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Abstract: It is known that corresponding to each Noether symmetry there is a conserved quantity.
Another class of symmetries that corresponds to conserved quantities is the class of Mei symme-
tries. However, the two sets of symmetries may give different conserved quantities. In this paper,
a procedure of finding approximate Mei symmetries and invariants of the perturbed/approximate
Hamiltonian is presented that can be used in different fields of study where approximate Hamiltoni-
ans are under consideration. The results are presented in the form of theorems along with their proofs.
A simple example of mechanics is considered to elaborate the method of finding these symmetries
and the related Mei invariants. At the end, a comparison of approximate Mei symmetries and ap-
proximate Noether symmetries is also given. The comparison shows that there is only one common
symmetry in both sets of symmetries. Hence, rest of the symmetries in the two sets correspond to
two different sets of conserved quantities.

Keywords: approximate Noether symmetries; conservation laws; Hamiltonian

1. Introduction

Differential equations involving small parameters, called the perturbed term, often
appear as mathematical models of real world problems. The parameter, generally, cor-
responds to some error or correction. Various methods have been developed to solve
equations involving perturbed/approximate term e.g., the homotopy perturbation method,
Adomain decomposition method, inverse scattering transformation method and approxi-
mate symmetries method. Baikov et al. [1] were the first to study the approximate groups
of the perturbed differential equations and developed a theory based on approximate
groups. Furthermore, the approximate Lie theorem provides a mechanism to calculate
the approximate symmetries of perturbed differential equations. Gazizov [2] described
some properties of approximate symmetries and developed an algorithm to calculate the
approximate invariants.

Feroze and Kara [3] used the approximate symmetry generators and invariants of the
perturbed ordinary differential equations (ODEs) to construct the Lagrangians. After that,
Johnpillai and Kara [4] utilized the same approach to construct approximate Lagrangians
for perturbed partial differential equations (PDEs). In [5], approximate symmetries and
conserved quantities of a system of differential equations are discussed. In [6], approxi-
mate symmetries are calculated for the perturbed KdV equation and a one-dimensional
subalgebra of an optimal system is obtained. Camci [7] presents third order approximate
Noether symmetries for Bardeen spacetime and has formulated some new approximate
Noether gauge symmetry relations for perturbed Lagrangians.

Feng-Xiang [8], used an infinitesimal transformation of groups to establish invariance
of equations of motion. Dynamical functions such as Lagrangian, Hamiltonian etc., are
replaced with transformed dynamical functions. This method, which preserves the form
of equations of motion, is called form invariance, also known as Mei symmetries. In the
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context of infinitesimal transformation of a group, form invariance of Appell equations is
investigated in [9]. The Lagrangian of the Appell equations is used to compute the Noether
symmetries. The Noether symmetries are then compared to form invariance to obtain
the different conserved quantities. Shu-Yong and Feng-Xiang in [10] investigated form
invariance and Lie symmetries in a non-holonomic system. Structure equations and form
invariance, which are similar to Lie symmetries, are deduced in this article. Jian-Hui [11],
presents the Mei symmetries of a rotational relativistic mass variable system, with an
emphasis on the relationship between the Lie and Mei symmetries. On a time scale, the Mei
symmetries of the Lagrangian and Birkhoffian systems are presented in [12,13] and are thor-
oughly discussed and compared with the Noether symmetries. The Hamiltonian canonical
equations are considered as a special case in the construction of the Mei symmetries of the
Birkhoffian system.

Jia et al. [14] introduced some definitions and developed criterion to calculate the
special Mei symmetries of Appell equations for weakly nonholonomic system and their
relative approximate Mei invariants. The Appell equations are specifically established for
nonholonomic system for these symmetries. The Lie symmetry and approximate Hojman
conserved quantity of Appell equations are investigated for a weakly nonholonomic system
by Han et al. [15]. Furthermore, under the infinitesimal transformation of group in which
time is invariable, the Lie symmetries are found for weakly nonholonomic systems and
their first degree approximate holonomic systems.

In this paper, we focus on the formulation of approximate Mei symmetries and invari-
ants. The method is then used to find the exact and approximate Mei symmetries that arise
from the Hamiltonian of the linear equation of motion of the damped harmonic oscillator
(DHO). This Hamiltonian is calculated from the Lagrangian of the DHO equation which is
given in [16]. The Legendre transformations are used to convert the Lagrangian system to
the Hamiltonian system. The outline of paper is as follows. The determining equations
of exact and approximate Mei symmetries and invariants are given in Theorems 1 and 2
in Section 1. Section 2 consists of the approximate Mei symmetries of DHO. In Section3,
an example is given to elaborate the method. The paper is concluded in Section 4.

2. Mei Symmetries of Approximate/Perturbed Hamiltonian

The unperturbed Hamiltonian system has been discussed in terms of the Mei symme-
tries and their related first integrals in [17]. Here we present approximate Mei symmetries
and invariants corresponding to perturbed Hamiltonian in the following Theorems 1 and 2.

Theorem 1. Let Z = Z0 + εZ1 be an approximate symmetry generator and H = H0 + εH1 be
the first order approximate Hamiltonian, where Z0 = α0

∂
∂t + βa

0
∂

∂xa and Z1 = α1
∂
∂t + βa

1
∂

∂xa , then

Ea(Z
[1]
0 H0) = 0, (a = 1, 2, . . . , n). (1)

Ea(Z
[1]
0 H1 + Z[1]

1 H0) = 0, (a = 1, 2, . . . , n). (2)

Here Ea is called the Euler operator defined as

Ea =
d
dt

(
∂

∂ẋa

)
− ∂

∂xa (a = 1, 2, . . . , n). (3)

Proof of Theorem 1. To prove the above relations, Equations (1) and (2), apply the first
order prolongation of Z, i.e., Z[1] = Z[1]

0 + εZ[1]
1 on H = H0 + εH1 to have

Z[1]H = (Z[1]
0 + εZ[1]

1 )(H0 + εH1). (4)

Neglecting the higher order terms in ε yields

Z[1]H = (Z[1]
0 H0) + ε(Z[1]

0 H1 + Z[1]
1 H0). (5)
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Applying operator Ea, given in Equation (3), on Equation (5) and requiring the invari-
ance EaZ[1]H = 0, we have

Ea(Z
[1]
0 H0) + εEa(Z

[1]
0 H1 + Z[1]

1 H0) = 0. (6)

Comparing the coefficients of different powers of ε leads to Equations (1) and (2). This
completes the proof.

Theorem 2. Let H = H0 + εH1 be the first order approximate Hamiltonian. If the symmetry
generator Z = α ∂

∂t + βa ∂
∂xa satisfies Theorem 1, then the first integrals (invariants) have the form

given below

I0 = α0(Z
[1]
0 H0) + (βa

0 − ẋaα0)
∂(Z[1]

0 H0)

∂ẋa , (7)

I1 = α0(Z
[1]
0 H1 + Z[1]

1 H0) + α1(Z
[1]
0 H0) + (βa

1 − ẋaα1)
∂(Z[1]

0 H0)

∂ẋa

+(βa
0 − ẋaα0)

∂(Z[1]
0 H1 + Z[1]

1 H0)

∂ẋa . (8)

Proof of Theorem 2. To establish the aforementioned statements, we consider the Noether
identity αH + (βa − ẋaα) ∂H

∂ẋa , in terms of the Hamiltonian, which is obtained from the
Lagrangian by using the Legendre transformations defined as

H0 + εH1 = pk q̇k − (L0 + εL1). (9)

Now, applying differential operator Z[1] on the Noether identity, we obtain

I = α(Z[1]H) + (βa − ẋaα)
∂(Z[1]H)

∂ẋa . (10)

In the preceding Equation (10), taking the perturbed invariant up to the first order
of ε, i.e., I0 + εI1, Z = Z0 + εZ1, and H = H0 + εH1 we have

I0 + εI1 = (α0 + εα1)[(Z
[1]
0 + εZ[1]

1 )(H0 + εH1)] + [(βa
0 + εβa

1)− ẋa(α0 + εα1)]

∂(Z[1]
0 + εZ[1]

1 )

∂ẋa (H0 + εH1). (11)

Rearranging the above expression as

I0 + εI1 = α0(Z
[1]
0 H0) + ε[α0(Z

[1]
0 H1 + Z[1]

1 H0) + α1(Z
[1]
0 H0)] + (βa

0 − ẋaα0)
∂(Z[1]

0 H0)

∂ẋa

+ε

[
(βa

1 − ẋaα1)
∂(Z[1]

0 H0)

∂ẋa + (βa
0 − ẋaα0)

∂(Z[1]
0 H1 + Z[1]

1 H0)

∂ẋa

]
. (12)

Separating powers of ε up to first order, we obtain the expressions given in Equations (7)
and (8). This completes the proof.

3. Mei Symmetries of the Approximate Hamiltonian of DHO

The linear equation of motion of DHO is taken as an example. Using Legendre
transformations described in Equation (9), the Hamiltonian of DHO is

H(t, y, y′) =
1
2
(y′2 + y2) + εt(y′2 + y2). (13)
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Now, writing H by separating the powers of ε, we obtain

H0 =
1
2
(y′2 + y2), (14a)

H1 = t(y′2 + y2). (14b)

Applying Z[1]
0 on Equation (14a), we obtain

Z[1]
0 H0 = y′β0,t + y′2β0,y − y′2α0,t − y′3α0,y + yβ0. (15)

Now Equation (1) (a = 1), for the above Equation (15), gives

E1(Z
[1]
0 H0) = 0. (16)

Alternatively,

d
dt

(
∂Z[1]

0 H0

∂y′

)
−

(
∂Z[1]

0 H0

∂y

)
= 0. (17)

The above Equation (17) yields the following expression

β0,tt + 2y′β0,ty + 2y′′β0,y − 2y′′α0,t + y′2β0,yy − 2y′α0,tt

−4y′2α0,ty − 6y′′y′α0,y − 2y′3α0,yy − β0 − yβ0,y = 0. (18)

Using y′′ − y = 0 in Equation (18), we have

β0,tt + 2y′β0,ty + 2yβ0,y − 2yα0,t + y′2β0,yy − 2y′α0,tt

−4y′2α0,ty − 6yy′α0,y − 2y′3α0,yy − β0 − yβ0,y = 0. (19)

The coefficients of different powers of y′ yield the following system of PDEs

β0,tt − β0 + yβ0,y − 2yα0,t = 0, (20)

β0,ty − α0,tt − 3yα0,y = 0, (21)

β0,yy − 4α0,ty = 0, (22)

α0,yy = 0. (23)

Equations (23) and (22), respectively, imply

α0(t, y) = y f (t) + g(t), (24)

β0(t, y) =
y2

2
f,t + yδ(t) + γ(t). (25)

Using Equations (24) and (25) in Equations (20) and (21), we obtain the following system

f,ttt = 0, δ,tt − 2g,t = 0,

γ,tt − γ(t) = 0, δ,t − g,tt = 0. (26)

Solving the above system given in Equation (26) and substituting the solution in
Equations (24) and (25) yields

α0 = C1 + e
√

2tC2 + e−
√

2tC3,

β0 = y
√

2e
√

2tC2 − y
√

2e−
√

2tC3 + e−tC4 + etC5 + yC6. (27)
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Equation (27) provides the following list of symmetries viz.,

Z1
0 =

∂

∂t
, (28)

Z2
0 = e

√
2t ∂

∂t
+ y
√

2e
√

2t ∂

∂y
, (29)

Z3
0 = e−

√
2t ∂

∂t
− y
√

2e−
√

2t ∂

∂y
, (30)

Z4
0 = e−t ∂

∂y
, (31)

Z5
0 = et ∂

∂y
, (32)

Z6
0 = y

∂

∂y
. (33)

Approximate Mei symmetries are calculated using the above exact symmetries given
by Equations (28)–(33). For this, we consider Z3

0, to illustrate the method, where Z[1]
0 H1 +

Z[1]
1 H0 is expressed as

Z[1]
0 H1 + Z[1]

1 H0 = y′β0,t + y′2β0,y − y′2α0,t − y′3α0,y + yβ0 + y′2e−
√

2t

+y2e−
√

2t + 2
√

2ty2e−
√

2t + 4tyy′e−
√

2t. (34)

Now using Equation (34) in Equation (2), we have

d
dt

(
∂(Z[1]

0 H1 + Z[1]
1 H0)

∂y′

)
−

(
∂(Z[1]

0 H1 + Z[1]
1 H0)

∂y

)
= 0, (35)

or

β1,tt + 2y′β1,ty + 2y′′β1,y − 2y′′α1,t + y′2β1,yy − 2y′α1,tt − 4y′2α1,ty − 6y′′y′α1,y

−2y′3α1,yy − β1 − yβ1,y − 2
√

2y′e−
√

2t + 4ye−
√

2t = 0. (36)

Using standard procedure of comparing the coefficients of different powers of y′, the
obtained system is

β1,tt − β1 + yβ1,y − 2yα1,t + 4ye−
√

2t = 0, (37)

β1,ty − α1,tt − 3yα1,y −
√

2e−
√

2t = 0, (38)

β1,yy − 4α1,ty = 0, (39)

α1,yy = 0. (40)

Equations (39) and (40), imply

α1(t, y) = y f (t) + g(t), (41)

β1(t, y) =
y2

2
f,t + yδ(t) + γ(t). (42)

Using Equations (41) and (42) in Equations (37) and (38), we obtain the following system

f,ttt = 0, δ,tt − 2g,t + 4e−
√

2t = 0,

γ,tt − γ(t) = 0, δ,t − g,tt −
√

2e−
√

2t = 0. (43)
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Solving the above system given in Equation (43) and substituting the solution into
Equations (41) and (42) yields

α1 = C1 + e
√

2tC2 + e−
√

2tC3 −
1
2

te−
√

2t,

β1 = y
√

2e
√

2tC2 − y
√

2e−
√

2tC3 + e−tC4 + etC5 + yC6 −
3
2

ye−
√

2t +
1√
2

yte−
√

2t. (44)

Now assigning value of any constant equal to one, say C3 = 1, and the remaining
constants equal to zero, we obtain the generator Z3

0 given in Equation (30). Then, Z3
1 can be

written as

Z3
1 = −1

2
te−
√

2t ∂

∂t
+

(
− 3

2
ye−
√

2t +
1√
2

yte−
√

2t
)

∂

∂y
. (45)

The nontrivial approximate Mei symmetry of Equation (2) has the form

Z3 = Z3
0 + εZ3

1 =

(
e−
√

2t ∂

∂t
− y
√

2e−
√

2t ∂

∂y

)
+ ε

(
− 1

2
te−
√

2t ∂

∂t
+

(
− 3

2
ye−
√

2t +
1√
2

yte−
√

2t
)

∂

∂y

)
. (46)

In a similar way, the remaining approximate Mei symmetries are obtained as

Z1 = Z1
0 + εZ1

1 =
∂

∂t
− εy

∂

∂y
, (47)

Z2 = Z2
0 + εZ2

1 =

(
e
√

2t ∂

∂t
+ y
√

2e
√

2t ∂

∂y

)
+ ε

(
− 1

2
te
√

2t ∂

∂t
+

(
− 3

2
ye
√

2t − 1√
2

yte
√

2t
)

∂

∂y

)
, (48)

Z4 = Z4
0 + εZ4

1 = e−t ∂

∂y
− εte−t ∂

∂y
, (49)

Z5 = Z5
0 + εZ5

1 = et ∂

∂y
− εtet ∂

∂y
, (50)

Z6 = Z6
0 + εZ6

1 = y
∂

∂y
− ε4ty

∂

∂y
. (51)

Mei Invariants

Using Equations (7) and (8), the approximate first integrals, I = I0 + εI1, are obtained as

I1 = I1
0 + εI1

1 = 0, (52)

I2 = I2
0 + εI2

1 = 3
√

2y2e2
√

2t + ε

(
− 15

2
y2e2

√
2t + 3

√
2y2te2

√
2t
)

, (53)

I3 = I3
0 + εI3

1 = −3
√

2y2e2−
√

2t + ε

(
− 15

2
y2e−2

√
2t − 3

√
2y2te−2

√
2t
)

, (54)

I4 = I4
0 + εI4

1 = −e−2t − εe−2t, (55)

I5 = I5
0 + εI5

1 = e2t − εe2t, (56)

I6 = I6
0 + εI6

1 = 2yy′ − ε(−12tyy′ − 4y2). (57)

4. Conclusions and Discussions

In this paper, approximate Mei symmetries and first integrals corresponding to the
approximate Hamiltonian are studied. Formulae of obtaining these symmetries and in-
variants/first integrals for the approximate Hamiltonian are given in Theorems 1 and 2,
respectively. The given example of the damped harmonic oscillator demonstrates the
procedure developed in detail. A comparison of approximate Noether and approximate
Mei symmetries for DHO is given in Table 1 that shows:
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• The number of approximate Mei symmetries is more than the number of approximate
Noether symmetries;

• The Mei symmetry Z1 is also contained in the set of Noether symmetries;
• The other Mei symmetries, Z2, Z3, Z4, Z5, and Z6 are different from the Noether

symmetries; therefore, there are new corresponding conserved quantities.

Table 1. Comparison between approximate Noether symmetries and approximate Mei symmetries for DHO.

Approximate Noether Symmetries Approximate Mei Symmetries

X1 =
∂

∂t
− εy

∂

∂y
Z1 =

∂

∂t
− εy

∂

∂y

X2 =

(
cos 2t

∂

∂t
− y sin 2t

∂

∂y

)
+ ε

(
− y cos 2t

∂

∂y

)
Z2 =

(
e
√

2t ∂

∂t
+ y
√

2e
√

2t ∂

∂y

)
+ ε

(
− 1

2
te
√

2t ∂

∂t

)
+

(
− 3

2
ye
√

2t − 1√
2

yte
√

2t
)

∂

∂y

X3 =

(
sin 2t

∂

∂t
+ y cos 2t

∂

∂y

)
+ ε

(
− y sin 2t

∂

∂y

)
Z3 =

(
e−
√

2t ∂

∂t
+ y
√

2e−
√

2t ∂

∂y

)
+ ε

(
− 1

2
te−
√

2t ∂

∂t

)
+

(
− 3

2
ye−
√

2t +
1√
2

yte−
√

2t
)

∂

∂y

X4 = sin t
∂

∂y
− εt sin t

∂

∂y
Z4 = e−t ∂

∂y
− εte−t ∂

∂y

X5 = cos t
∂

∂y
− εt cos t

∂

∂y
Z5 = et ∂

∂y
− εtet ∂

∂y

Z6 = y
∂

∂y
− ε4ty

∂

∂y
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