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Abstract: The paper deals with the Stokes flow subject to the threshold leak boundary conditions
in two and three space dimensions. The velocity–pressure formulation leads to the inequality type
problem that is approximated by the P1-bubble/P1 mixed finite elements. The resulting algebraic
system is nonsmooth. It is solved by the path-following variant of the interior point method, and by
the active-set implementation of the semi-smooth Newton method. Inner linear systems are solved
by the preconditioned conjugate gradient method. Numerical experiments illustrate scalability of the
algorithms. The novelty of this work consists in applying dual strategies for solving the problem.

Keywords: Stokes problem; threshold leak boundary conditions; interior-point method; semi-smooth
Newton method

1. Introduction

The no-slip condition is the standard boundary condition in mathematical fluid flow
models. It expresses the fact that a fluid adheres to the surface S, i.e., the velocity u = 0
on S. Nevertheless, in many situations a motion of the fluid on S such as a slip along
impermeable S or a leak through semipermeable S can be observed. The Navier slip
condition is the simplest one [1]: σt = −kut, where k > 0 is the adhesive coefficient, σt, ut
denotes the shear stress, and the tangential component of u, respectively. From its form
we see that the fluid starts to slip whenever σt 6= 0. However, this is not the case, in
general. For example, a water drop on an inclined plane which is coated by a non-wetting
(hydrophobic) material (teflon, e.g.,) slips only if the angle inclination reaches a specific
value. Similarly, a leak of a fluid through semipermeable S may occur only if the magnitude
of the stress vector σ (or some of its components) on S attains a certain critical value. The
true slip or leak boundary conditions should reflect this threshold behavior. To this end
one can use tools of convex analysis and write them in a compact form as inclusions for
set-valued mappings, defined by the subgradient of appropriate convex functionals [2].
The overview of different threshold slip laws is presented and discussed in [3]. Since “slip”
in fluid mechanics is a synonym for “friction” in solid mechanics (in particular in contact
mechanics), it is not surprising that friction and slip models use the same terminology.
The weak form of mathematical models under threshold slip or leak conditions leads to
a variational inequality type problem, intricacy of which depends on the used law. The
simplest one is the threshold slip and leak condition of the Tresca type defined by:

(slip) |σt| ≤ g, ut 6= 0 then σt = −g
ut

|ut|
on S, (1)
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and
(leak) |σn| ≤ g, un 6= 0 then σn = −g

un

|un|
on S, (2)

respectively, where g is an a-priori given threshold bound, | · | stands for the absolute value
of a real number or the Euclidean norm in (1) for 3D problems. The Stokes system under (1)
and (2) has been studied by Fujita [4,5] and by Roux [6] who considered more general slip
models, in which the bound g may depend on |ut|. Despite the fact that the mathematical
analysis of this class of problems began relatively late (compared with friction problems
of contact mechanics), a lot of theoretical papers on this topic has appeared during past
twenty years. Results have been extended to other fluid models and slip conditions such
as the steady and unsteady Stokes and Navier–Stokes equations, Coulomb’s type friction
law [7–11] and the references therein. The Signorini unilateral boundary conditions [12]:

un + g ≥ 0, σn + σ∗ ≥ 0, (un + g)(σn + σ∗) = 0 on S, (3)

with given g, σ∗ is another type of conditions which leads to an inequality formulation.
The authors used (3) in [13,14] as the artificial outflow conditions prescribed on a part of
the boundary to model the blood flow in large arteries.

One of difficulties we face in numerical solution of variational inequalities is the
fact that problems are generally nonsmooth and consequently, appropriate computational
methods have to be used [15,16]. For the Stokes or Navier–Stokes system with slip or
leak conditions nonsmoothness is caused by the presence of the nondifferentiable func-
tional j whose subgradient defines (1) or (2). In the case of the Signorini conditions
nonsmoothness is due to the kinematical constraint un + g ≥ 0 on S which imposes
additional restrictions on the set of admissible velocity fields. The velocity–pressure for-
mulation of such problems is discretized using a pair of finite element spaces satisfying
the Babuska–Brezzi condition [17,18]. One way to handle the nondifferentiable term j,
the kinematical constraint in (3), is to use a regularization of j and a smooth penalization
of the constraint, respectively in order to transform originally the nonsmooth problem
into a sequence of smooth ones, which can be solved by standard methods. The regu-
larization of j has been used in [19], and the penalty method in [13]. Another and the
most frequent way of releasing constraints and the nonsmooth character of mathematical
models is based on a dualization approach. In the case of the Stokes and Navier–Stokes
system, this leads to the weak velocity–pressuretype formulation which is enhanced by
the additional Lagrange multipliers. The resulting weak formulation is formally the same
as the Karush–Kuhn–Tucker conditions in saddle point problems. The majority of papers
devoted to the convergence/error analysis of this class of problems uses just the dualization
approach [20–27]. Moreover, there exists a wide range of numerical methods for efficient
computational realization of the resulting algebraic models [16].

The present paper is devoted to computational aspects of the Stokes problem with
threshold leak conditions. We use the dual strategy, i.e., the velocity component is elimi-
nated from an appropriate mixed finite element discretization of 2D and 3D problems. Our
aim is to develop efficient algorithms for solving resulting algebraic systems which are
satisfied by the dual variables, namely by the discrete pressure, shear and the normal stress
on S, in our case. Let us note that this approach is frequently used in contact problems
of solid mechanics. However, its simple transfer to problems of fluid mechanics is not
possible due to the presence of the incompressibility condition prescribed in the whole
computational domain. The modified path–following (PF) variant of the interior point
method has been used in [27] for solving 2D Stokes system with threshold slip conditions,
and in [28] for 3D problems. In addition, the latter paper uses also the semi-smooth Newton
(SSN) and compares it with the PF method. Although numerical experiments demonstrated
the scalable behavior of both approaches, the SSN method turned out to be more efficient
because of its simpler implementation. Similar numerical tests and comparisons of SSN
and PF will be done in the present paper. It is hard to predict the computational efficiency
in advance, since the discrete threshold leak conditions in 2D and 3D problems always
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lead to simple box constraints unlike the separable spherical constraints in the case of
the threshold slip in 3D. Another important feature is the fact that the dual algebraic
formulations involve relatively a small number of constrained unknowns. This excludes
the efficient use of some types of algorithms such as strictly feasible minimization methods
based on an active-set strategy [29]. It has been found in [27] for 2D problems that they
are less efficient than the PF method. The inefficiency is more significant for large-scale 3D
problems. The main benefit of this work is an application of dual strategies for solving the
problem. The methods presented in this paper may be easily modified for parallelization
based on the FETI domain decomposition technique [30].

The paper is organized as follows. In Section 2 we present the classical and several
weak formulations of the problem. The mixed finite element approximation based on the P1-
bubble/P1 finite element pair is introduced in Section 3. The resulting algebraic problems
are starting point for constructing of algorithms in Section 4. Finally, Section 5 contains
results of numerical experiments, including the problems with non-unique solutions.
Concluding remarks are summarized in Section 6.

The following notation is used in the paper: Hk(Ω), k ≥ 0 integer, stands for the
Sobolev space of functions defined in Ω which are together with their generalized deriva-
tives up to order k square integrable in a domain Ω ⊂ Rd (H0(Ω) = L2(Ω)). The scalar
product in L2(Ω) will be denoted by ( , ). L2

+(Ω) denotes the set of non-negative functions
from L2(Ω). If γ is a part of the boundary of Ω then H

1
2 (γ) is the trace space on γ of

functions belonging to H1(Ω). The space of p× q matrices is denoted by Rp×q, Rp := Rp×1

is the space of p-dimensional vectors, and Rp
+ denotes the non-negative orthant of Rp. Bold

characters are used for vectors and matrices. By 0 we denote the zero matrix, or vector. Fur-
ther I ∈ Rp×p stands for the identity matrix. The scalar product of two vectors a, b ∈ Rp, is
denoted by a · b. If A = (aij) ∈ Rp×q, B = (bij) ∈ Rp×q are two matrices then A : B = aijbij
(summation convention is used). Caligraphic symbols will be used for index sets, for
instance: N = {1, 2, . . . , n} and A, I ⊆ N . If N ∈ Rp×q and A 6= ∅, then NA ∈ R|A|×q

stands for the matrix given by the rows of N whose indices belong to A. If A ∈ Rp×p is
symmetric, positive definite with the smallest, and largest eigenvalues 0 < αmin ≤ αmax,
respectively, then the spectral condition number of A is cond(A) = αmax/αmin. The indi-
cator matrix of a subset S ⊆ N is the diagonal matrix D(S) = diag(s1, s2, . . . , sp) ∈ Rp×p,
where si = 1 for i ∈ S and si = 0 if i 6∈ S . Finally, the symbol ‖ · ‖ stands for the Euclidean
norm in Rp, p ≥ 2.

2. Setting of the Problem

The aim of this section is to recall the classical formulation of the Stokes system
with leak boundary conditions and to present several weak formulations of this problem
together with main existence/uniqueness results.

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with the Lipschitz boundary ∂Ω which
is decomposed into two nonempty, nonoverlapping parts Γ and S both open in ∂Ω. The
classical formulation of the problem reads as follows: find the velocity vector u : Ω → Rd

and the pressure p : Ω→ R satisfying the following system of differential equations and
boundary conditions:

−2µ div (Du) +∇p = f in Ω,
div u = 0 in Ω,

u = 0 on Γ,
ut = 0 on S,
|σn| ≤ g on S,

un 6= 0⇒ |σn| = g & unσn ≤ 0 on S.


(4)

Here µ > 0 is the viscosity of the fluid, f : Ω → Rd, g : S → R+ denote an external
force, and a nonnegative leak threshold, respectively. Further Du = 1

2 (∇u + (∇u)>) is
the symmetric part of the gradient of u, n stands for the unit, outward normal vector to
∂Ω, un = u · n, ut = u − unn is the normal, and the tangential component of u on ∂Ω,
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respectively. Similarly, σn = 2µDun · n− p is the normal component of the stress vector
σ = 2µDun− pn on ∂Ω. It is worth noticing that unlike the shear stress σt = σ− σnn, the
normal component σn depends explicitly on the pressure p. The boundary conditions on S
express the fact that there is no slip along S and the fluid can escape from Ω only if the
threshold g is attained, i.e., |σn| = g. In addition, the sign of σn is opposite to the one of un.

Remark 1. The last two conditions in (4) can be written in the following equivalent way:

|σn| ≤ g, σnun + g|un| = 0 on S (5)

or
−σn ∈ g∂|un| on S,

where the symbol ∂ stands for the subgradient of convex functions.

To present variational formulations of (4) we shall need the following function spaces
and forms:

W(Ω) = {v ∈
(

H1(Ω)
)d
| v = 0 on Γ},

V(Ω) = {v ∈W(Ω) | vt = 0 on S},

Vdiv(Ω) = {v ∈ V(Ω) | div v = 0 in Ω},

and

a(u, v) = 2µ
∫

Ω
Du : Dv dx, u, v ∈

(
H1(Ω)

)d
,

b(v, q) = −
∫

Ω
q div v dx, q ∈ L2(Ω), v ∈

(
H1(Ω)

)d
,

( f , v) =
∫

Ω
f · v dx, f ∈

(
L2(Ω)

)d
, v ∈

(
H1(Ω)

)d
,

j(vn) =
∫

S
g|vn| ds, g ∈ L2

+(S), v ∈
(

H1(Ω)
)d

.

By the weak velocity–pressure formulation of (4) we call a problem of finding a pair
(u, p) ∈ V(Ω)× L2(Ω) such that

a(u, v− u) + b(v− u, p) + j(vn)− j(un) ≥ ( f , v− u) ∀v ∈ V(Ω),

b(u, q) = 0 ∀q ∈ L2(Ω).

}
(6)

From Green’s formula with an appropriate choice of test functions v one can verify
that the classical and weak velocity–pressure formulations are equivalent for sufficiently
smooth solutions (u, p) ([5]).

Restricting to test functions v ∈ Vdiv(Ω) we arrive at the weak velocity formulation of (4):

u ∈ Vdiv(Ω) : a(u, v− u) + j(vn)− j(un) ≥ ( f , v− u) v ∈ Vdiv(Ω), (7)

which is equivalent to the following minimization problem:

u ∈ argmin{J(v), v ∈ Vdiv(Ω)}, (8)

where
J(v) =

1
2

a(v, v) + j(vn)− ( f , v).

Problem (8) is the variational inequality of the second kind and it has a unique solution
u [15].
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The following existence/uniqueness result has been established in [4,5].

Theorem 1. Problem (6) has a solution (u, p) for any f ∈
(

L2(Ω)
)d and g ∈ L2

+(S). The velocity
vector u is unique. If there is a set ω ⊆ S, measd−1ω > 0 such that |σn| = g on ω then the
pressure p is unique, as well, otherwise p is determined up to constants c satisfying |σn + c| ≤ g
a.e. on S.

Remark 2. If, besides Γ and S there is a portion ΓN ⊆ ∂Ω, measd−1ΓN > 0, where the value of σ

is prescribed, i.e., σ = σN ∈
(

L2(ΓN)
)d given, then also p is unique.

Remark 3. It has been shown in [5] that, if p is not unique, then the range of the admissible
constants c satisfying |σn + c| ≤ g a.e. on S is the interval 〈k1, k2〉, where k1 = supS(σn − g),
k2 = infS(σn + g), provided that the solution (u, p) is smooth enough.

The last formulation presented in this section is the variant of the velocity–pressure
formulation (6) in which the Lagrange multipliers are used to release the no-slip condition
ut = 0 on S and to regularize the nonsmooth term j. To this end we shall need the following
trace spaces:

Xt = {φ ∈
(

L2(S)
)d−1| ∃v ∈W(Ω) : φ = vt on S},

Xn = {µ ∈ L2(S)| ∃v ∈W(Ω) : µ = vn on S}

and their duals X
′
t, X

′
n. If Ω is the domain with a smooth boundary (C1,1, e.g.,), then

Xt = (H
1
2 (S))d−1 and Xn = H

1
2 (S).

Remark 4. If the solution (u, p) is sufficiently smooth, then the normal and shear components of σ
on S have been defined pointwisely at the beginning of this section. If no regularity assumptions
are imposed on (u, p) then σn and σt have to be understood as elements of X

′
n and X

′
t, respectively,

defined by

〈σt, vt〉 := a(u, v) + b(v, p)− ( f , v) ∀v ∈W(Ω), vn = 0 on S, (9)

〈σn, vn〉 := a(u, v) + b(v, p)− ( f , v) ∀v ∈W(Ω), vt = 0 on S, (10)

where the 〈, 〉 stands for the duality pairings. It is easy to see that the right hand sides of (9) and (10)
depend only on vt, and vn on S, respectively, since (u, p) ∈ Vdiv(Ω)× L2(Ω) solves the Stokes
system in a weak sense. Moreover, σn belongs to L2(S) and it satisfies the last two conditions on S
in (4). Indeed,

j(vn)− j(un) ≥ 〈−σn, vn − un〉 ∀v ∈ V(Ω) ⇔ −σn ∈ ∂j(un) a.e. on S.

The duality pairing 〈σn, vn〉 is defined by the L2(S)-scalar product in this case.

Finally, let
K = {ν ∈ L2(S)| |ν| ≤ g a.e. on S}

be a closed, convex subset of L2(S). To derive the new formulation we use the saddle-point
approach. It holds:

J(u) = min
v∈Vdiv(Ω)

J(v) = min
v∈V(Ω)

sup
q∈L2(Ω)

{J(v) + b(v, q)}

= min
v∈W(Ω)

sup
q∈L2(Ω)

sup
τ∈X

′
t

ν∈K

{J(v) + b(v, q)− 〈τ, vt〉 − 〈ν, vn〉}

:= min
v∈W(Ω)

sup
q∈L2(Ω)

sup
τ∈X

′
t

ν∈K

L(v, q, τ, ν),
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where L : Q→ R, Q = W(Ω)× L2(Ω)× X
′
t × K is the Lagrangian. Suppose there exists a

saddle-point (u∗, p∗, τ∗, ν∗) ∈ Q of L on Q:

L(u∗, q, τ, ν) ≤ L(u∗, p∗, τ∗, ν∗) ≤ L(v, p∗, τ∗, ν∗),

that holds for every (v, p, τ, ν) ∈ Q.
It is known (see [2]) that the necessary and sufficient condition for (u∗, p∗, τ∗, ν∗) to

be a saddle-point of L on Q is the satisfaction of the Karush–Kuhn–Tucker conditions:

a(u∗, v) + b(v, p∗) = ( f , v) + 〈τ∗, vt〉+ 〈ν∗, vn〉 ∀v ∈W(Ω),

b(u∗, q) = 0 ∀q ∈ L2(Ω),

〈τ, u∗t 〉 = 0 ∀τ ∈ X′t,

〈ν + ν∗, u∗n〉 ≤ 0 ∀ν ∈ K.


(11)

It is easy to see that (u∗, p∗) ∈ Vdiv(Ω)× L2(Ω) satisfies the Stokes system and the
boundary conditions on ∂Ω, i.e., (u∗, p∗) solves (6). Moreover, τ∗ = σ∗t , ν∗ = σ∗n is the
corresponding shear, and normal stress on S, respectively. The opposite assertion is also
trivial: if (u, p) ∈ V(Ω)× L2(Ω) is a solution to (6), then the quadruplet (u, p, σt, σn) ∈
W(Ω)× L2(Ω)× X′t × K solves (11), where σt, σn is the corresponding shear, and normal
stress on S, respectively.

Theorem 2. A couple (u, p) ∈ V(Ω)× L2(Ω) solves (6) if and only if the quadruplet (u, p, σt, σn) ∈
Q is a solution to (11).

Proof is straightforward. For more details we refer to [31].

Remark 5. In the discrete counterpart of the problem we shall use the following more general form
jκ instead of j:

jκ(vn, wn) =
∫

S
g|vn|+ κwnvn ds, g, κ ∈ L2

+(S), v, w ∈
(

H1(Ω)
)d

.

Then the weak formulation (6) is modified as follows: find a pair (u, p) ∈ V(Ω)× L2(Ω)
such that

a(u, v− u) + b(v− u, p) + jκ(vn, un)− jκ(un, un) ≥ ( f , v− u) ∀v ∈ V(Ω),

b(u, q) = 0 ∀q ∈ L2(Ω).

}
(12)

The function κ : S→ R+ characterizes pore opening. The respective leak condition reads as

|σn + κun| ≤ g, (σn + κun)un + g|un| = 0 on S. (13)

Therefore the substitution σ̃n = σn + κun transforms the leak condition (13) formally into (5)
so that all results of this section remain valid also for problem (12).

3. Mixed Finite Element Method and Algebraic Formulations

In this section we present the algebraic form of the problem, which will be used in the
subsequent parts of the paper for numerical solution. It is based on the discretization of
the velocity–pressure formulation (12) by a mixed finite element method. Next we shall
suppose that Ω is a polygonal (d = 2), or polyhedral (d = 3) domain. If not, then Ω is
approximated by them. Let Vh ⊂Wh, Qh be finite element approximations of V(Ω), W(Ω),
and L2(Ω), respectively, such that the bilinear form b satisfies the Babuska–Brezzi condition:

sup
vh∈Wh

b(vh, qh)

‖vh‖1,Ω
≥ β‖qh‖0,Ω ∀qh ∈ Qh,
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where β > 0 does not depend on the discretization parameter h.
The mixed finite element approximation of (12) reads as follows:

Find (uh, ph) ∈ Vh ×Qh such that
a(uh, vh − uh) + b(vh − uh, ph) + jκ(vn, un)− jκ(un, un) ≥ ( f , vh − uh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh.

 (14)

In computations we use the P1-bubble/P1 finite element pair [32] on a regular partition
Th of Ω into triangles, tetrahedras for d = 2, and 3, respectively. On Th we define the finite
element spaces:

Vh = {vh ∈ V(Ω) : vh|T ∈ (P1(T))d ⊕ (B(T))d ∀T ∈ Th},

Qh = {qh ∈ C(Ω) : qh|T ∈ P1(T) ∀T ∈ Th},

where P1(T), B(T) are the spaces of polynomials of degree one and of bubble functions of
degree three (d = 2) and four (d = 3) on T ∈ Th, respectively.

The algebraic counterpart of (14) reads as follows:

Find (u, p) ∈ V×Rnp such that

uTA(v− u) + (v− u)TBTp + jhκ (v, u)− jhκ (u, u) ≥ bT(v− u) ∀v ∈ V,

Bu = 0

 (15)

with

V = {v ∈ Rd(nu+nq) : Tv = 0},

jh
κ(v, w) = gT |Nv|+ wTNTDκNv, (16)

where the absolute value is understood componentwisely, Dκ = diag(κ), g, κ ∈ Rns
+ with

ns being the number of nodes belonging to S \ Γ. Here, np, nu stand for the number of the
finite element nodes of Th in Ω, and Ω \ Γ, respectively, while nq denotes the number of
the triangles/tetrahedras in Th. Further, A ∈ Rd(nu+nq)×d(nu+nq) is a symmetric, positive
definite diffusion matrix, B ∈ Rnp×d(nu+nq) is a full row-rank divergence matrix, and
b ∈ Rd(nu+nq) is a vector of nodal forces. The unit outward, normal vector at the i-th node
of S \ Γ defines nonzero entries in the i-th row of the matrix N ∈ Rns×d(nu+nq). For d = 2,
the tangential vector defines nonzero entries in the i-th row of the matrix T ∈ Rns×2(nu+nq).
For d = 3, there are two mutually orthonormal tangential vectors that define nonzero
entries in the i-th rows of the matrices T1, T2 ∈ Rns×3(nu+nq). In this case, T = (TT

1 , TT
2 )

T .
Denote

N = {1, . . . , ns}

that is the local index set of the nodes belonging to S \ Γ. The algebraic version jh
κ of j

introduced above is the result of numerical integration, assuming that g, κ ∈ C(S). For
d = 3 we use the following integration formula on the triangular element τ ∈ Th|S with the

vertices xi, xj, xk ∈ S:

∫
τ

g|vn| ds ≈ |τ|g(xτ)
1
3
(|vn(xi)|+ |vn(xj)|+ |vn(xk)|)

= |τ|g(xτ)
1
3
(|(Nv)i|+ |(Nv)j|+ |(Nv)k|), (17)
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where |τ| = meas τ, xτ is the centre of gravity of τ, and (Nv)i is the i-th component of Nv.
Summing up (17) over all τ ∈ Th|S we arrive at:

∫
S

g|vn| ds ≈ gT |Nv| with gi :=
ni

∑
j=1

|τi
j |

3
g(xτi

j
), i ∈ N ,

where g = (g1, . . . , gns)
T and ni is the number of the triangles τi

j ∈ Th|S sharing xi ∈ S \ Γ
as the common vertex. In the same way we get:

∫
S

κwnvn ds ≈ wTNTDκNv with κi :=
ni

∑
j=1

|τi
j |

3
κ(xτi

j
), i ∈ N , (18)

where κ = (κ1, . . . , κns)
T . We proceed analogously for d = 2 when τ ∈ Th|S is a line

segment, ni ≤ 2, and

gi :=
ni

∑
j=1

|τi
j |

2
g(xτi

j
), κi :=

ni

∑
j=1

|τi
j |

2
κ(xτi

j
), i ∈ N . (19)

From this and (16)

jh
κ(v, u)− jh

κ(u, u) = gT |Nv| − gT |Nu|+ uTNTDκN(v− u).

Thus problem (15) can be written in the following equivalent form:

Find (u, p) ∈ V×Rnp such that

uTAκ(v− u) + (v− u)TBTp + jh(v)− jh(u) ≥ bT(v− u) ∀v ∈ V,

Bu = 0,

 (20)

where
Aκ = A + NTDκN (21)

and
jh(v) = gT |Nv|.

It is easy to show that the first component u in (20) solves the discrete velocity
formulation being the algebraic version of (8):

Find u ∈ VB such that

J (u) ≤ J (v) ∀v ∈ VB,

}
(22)

where

VB = {v ∈ V : Bv = 0},

J (v) =
1
2

vTAκv− vTb + jh(v).

Formulation (22) is not suited for direct computations, as the constraints in VB can be
hardly handled for large-scale problems. Moreover, the function J is nondifferentiable
caused by the term jh. To overcome these difficulties, we will use the dual formulation of
(22) and derive the discrete counterpart of (11).
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We introduce three Lagrange multipliers: µn ∈ Rns to regularize jh, µt ∈ R(d−1)ns ,
q ∈ Rnp to release the discrete stick, and incompressibility conditions, respectively and
denote µ = (µT

n , µT
t , qT)T . Let

X = Xn ×R(d−1)ns+np ,

Xn = {µn ∈ Rns : |µn,i| ≤ gi, i ∈ N},

where µn,i is the i-th component of µn ∈ Rns . The term jh can be written as follows:

jh(v) = ∑
i∈N

max
|µn,i |≤gi

µn,i(Nv)i = max
µn∈Xn

µT
n Nv.

Thus:
min
v∈VB

J (v) = min
v∈Rd(nu+nq)

max
µ∈X
L#(v, µ),

where the Lagrangian L# : Rd(nu+nq) ×X → R associated with the velocity Formulation
(22) is defined for (v, µ) ∈ Rd(nu+nq) ×X by:

L#(v, µ) =
1
2

vTAκv− vTb + µT
n Nv + µT

t Tv + qTBv.

Until now, the velocity vector v ∈ Rd(nu+nq) incorporates dnq bubble components.
These components are usually eliminated before the computational process [33]. In our
case, we perform this elimination in a saddle-point formulation for L#, which leads to the
reduced Lagrangian L : Rdnu ×X→ R defined by:

L(v, µ) =
1
2

vTAκv− vTb + µT
n Nv + µT

t Tv + qTBv− 1
2

qTEq− cTq, (v, µ) ∈ Rdnu ×X.

To simplify notation here and in what follows, we use the same symbols for the
corresponding matrices and vectors before and after the elimination of the bubble com-
ponents. The dimensions of the reduced matrices are: Aκ ∈ Rdnu×dnu , N ∈ Rns×dnu ,
T ∈ R(d−1)ns×dnu , B ∈ Rnp×dnu , and b ∈ Rdnu . Note that these matrices preserve the
same properties as before the elimination, especially, the expression (21) remains valid
with A ∈ Rdnu×dnu being symmetric, positive definite. The presence of the symmetric,
positive semidefinite matrix E ∈ Rnp×np and of the vector c ∈ Rnp is due to this elimination.
Note that E has the defect one and the eigenvector whose all components are equal to
1 corresponds to zero eigenvalue.

The new saddle-point formulation of (22) reads as follows:

Find (u, λ) ∈ Rdnu ×X such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀(v, µ) ∈ Rdnu ×X,

}
(23)

or, equivalently,

Find (u, λ) ∈ Rdnu ×X such that

Aκu + NTλn + TTλt + BTp− b = 0,

Bu− Ep− c = 0,

Tu = 0,

|λn,i| ≤ gi,

(Nu)i 6= 0 ⇒ |λn,i| = gi & (Nu)iλn,i ≥ 0,

}
i ∈ N ,


(24)

where λ = (λT
n , λT

t , pT)T .
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Remark 6. Here, λn, λt, p are the discrete counterparts of −σ̃n (see Remark 5), −σt, and p,
respectively. The change of the sign at σ̃n and σt is for convenience of readers. One can see at a
glance that the dual Hessian will be positive definite, as C introduced bellow is assembled from
matrices without any negative signs.

Now we eliminate the unknown u. Denoting C = (NT , TT , BT)T , the first equation in
(24) yields u = A−1

κ (b−CTλ). Inserting u into the first inequality in (23), we arrive at the
dual formulation of (22):

Find λ ∈ X such that

S(λ) ≤ S(µ) ∀µ ∈ X,

}
(25)

where S : Rdns+np → R,

S(µ) = 1
2

µTFκµ− µTd

with Fκ = CA−1
κ CT + diag(0, 0, E) being symmetric, positive definite provided that ΓN

from Remark 2 is nonempty, and d = CA−1
κ b− (0T , 0T , cT)T . In what it follows we will

assume that Fκ is non-singular. The case ΓN = ∅ will be discussed in Example 3.
It should be noted that (25) is more convenient for numerical solution unlike (22) as

the function S is differentiable (quadratic) and the feasible set X is defined by the box
constraints. The solution to (25) may be computed by an appropriate algorithm of the
constrained minimization. Another way how to solve our problem originates from (24)
but with the algebraic leak boundary conditions expressed by projections on appropriate
convex sets. The resulting system of nonsmooth algebraic equations can be solved by the
nonsmooth Newton type method.

4. Algorithms

The aim of this section is to present main ideas of the path-following and the semis-
mooth Newton methods that turned out to be highly efficient for solving frictional contact
problems of solid mechanics [34–36]. These algorithms have been adapted for the Stokes
system with the threshold slip boundary conditions in 2D [27,37] and 3D [28]. The situation
with the threshold leak conditions is different since only box constraints are imposed on
the individual components of λn in 2D, as well as in 3D problems. In view of this fact the
same implementation of the path-following method can be used in both cases. Also the
semismooth Newton method works only with projections on compact intervals unlike the
threshold slip boundary conditions in 3D in which case the components of λt are pairwise
subject to spherical constraints and projections on circles are needed. Consequently, the
finite termination property for the semismooth Newton method can be expected also for
3D problems.

4.1. Path-Following Method

Let L : Rdns+np ×R2ns
+ → R be the Lagrangian to (25):

L(µ, ν) = S(µ) + νT
1 (−g− µn) + νT

2 (µn − g), (26)

where ν := (νT
1 , νT

2 )
T ∈ R2ns , ν ≥ 0, is the Lagrange multiplier vector releasing the box

constraints appearing in X. Let zk := −∇νk L(µ, ν), k = 1, 2, z := (zT
1 , zT

2 )
T ∈ R2ns be the

new variables and define the function H : R(d+4)ns+np → R(d+4)ns+np ,

H(ω) := (∇µL(µ, ν)T , (∇νL(µ, ν) + z)T , eTMZ)T ,

where ω = (µT , νT , zT)T ∈ R(d+4)ns+np , M = diag(ν), Z = diag(z), and e ∈ Rns is the
vector whose all components are equal to 1. The solution λ to (25) is the first component of
the vector ω̄ = (λT , ν̄T , z̄T)T , which satisfies

H(ω̄) = 0, ν̄ ≥ 0, z̄ ≥ 0, (27)
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since (27) is equivalent to the Karush-Khun-Tucker conditions for (λ, ν̄) to be a saddle-point
of (26) on Rdns+np ×R2ns

+ .
To derive the path-following algorithm, we replace (27) by the following perturbed prob-

lem:
Find ωτ = (λT

τ , νT
τ , zT

τ )
T ∈ R(d+4)ns+np such that

H(ωτ) = (0T , 0T , τeT)T , ντ > 0, zτ > 0,

}
(28)

where τ ∈ R+. Solutions ωτ to (28) define a curve C(τ) in R(d+4)ns+np called the central path.
This curve approaches ω̄ when τ tends to zero. We combine the damped Newton method
used for solving the equation in (28) with an appropriate change of τ which guarantees
that the iterations belong to a neighbourhood N (c1, c2) of C(τ) defined by:

N (c1, c2) = {ω = (µT , νT , zT)T ∈ R(d+4)ns+np : νizi ≥ c1ϑ, i = 1, . . . , 2ns,

ν ≥ 0, z ≥ 0, ‖∇µL(µ, ν)‖ ≤ c2ϑ, ‖∇νL(µ, ν) + z‖ ≤ c2ϑ},

where c1 ∈ (0, 1], c2 ≥ 1, and ϑ := ϑ(ω) = νTz/(2ns). In the k-th iteration, we replace
τ := τ(k) by the product of ϑ(k) := ϑ(ω(k)) with the centering parameter c(k) chosen as
in [38]. The algorithm uses also the Armijo-type condition (30) ensuring that the sequence
{ϑ(k)} is monotonically decreasing. By J(ω) in (29), we denote the Jacobian matrix of H
at ω.

ALGORITHM PF : Given c1 ∈ (0, 1], c2 ≥ 1, 0 < cmin ≤ cmax ≤ 1/2, c3 ∈ (0, 1), and
ε ≥ 0. Let ω(0) ∈ N (c1, c2) and set k := 0.

(i) Choose c(k) ∈ [cmin, cmax].

(ii) Solve
J(ω(k))∆ω(k+1) = −H(ω(k)) + (0T , 0T , c(k)ϑ(k)eT)T . (29)

(iii) Set ω(k+1) = ω(k) + α(k)∆ω(k+1) with the largest α(k) ∈ (0, 1] such that ω(k+1) ∈
N (c1, c2) and

ϑ(k+1) ≤ c3(1− α(k)(1− c(k)))ϑ(k). (30)

(iv) Return ω̄ = ω(k+1), if err(k) := ‖ω(k+1) −ω(k)‖/‖ω(k+1)‖ ≤ ε, else set k := k + 1 and
go to step (i).

The bounds imposed on the parameters mentioned in the initialization section follow
from the convergence analysis presented in [34]. The computational efficiency depends on
the way how the inner linear systems (29) are solved. The Jacobian matrix is non-symmetric
and indefinite with the following block structure:

J(ω(k)) =

 Fκ J12 0
JT

12 0 I
0 Z(k) M(k)

, J12 =

 −I I
0 0
0 0

.

Eliminating the 2nd and 3rd component of ∆ω(k+1), we get the reduced linear system
for ∆µ(k+1) with the Schur complement

S(k)
κ = Fκ + J12M(k)(Z(k))−1JT

12. (31)

As µ(k) > 0, z(k) > 0, the matrix S(k)
κ is symmetric, positive definite and the reduced

linear system can be solved by the conjugate gradient method. In order to guarantee its
convergence, we use the preconditioner:

P(k)
κ = DFκ + J12M(k)(Z(k))−1JT

12,
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where DFκ = diag(Fκ). Although S(k)
κ and P(k)

κ depend on the k iteration, the eigenvalue

bounds of the preconditioned matrix (P(k)
κ )−1S(k)

κ are positive and do not depend on k.
Consequently, the spectral condition number cond is bounded by (see [34]):

cond ((P(k)
κ )−1S(k)

κ ) ≤ cond (DFκ )cond (Fκ). (32)

In computations, we approximate DFκ replacing A−1
κ in Fκ by diag (Aκ)−1, i.e.,

D̃Fκ = diag(Cdiag (Aκ)
−1CT) + diag(0, 0, diag(E)).

The inequality (32) remains valid also for this choice od D̃Fκ .
The conjugate gradient method (CGM) used in the k-th step of ALGORITHM PF is

initialized and terminated adaptively. The initial CGM iteration is taken as the computed
result in the previous iteration. The CGM iterations are terminated if the relative residuum
is less than the bound, depending on the precision achieved in the outer loop err(k−1) and
determined by:

tol(k) = min{rtol × err(k−1), cfact × tol(k−1)},

where 0 < rtol < 1, 0 < cfact < 1, err (−1) = 1, and tol(−1) = rtol/cfact.

4.2. Semismooth Newton Method

Let P[a,b] : R→ [a, b] be the projection of R on the interval [a, b], a ≤ b, defined by the
max-function:

P[a,b](x) = x−max{0, x− b}+ max{0,−x + a}, x ∈ R. (33)

The last two lines in (24) representing the leak condition can be equivalently written as:

λn,i = P[−gi ,gi ]
(λn,i + ρi(Nu)i), i ∈ N , (34)

where ρi > 0, i ∈ N , are arbitrary but fixed parameters. We introduce the new variable
sn ∈ Rns whose components sn,i = κi(Nu)i + λn,i approximate −σn(xi) at the nodes
xi ∈ γS \ γD, i ∈ N . Then (34) takes the form:

0 = κi(Nu)i − sn,i + P[−gi ,gi ]
(sn,i + (ρi − κi)(Nu)i), i ∈ N .

We distinguish two cases:

if κi = 0, ρi = ρ : 0 = −sn,i + P[−gi ,gi ]
(sn,i + ρ(Nu)i),

if κi > 0, ρi = κi : 0 = κi(Nu)i − sn,i + P[−gi ,gi ]
(sn,i),

}
i ∈ N . (35)

The equations in (35) can be reformulated using (33). As we prefer the vector notation,
we split N into two subsets:

N0 = {i ∈ N : κi = 0}, N+ = {i ∈ N : κi > 0}

and introduce the sub-vectors sn,N0 , sn,N+ , gN0 , gN+ and the sub-matrices NN0 , NN+ ,
Dκ+ = diag(κN+). Then (35) is equivalent to:

0 = ρNN0 u−max{0, sn,N0 + ρNN0 u− gN0}+ max{0,−sn,N0 − ρNN0 u− gN0},

0 = NN+
u−max{0, D−1

κ+ (sn,N+
− gN+

)}+ max{0, D−1
κ+ (−sn,N+

− gN+
)},

}
(36)
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where the max-function is understood component-wisely. The max-function can be effi-
ciently replaced by indicator matrices. First we define inactive/active sets for the second
arguments of the max-functions in (36):

I+0 := {i ∈ N0 : sn,i + ρ(Nu)i − gi > 0},

I−0 := {i ∈ N0 : −sn,i − ρ(Nu)i − gi > 0},

A0 := N0 \ (I+0 ∪ I
−
0 ),

I++ := {i ∈ N+ : sn,i − gi > 0},

I−+ := {i ∈ N+ : −sn,i − gi > 0}

A+ := N+ \ (I++ ∪ I−+ ).

According to this notation, we introduce the indicator matrices D(I+0 ), D(I−0 ), D(A0),
D(I++ ), D(I−+ ), D(A+), respectively. Summarizing, (24) can be written as one equation:

G(y) = 0, (37)

where G : Rd(nu+ns)+np → Rd(nu+ns)+np is defined at y = (uT , sT
n,N0

, sT
n,N+

, λT
t , pT)T by

G(y) :=



Au + NT
N0

sn,N0 + NT
N+

sn,N+ + TTλt + BTp− b
ρNN0u−D(I+0 )(sn,N0 + ρNN0u− gN0) + D(I−0 )(−sn,N0 − ρNN0u− gN0)

NN+u−D−1
κ+ D(I++ )(sn,N+ − gN+) + D−1

κ+ D(I−+ )(−sn,N+ − gN+)

Tu
Bu− Ep− c


using also (21). The standard differentiation rules lead to the following (generalized)
Jacobian matrix of G at y:

JG(y) =


A NT

N0
NT
N+

TT BT

ρD(A0)NN0 −D(I+0 ∪ I
−
0 ) 0 0 0

NN+ 0 −D−1
κ+ D(I++ ∪ I−+ ) 0 0

T 0 0 0 0
B 0 0 0 −E

.

The Equation (37) will be solved by the Newton-type iterations:

JG(y(k))y(k+1) = JG(y(k))y(k) −G(y(k)), k = 0, 1, . . . . (38)

This iterative process generates a sequence {y(k)} starting from y(0) as an initial
approximation. The right hand-side in (38) reads as follows:

JG(y(k))y(k) −G(y(k)) =


b

(D(I−0 )−D(I+0 ))gN0

D−1
κ+ (D(I−+ )−D(I++ ))gN+

0
c

.
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From this it is easy to show that s(k+1)
n, I+0

= gI+0 , s(k+1)
n, I−0

= −gI−0 and that the remaining

components of the new iteration y(k+1) in (38) solve the following linear system:


A NT

A0
NT
N+

TT BT

NA0 0 0 0 0
NN+ 0 −D−1

κ+ D(I++ ∪ I−+ ) 0 0
T 0 0 0 0
B 0 0 0 −E




u(k+1)

s(k+1)
n,A0

s(k+1)
n,N+

λ
(k+1)
t

p(k+1)

 =


b̃

0
g̃N+

0
c

, (39)

where b̃ = b−NT
I+0

gI+0 + NT
I−0

gI−0 and g̃N+ = D−1
κ+ (D(I−+ )−D(I++ ))gN+ .

To solve the linear systems (39), we use the Schur complement S(k) to A-block de-
fined by:

S(k) = F(k) + D(k), (40)

where F(k) = C(k)A−1(C(k))T and D(k) = diag(0, D−1
κ+ D(I++ ∪ I−+ ), 0, E) with C(k) =

(NT
A0

, NT
N+

, TT , BT)T . The right hand-sides of the Schur complement linear systems are
given by

d(k) = C(k)A−1b̃− (0T , g̃T
N+

, 0T , cT)T .

Note that the dependence on the k iteration is through the active set A0. We arrive at
the implementation of (38), in which the iterations are performed only with the last four
components of y assembled in the vector λ̂ = (sT

n,N0
, sT

n,N+
, λT

t , pT)T .

ALGORITHM SSN: Let λ̂(0) ∈ Rdns+np , ε ≥ 0, ρ > 0, and set k := 0.

(i) Determine the inactive/active sets I+0 , I−0 , A0, I++ , I−+ at λ̂(k) to build S(k) and d(k).

(ii) Set s(k+1)
n, I+0

= gI+0 , s(k+1)
n, I−0

= −gI−0 and solve the Schur complement linear system

S(k)λ̃(k+1) = d(k) (41)

for the remaining components of λ̂(k+1) assembled in the vector in λ̃(k+1).

(iii) Return λ̂(k+1) and u(k+1) = A−1(b̃ − CTλ̂(k+1)) with C = (NT
N0

, NT
N+

, TT , BT)T , if

err(k) := ‖λ̂(k+1) − λ̂(k)‖/‖λ̂(k+1)‖ ≤ ε, else set k := k + 1 and go to step (i).

The algorithm is the dual variant of the semismooth Newton method with the super-
linear convergence rate established in [39] provided that the initial iteration is sufficiently
close to the solution. The overall computational efficiency depends on the way how the
(inner) linear systems are solved. Although the size of S(k) depends on the cardinality
of A0 (i.e., on the k iteration), it is easily seen that these matrices are always positive
definite. Hence, the linear systems (41) can be solved by the conjugate gradient method.
This method in the k-th step of ALGORITHM SSN is initialized and terminated adaptively
using the same ideas as in ALGORITHM PF. Note that the preconditioning of the conjugate
gradient iterations is needed. This follows from the presence of D−1

κ+ in D(k) and the fact
that κi, i ∈ N+, depend on the mesh norms (on the area of the respective triangles in (18)
for d = 3 and the length of line segments in (19) for d = 2). Hence, cond (S(k)) tends to
infinity, when the finite element mesh norm approaches zero. As S(k) is ill-conditioned
through its diagonal, we use the diagonal preconditioner:

P(k) = DF(k) + DD(k) ,

where DF(k) = diag(F(k)) and DD(k) = diag(0, D−1
κ+ D(I++ ∪ I−+ ), 0, diag(E)). From spectral

analysis presented in [34], it follows that although S(k) and P(k) depend on κi, i ∈ N+, the
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eigenvalue bounds of the preconditioned matrix (P(k))−1S(k) are positive and independent
of κi, i ∈ N+. Consequently,

cond ((P(k))−1S(k)) ≤ cond (DF(k))cond (F(k)). (42)

In computations, we approximate DF(k) using analogous idea as in ALGORITHM PF.

5. Numerical Experiments

The computations were performed by the supercomputer Salomon at IT4I VŠB-
TUO [40]. The Salomon cluster consists of 1009 compute nodes. Each node is a powerful
x86-64 computer with Intel Xeon E5-2680v3 processors equipped with 24 cores and at
least 128 GB RAM. All codes are implemented in Matlab R2020a. The velocity component
is eliminated in both algorithms by solving auxiliary linear systems involving Aκ or A
with the preliminary Cholesky factorization realized by the Matlab function chol. We use
ALGORITHM PF with c1 = 10−3, c2 = 109, cmin = 10−12, cmax = 0.5, c3 = 10−2, ε = 10−3,
rtol = 0.9, cfact = 0.9. These values turned out to be optimal, as it follows from the tests
in [34]. ALGORITHM SSN uses rtol = 0.01, cfact = 0.5, and ε = 10−3. The termination
tolerance ε leads to the relative residua of order 10−5. In the tables below the numbers
nit, nF of the outer iterations, and the matrix-vector multiplications by Fκ or F(k), respec-
tively, are monitored. Note that nF determines overall complexities of computations. The
partitions Th of Ω are generated by Iso2mesh toolbox and ANSYS software [41,42]. As
we have already mentioned, the finite element spaces use P1-bubble/P1 element pairs
on Th. The resulting mesh will be characterized by values of the parameters nu, np, ns
introduced in Section 3. The stiffness matrices are assembled by the vectorized code [33,43].
To guarantee the uniqueness of the solution to (4) we will consider that ∂Ω is decomposed
into three non-overlapping and non-empty parts Γ, S, and ΓN open in ∂Ω (see Remark 2).
Nevertheless, one example and comments when ΓN = ∅ will be presented, as well. Finally
note that all physical quantities are considered in the SI system so that the units of g and κ
are Pa and Pa.s.m−1, respectively.

Example 1. (Square in 2D). Let Ω = (0, 1)2. To construct the triangulation Th we first
cut Ω into small squares and then each square into two triangles, see Figure 1(left). The
decomposition of ∂Ω is defined as follows: Γ = (0, 1)×{1}, ΓN = γleft ∪ γright, S = (0, 1)×
{0}, where γleft = {0} × (0, 1), γright = {1} × (0, 1). Further f = −2µ divD(uexp) +∇pexp
in Ω, µ = 1/2, u = 0 on Γ, σN = 2µD(uexp)n− pexpn on ΓN , g = 15, and κ = 30 on S (see
Remark 5), where uexp = (uexp,1, uexp,2), and

uexp,1(x, y) = (1− cos(2πx)) sin(2πy),

uexp,2(x, y) = sin(2πx)(cos(2πy)− 1),

pexp(x, y) = 2π(− cos(2πx) + 2 cos(2πy) + 1).

Note that uexp satisfies the homogeneous Dirichlet boundary condition on ∂Ω. Data
are chosen in such a way that both, leak and no leak zones appear on S. Figure 1 (right)
presents the streamlines of the computed solution. One can see that the leak on S generates
the fluid suction on ΓN . Figure 2 shows the pressure and velocity distribution in Ω. The
magnitudes of the normal velocity |un| and of the normal stress |σn| on S are seen in
Figure 3 (left), while |σ̃n| is depicted in Figure 3 (right). In the tables below the values
nit, nF, and CPU time (in seconds) for different finite element meshes with increasing nu,
np, and ns, and different values of g are compared. The computational complexities for
g = 15 are shown in Table 1. The analogous characteristics for g = 0.1 (leak everywhere)
and g = 100 (no leak) are summarized in Tables 2 and 3, respectively. In view of the
values of nF, one can see that both algorithms are scalable. The computations without
preconditioning are considerably less efficient as it is seen from Table 4.
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Figure 1. Two-dimensional (2D) mesh (left) and streamlines (right); g = 15, κ = 30.

Figure 2. The pressure (left) and velocity (right) distribution; g = 15, κ = 30.
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Figure 3. Distribution of |un|, |σn| (left) and |σ̃n| (right) on S; g = 15, κ = 30.

Table 1. Computations with preconditioner for g = 15, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

8320/4225/65 1.2 12/171 0.7 6/97
18,624/9409/97 3.7 12/194 2.8 8/139

33,024/16,641/129 8.4 12/209 4.8 7/129
51,520/25,921/161 15.5 12/231 10.2 8/150
74,112/37,249/193 23.8 12/228 15.7 7/139

100,800/50,625/225 42.4 12/260 25.5 7/147
131,584/66,049/257 62.4 12/266 38.5 7/147
166,464/83,521/289 82.9 12/251 58.3 7/156
205,440/103,041/321 118.0 12/261 78.3 7/153
248,512/124,609/353 172.0 13/295 110.0 7/164



Mathematics 2021, 9, 2906 17 of 24

Table 2. Computations with preconditioner for g = 0.1, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

8320/4225/65 1.1 10/131 0.8 6/88
18,624/9409/97 3.0 11/144 2.3 6/97

33,024/16,641/129 6.4 12/178 3.7 6/100
51,520/25,921/161 12.0 12/181 8.3 7/120
74,112/37,249/193 16.6 10/164 16.1 7/131

100,800/50,625/225 32.0 12/190 18.5 5/89
131,584/66,049/257 48.7 12/196 35.3 7/137
166,464/83,521/289 76.1 13/221 50.4 7/134
205,440/103,041/321 110.5 14/237 72.5 7/142
248,512/124,609/353 128.0 12/211 99.8 7/147

Table 3. Computations with preconditioner for g = 100, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

8320/4225/65 1.2 9/150 0.8 6/87
18,624/9409/97 3.9 9/190 2.1 7/116

33,024/16,641/129 12.6 11/294 6.6 8/142
51,520/25,921/161 15.4 11/275 8.1 6/102
74,112/37,249/193 28.2 10/244 20.2 9/172

100,800/50,625/225 42.7 10/251 24.5 7/134
131,584/66,049/257 61.4 10/258 26.2 5/88
166,464/83,521/289 86.8 10/263 54.7 7/143
205,440/103,041/321 121.6 10/271 85.3 8/168
248,512/124,609/353 164.8 10/281 95.1 7/139

Table 4. Computations without preconditioner for g = 15, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit /nF time(s.) nit /nF

8320/4225/65 13.0 27/1554 9.1 13/1450
18,624/9409/97 36.3 31/1865 30.8 20/2036

33,024/16,641/129 103.0 33/2484 82.0 20/2352
51,520/25,921/161 239.6 39/3371 188.5 15/3164
74,112/37,249/193 459.8 42/4089 343.6 14/3672

Example 2. (Cube in 3D). Let Ω = (0, 1)3. To construct the partition Th we first cut
Ω into small cubes and then each cube is split into five tetrahedras, see Figure 4. The
partition of ∂Ω into Γ, S, and ΓN is defined as follows: Γ = γtop ∪ γbottom ∪ γback, ΓN =
γleft ∪ γright, S = γfront, where γbottom = (0, 1)× (0, 1)× {0}, γtop = (0, 1)× (0, 1)× {1},
γback = {1} × (0, 1) × (0, 1), γleft = (0, 1) × {0} × (0, 1), γright = (0, 1) × {1} × (0, 1),
γfront = {0} × (0, 1)× (0, 1). Further f = −2µ divD(uexp) +∇pexp in Ω, µ = 1/2, u = 0 on
Γ, σN = 2µD(uexp)n− pexpn on ΓN , g = 15, and κ = 30, where uexp = (uexp,1, uexp,2, uexp,3),
and

uexp,1(x, y, z) = 4(1− cos(2πx)) sin(2πy)z(1− z),

uexp,2(x, y, z) = 4 sin(2πx)(cos(2πy)− 1)z(1− z),

uexp,3(x, y, z) = 0,

pexp(x, y, z) = 2π(− cos(2πx) + 2 cos(2πy)− cos(2πz)).
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Again, uexp satisfies the homogeneous Dirichlet boundary condition on ∂Ω and data
are chosen in such a way that both, leak and no leak zones appear on S. Figure 5 shows
the distribution of the velocity field on S and ΓN . One can see the leak zone in the middle
of S and the fluid suction on γleft. The same suction effect appears on γright. The normal
stress |σn| and |σ̃n| on S are seen in Figure 6. In Tables 5–8 we summarize analogous
characteristics as in Example 1. The conclusions are also analogous, i.e., both algorithms
turn out to be scalable also in 3D and the preconditioner plays an important role. Notice
that the numbers nF of the matrix-vector multiplications are lower compared to 2D case.

Figure 4. Splitting of the small cube (left) and 3D mesh (right); 1728 cubes and 8640 tetrahedras.

Figure 5. Velocity field on S and ΓN ; g = 15, κ = 30.

Figure 6. Distribution of |σn| (left) and |σ̃n| (right) on S; g = 15, κ = 30.



Mathematics 2021, 9, 2906 19 of 24

Table 5. Computations with preconditioner for g = 15, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

5148/2197/143 0.9 11/100 0.4 6/67
12,240/4913/255 3.2 11/107 1.3 6/66
23,940/9261/399 12.5 11/120 6.3 6/77

41,400/15,625/575 31.3 11/128 16.2 6/79
65,772/24,389/783 73.7 11/140 34.7 6/77

98,208/35,937/1023 136.8 11/137 68.5 6/77
139,860/50,653/1295 280.8 12/155 124.0 6/77
191,880/68,921/1599 502.9 12/162 235.6 6/83

Table 6. Computations with preconditioner for g = 0.1, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

5148/2197/143 0.8 11/87 0.4 6/66
12,240/4913/255 3.9 13/95 1.7 7/76
23,940/9261/399 9.8 11/90 5.7 6/72

41,400/15,625/575 26.5 13/101 12.9 6/64
65,772/24,389/783 55.7 11/101 23.9 5/54

98,208/35,937/1023 137.0 15/127 45.8 5/54
139,860/50,653/1295 246.1 14/126 82.7 5/55
191,880/68,921/1599 400.6 13/119 145.5 5/56

Table 7. Computations with preconditioner for g = 100, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

5148/2197/143 1.0 8/92 0.4 6/71
12,240/4913/255 3.7 8/99 2 7/77
23,940/9261/399 12.5 8/134 6.2 6/76

41,400/15,625/575 33.6 8/138 16.1 6/77
65,772/24,389/783 57.7 7/116 34.5 6/76

98,208/35,937/1023 139.0 8/141 68.7 6/77
139,860/50,653/1295 249.7 8/145 140 7/92
191,880/68,921/1599 400.7 8/133 166.9 4/64

Table 8. Computations without preconditioner for g = 15, κ = 30.

ALGORITHM PF ALGORITHM SSN

nu/np/ns time(s.) nit/nF time(s.) nit/nF

5148/2197/ 143 21.7 41/2963 14.0 9/1940
12,240/4913/255 86.5 32/2700 40.6 9/2198
23,940/9261/399 688.7 59/7857 273.7 10/3281

41,400/15,625/575 1549.6 46/6909 796.5 10/3673

Example 3. (Cube in 3D, non-unique solution). We change the partition of ∂Ω from Exam-
ple 2 as follows: ΓN = ∅, Γ = γleft ∪ γright ∪ γback ∪ γfront ∪ γtop, and S = γbottom. Let us
remind that, if ΓN = ∅, the pressure might be non-unique depending on the choice of g.
Next we suppose that g is constant and κ = 0 on S. To establish the critical value of g we use
the Stokes system with the homogeneous Dirichlet data prescribed on the whole boundary
∂Ω. Assuming that its solution is smooth enough, gcrit = (supS(σn)− infS(σn))/2, where
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σn is the corresponding normal stress. However since the whole procedure is applied to the
finite element discretization, the regularity assumption is superfluous. For given physical
data and the partition Th characterized by the parameters nu/np/ns = 38, 088/15, 625/529
the value gcrit = 18.31. It is easy to show that if g < gcrit, the problem has a unique solution
with both, leak and no-leak zones on S. If g > gcrit, the solution is not unique and only
no-leak zone appears on S. The behavior of the algorithms for different g is summarized
in Table 9. One can see that both algorithms are stable in all cases. The table presents
also the values supS(σ

g
n ) and infS(σ

g
n ) computed for the respective g. One can easily check

that (supS(σ
g
n )− infS(σ

g
n ))/2 = gcrit for g ≥ gcrit, while (supS(σ

g
n )− infS(σ

g
n ))/2 = g if

g < gcrit. The distribution of the velocity field on S for g = 16.31 is seen from Figure 7.
Note that the matrix C used in (25), especially its part (NT , BT)T , has not the full row-rank
due to ΓN = ∅. Consequently, Fκ and F(k) for A0 = N0 are singular with the defect
one and the eigenvector whose all components are equal to 1 corresponds to the zero
eigenvalue. The matrix S(k)

κ of the inner linear systems in ALGORITHM PF is regularized by
adding the diagonal matrix J12M(k)(Z(k))−1JT

12 to Fκ as seen from (31) (there are non-zero
diagonal entries on the level of N). Analogously, the matrix S(k) in ALGORITHM SSN is
regularized by adding D(k) to F(k) (see (41)) and by the choice of the active set A0 6= N0.
These heuristic arguments show that the matrices of the solved linear systems can be
regularized by the construction of the algorithms. Finally note that the condition number
bounds of the preconditioned Schur complements (32) and (42) are no longer valid. Never-
theless, the preconditioners can still be used and play the same important role as in the
previous examples.

Table 9. Computations with different g and κ = 0 for ΓN = ∅ (nu/np/ns = 38, 088/15, 625/529).

ALGORITHM PF ALGORITHM SSN

g infS(σ
g
n)/ supS(σ

g
n) time(s.) nit/nF time(s.) nit/nF

gcrit + 2 −19.86/16.76 106.1 18/615 32.3 7/192
gcrit + 0.5 −18.60/18.02 104.9 20/581 39.7 8/232
gcrit + 0.2 −18.40/18.22 113.9 21/662 39.1 8/234
gcrit −18.31/18.31 118.7 21/682 38.5 8/231
gcrit − 0.2 −18.11/18.11 105.8 21/619 40.3 8/234
gcrit − 0.5 −17.81/17.81 83.5 18/462 34.3 8/201
gcrit − 2 −16.31/16.31 53.9 15/189 24.4 7/156

Figure 7. Distribution of the velocity field on S for g = 16.31, κ = 0, and ΓN = ∅; the whole cube
(left) and S (right).

Example 4. (3D branched tube). Let Ω be the branched tube as in Figure 8, where the
partition Th and the partition of the boundary ∂Ω = S ∪ γin ∪ γout1 ∪ γout2 is also depicted.
This tube may represent a final part of the capillary in the human body. On Γ = γin we
prescribe the input velocity u|Γ,1 = a− a/r2(y2 + z2), u|Γ,2 = u|Γ,3 = 0 with a = 5 · 10−4,
r = 5.94 · 10−4 while ΓN = γout1 ∪ γout2 consists of two outputs of the tube with the natural
outflow condition σN = 0. The leak condition is prescribed on S = ∂Ω \ Γ ∪ ΓN . Further
f = 0 in Ω, µ = 1/2, and κ = 30. The partition Th is characterized by the following values
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of the parameters: nu = 27, 408, np = 9178, and ns = 4079. The behavior of ALGORITHM

PF and ALGORITHM SSN for different g is reported in Table 10. The distribution of the
velocity and the pressure for three selected g is depicted in Figure 9. Almost all liquid leak
through the wall at the vicinity of γin for the smallest value g = 10 can be observed, see
Figure 9 (top). The leak through the wall is minimal for g = 50, see Figure 9 (bottom). The
pressure is also growing for higher values of g. The zoomed parts of the velocity fields
near γin and γout2 are depicted in Figure 10 (the velocity distribution inside the tube looks
like the Poiseuille distribution). We used the reorthogonalization technique of the descent
vectors inside the CGM solver [44] that increases considerably efficiency of computations;
compare Table 10 with Table 11.

Figure 8. Branched tube: mesh.

Table 10. Computations for different values of g with reorthogonalization.

ALGORITHM PF ALGORITHM SSN

g time(s.) nit/nF time(s.) nit/nF

10 3018 26/3511 1369 15/1882
20 3122 26/3805 1348 15/1885
30 3146 25/3934 1370 15/1882
40 3622 26/4291 1096 13/1522
50 3948 26/4508 995 12/1377

Table 11. Computations for different values of g without reorthogonalization.

ALGORITHM PF ALGORITHM SSN

g time(s.) nit/nF time(s.) nit/nF

10 8314 25/11,017 15,584 15/21,214
20 9927 25/12,594 14,934 14/21,344
30 10,866 25/13,861 11,156 14/16,653
40 10,815 26/15,520 11,696 12/16,473
50 12,801 26/16,622 18,673 9/24,300
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Figure 9. Distribution of the velocity (left) and the pressure (right) for g = 10, 30, 50.

Figure 10. Distribution of the velocity near γin (left) and γout2 (right) for g = 10, 30, 50.

6. Conclusions and Comments

We have proposed two algorithms for solving the Stokes flow with the threshold leak
boundary condition, both based on dual strategies. Unlike the threshold slip boundary
conditions [28], the algorithms are identical in 2D and 3D. ALGORITHM PF is based on
the path-following variant of the interior point method that generates strictly feasible
iterations. This algorithm combines the dumped Newton method in the outer loop with the
preconditioned conjugate gradient method used for solving the inner linear systems. The
precision control of the inner loop is driven adaptively with respect to the accuracy achieved
in the outer level. The crucial ingredient of the algorithm is its diagonal preconditioner that
improves ill-conditioning of the system matrices in the later iterations of the outer loop.
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ALGORITHM SSN uses the active-set implementation of the semi-smooth Newton method
adapted for our type of boundary conditions. The inner linear systems are solved using
the same ideas as in ALGORITHM PF. In this case, the diagonal preconditioner improves
ill-conditioning caused by small finite element mesh norms. Experimental scalability
of both algorithms is indicated by numerical experiments. Indeed, one can conclude
that ALGORITHM SSN is more efficient than ALGORITHM PF. Problems with multiple
solutions can be also solved since the singular dual Hessian is implicitly regularized by the
construction of the algorithms.
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