.

We give some basic properties of the vertex operators

(1) Putting w = aj, α = iK. β = 1, Γ = Γj, Γ = Γj, we have〈
0
∣∣∣V(+)

iK
(
Γj, z

)
◦V(−)

1
(
Γj, aj

)∣∣∣0〉 = exp
(
iKΓjΓj

)
·
(
aj − z

)iK · a−iK
j (A6)

Hence the product describes the monodromy representation near aj.
(2) We have
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〈
0
∣∣∣∣ N

Π
k=1

V(+)
iK (Γk, z) ◦V(−)

1

(→
Γ k, ak

)∣∣∣∣0〉 = exp
(
iKΓ1Γ1 . . . ΓNΓN

)
· (a1 . . . aN)

−iK ·
N
Π

k=1
(ak − z)iK (A7)

(3) The basic forms of knot types I and II can be described in terms of vertex operators:

i. The basic form of type I:〈
0
∣∣∣∣ N

Π
k=1

V(+)
iK (Γk, z) ◦V(−)

1

(→
Γ k, ak

)∣∣∣∣0〉 (A8)

ii. The basic form of type II:〈
0
∣∣∣∣V(+)

iK (Γ1, z)
N
Π

k=2
V(+)

iK (Γk, z) ◦V(−)
1

(→
Γ k, ak

)
×V(−)

1
(
Γ1, a1

)∣∣∣∣0〉 (A9)

�

Appendix B

Proof of Theorem 4. We shall construct the renormalization model for the trivialization
model. At first we are concerned with the renormalization of the basic forms.

(1) The basic form of type I.

The basic form of type I arises from the linear operator (matrix). Hence we are not
concerned with type I.

(2) The basic form of type II.

The basic form of type II with a non-trivial topological structure can be trivial-
ized and it is decomposed as follows: expiK( Γ1Γ2Γ3 . . . . . . Γn) and its conjugated term
expiK( Γ1Γ2Γ3 . . . . . . Γn

)
can be reduced to the linear term expiK( Γ1Γ2) and expiK(Γ1Γ2

)
by use of the cancelation mechanism. At first, we analyze the divergence in ( ΓjΓj

)
(j = 3, . . . . . . , n). We analyze the divergence that arises from monoidal
transform [10,23,24,85–93] by use of the analytic realization (Figure A1):
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Taking the correspondence into an account, we can analyze W̃ at z = aj, by use of the
monoidal transform [10,23,24]. Then we have:

Q∗wA =

{
uA

(u′v′)A
on
on

V0
V∞
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Hence Γ∞ = Γ′, Γ0 = Γ′.
At first we notice the following behavior of W̃ at z = aj:

W̃ ≈
(
z− aj

)β j Π exp(iKΓiΓi+1) (A10)

After we make the monoidal transform at z = aj, we have

Q∗(W̃) =

 u
β j
j Π exp(iKΓiΓi+1)

u′
β j
j v′

β j
j Π exp(iKΓiΓi+1)

on
on

Û0
Û∞

(A11)

Here the cancellation mechanism is applied. Putting Φ(0)
j

(
W̃
)
= exp(iKΓiΓ0)

Φ(∞)
j

(
W̃
)
= v′

β j
j exp(iKΓ∞Γ0)

on
on

Û0
Û∞

(A12)

and making the vector bundle
Ẽρ0 =

{
φ

j
0∞

}
(A13)

where

φ
j
0∞ =

Φ(0)
j

(
W̃
)

Φ(∞)
j

(
W̃
) (A14)

It is seen that
{

Φ(0)
j , Φ(∞)

j

}
constitute a section of Ẽρ, which has no more singularities.

The anomaly can be calculated by applying the scheme in Section 5. The calculus is
complicated and omitted. �
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