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Abstract: In this paper, within the framework of the consistent approach recently introduced for ap-
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to the construction of approximate conservation laws. Some illustrative applications are presented.
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1. Introduction

Methods of Lie theory of continuous transformations [1–7] yield a general framework
for deeply investigating both ordinary and partial differential equations. In the case of dif-
ferential equations deduced from a Lagrangian function through a variational technique [8],
thanks to Noether’s theorem [9], Lie symmetries are intimately connected to conservation
laws (first integrals in the case of ordinary differential equations).

A lot of models arising in concrete applications write as differential equations involv-
ing terms with very small coefficients; the latter usually have the effect of destroying some
important symmetries and so limiting the applicability of Lie group methods. Nevertheless,
perturbative techniques are often successful in the investigation of concrete models that can
be viewed as small perturbations of exact models [10]. In such a context, in order to extend
the applicability of Lie symmetry methods to such kinds of problems, some approximate
symmetry theories have been proposed and widely applied in the last decades.

There are two popular approaches to approximate Lie symmetries. One has been
proposed by Baikov, Gazizov and Ibragimov (BGI) [11,12], consisting in expanding in
a perturbation series the Lie generator and imposing the approximate invariance of the
equations at hand. A slightly different method has been introduced by Fushchich and
Shtelen (FS) [13]. In this case, the dependent variables are expanded in a series as done
in usual perturbation analysis; terms are then separated at each order of approximation,
and a system of equations to be solved in a hierarchy is obtained; this resulting system
is assumed to be coupled, and the approximate symmetries of the original equations are
defined as the exact symmetries of the approximate equations. Since their introduction,
these two proposals have been applied to many physical models (see, for instance, [14–23]).
The BGI method has also been used for deriving an approximate Noether theorem [9,24,25].

Both methods have pros and cons. In the BGI approach, despite the elegant setting, the
expanded Lie generator is not consistent with the principles of perturbation analysis [10]
because the dependent variables are not expanded; consequently, in some cases, the
approximately invariant solutions obtained by this method are not the most general ones
(see [26]). In contrast, the FS approach has a simple and coherent basis, but it requires a lot
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of computations (especially for higher order perturbations), and the crucial assumption
of a fully coupled system is too strong, because the equations at a level should not be
influenced by those at higher levels. It is to be noticed that some variants [16,27] of the FS
method have been proposed with the aim of reducing the amount of computations.

In a recent paper [26], an approximate symmetry theory, which is consistent with
perturbative analysis and inherits the relevant properties of exact Lie symmetries of differ-
ential equations, has been proposed. More precisely, the dependent variables are expanded
in power series of the small parameter as done in classical perturbative analysis; then, the
Lie generator, assumed dependent on the small parameter, is accordingly expanded, and
the approximate invariance with respect to the approximate Lie generator is imposed, as
in BGI method. Some applications of the new approach to approximate Lie symmetries
of differential equations [26] can be found in [28–30]. Needless to say that the method
may require a lot of cumbersome computations; remarkably, there is a general and freely
available package (ReLie, [31]), written in the computer algebra system Reduce [32], able
to do almost automatically all the needed work.

In this paper, we apply this consistent approach to variational problems, and state
a consistent approximate Noether theorem leading to the construction of approximate
conservation laws for models admitting a Lagrangian function containing small terms.

The plan of the paper is as follows. In Section 2, to keep the paper self-contained
and fix the notation, a brief sketch of the new approach to approximate Lie symmetries of
differential equations introduced in [26] is given. In Section 3, we describe the procedure
for the approximate variational Lie symmetries of a Lagrangian function involving small
perturbative terms, and state the approximate Noether theorem. Section 4 contains some
illustrative applications, and Section 5 our conclusions.

2. The Consistent Approach to Approximate Lie Symmetries

In this Section, in order to fix the notation, we briefly review the approach to approxi-
mate Lie symmetries of differential equations proposed in [26]. Let

∆
(

x, u, u(r); ε
)
= 0 (1)

be a differential equation of order r where some terms include a parameter ε� 1; function
∆, assumed to be sufficiently smooth, depends on the independent variables x ∈ X ⊆ Rn,
the dependent ones u ∈ U ⊆ Rm, and the derivatives (denoted by u(r)) of the latter with
respect to the former up to the order r. It is not uncommon to observe that Equation (1)
possesses few symmetries compared with the unperturbed equation ∆

(
x, u, u(r); 0

)
= 0.

Nevertheless, differential equations like (1) are often investigated by means of a perturba-
tive approach [10] where one looks for solutions in the form

u(x; ε) =
p

∑
k=0

εku(k)(x) + O(εp+1). (2)

Thus, Equation (1) becomes

∆ ≈
p

∑
k=0

εk∆̃(k)

(
x, u(0), u(r)

(0), . . . , u(k), u(r)
(k)

)
= 0, (3)

where, for any couple of functions f and g, the notation f ≈ g stands for f − g = O(εp+1).
The basic assumption of the approach to the approximate symmetries we want to use

consists in taking a Lie generator

Ξ =
n

∑
i=1

ξi(x, u; ε)
∂

∂xi
+

m

∑
α=1

ηα(x, u; ε)
∂

∂uα
(4)
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such that the infinitesimals ξi and ηα depend on the small parameter ε.
Inserting expansion (2), the infinitesimals can be written as

ξi ≈
p

∑
k=0

εk ξ̃(k)i, ηα ≈
p

∑
k=0

εkη̃(k)α, (5)

with
ξ̃(0)i = ξ(0)i = ξi(x, u0; 0), η̃(0)α = η(0)α = ηα(x, u0; 0),

ξ̃(k+1)i =
1

k + 1
R[ξ̃(k)i], η̃(k+1)α =

1
k + 1

R[η̃(k)α],
(6)

whereR is a recursion operator, satisfying the Leibniz rule, defined as

R
[

∂|τ| f(k)(x, u(0))

∂uτ1
(0)1 . . . ∂uτm

(0)m

]
=

∂|τ| f(k+1)(x, u(0))

∂uτ1
(0)1 . . . ∂uτm

(0)m

+
m

∑
i=1

∂

∂u(0)i

(
∂|τ| f(k)(x, u(0))

∂uτ1
(0)1 . . . ∂uτm

(0)m

)
u(1)i,

R[u(k)j] = (k + 1)u(k+1)j,

(7)

for k ≥ 0, j = 1, . . . , m, |τ| = τ1 + · · ·+ τm.
Therefore, we get an approximate Lie generator

Ξ ≈
p

∑
k=0

εkΞ̃(k), (8)

where

Ξ̃(k) =
n

∑
i=1

ξ̃(k)i(x, u(0), . . . , u(k))
∂

∂xi
+

m

∑
α=1

η̃(k)α(x, u(0), . . . , u(k))
∂

∂uα
. (9)

According to Lie’s algorithm, the approximate Lie generator must be prolonged to the
order r to account for the transformation of derivatives; the prolongation is algorithmically
done requiring that the contact conditions are preserved [1,2,6,7]:

Ξ(0) = Ξ,

Ξ(r) = Ξ(r−1) +
m

∑
α=1

n

∑
i1=1

. . .
n

∑
ir=1

ηα,i1 ...ir
∂

∂ ∂ruα
∂xi1

...∂xir

, r > 0, (10)

where

ηα,i1 ...ir =
Dηα,i1 ...ir−1

Dxir
−

n

∑
k=1

Dξk
Dxir

∂ruα

∂xi1 . . . ∂xir−1 ∂xk
, (11)

along with the approximate Lie derivative defined as

Di =
D

Dxi
=

∂

∂xi
+

p

∑
k=0

m

∑
α=1

(
u(k)α,i

∂

∂u(k)α
+

n

∑
j=1

u(k)α,ij
∂

∂u(k)α,j
+ . . .

)
, (12)

where u(k)α,i =
∂u(k)α

∂xi
, u(k)α,ij =

∂2u(k)α

∂xi∂xj
, . . .

Of course, in the expression of prolongations (11), we need to take into account the
expansions of ξi, ηα, uα, and drop the O(εp+1) terms, so that

Ξ(r) ≈
p

∑
k=0

εkΞ̃(r)
(k), (13)
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with obvious meaning of symbols.
The approximate (at the order p) invariance condition of a differential equation reads

p

∑
k=0

εk
k

∑
`=0

Ξ̃(r)
(`)

∆̃(k−`)

∣∣∣∣∣
∆≈0

≈ 0. (14)

Some immediate consequences of this definition are in order [26]. The Lie generator Ξ̃(0)

is always a symmetry of the unperturbed equations (ε = 0), and
p

∑
k=1

εkΞ̃(k) provides the

deformation of the symmetry due to the small contributions; in contrast, not all the symme-
tries of the unperturbed equations are admitted as the zeroth terms of the approximate Lie
symmetries. Moreover, if Ξ is the generator of an approximate Lie symmetry, then εΞ is an
admitted generator too. Finally, the approximate Lie symmetries of a differential equation
are the elements of an approximate Lie algebra.

3. Approximate Noether Theorem

In this Section, we will be concerned with Noether theorem in the framework of
approximate Lie symmetries outlined in Section 2.

Definition 1. Given a system of differential equations,

∆
(

x, u, u(r); ε
)
≈

p

∑
k=0

εk∆̃(k)

(
x, u(0), u(r)

(0), . . . , u(k), u(r)
(k)

)
= 0, (15)

an approximate conservation law of order r compatible with the system (15) is a divergence expression

p

∑
k=0

εk

(
n

∑
i=1

Di

(
Φ̃i

(k)

(
x, u(0), u(r−1)

(0) , . . . , u(k), u(r−1)
(k)

)))
= O(εp+1), (16)

holding for all solutions of system (15), where

p

∑
k=0

εkΦ̃i
(k)

(
x, u(0), u(r−1)

(0) , . . . , u(k), u(r−1)
(k)

)
, i = 1, . . . , n

are the expansions at order p of the fluxes of the conservation law according to (2).

An approximate conservation law is trivial if it is O(εp+1) identically. The notion of
trivial conservation laws allows us for the introduction of equivalent conservation laws.
Two approximate conservation laws are said equivalent if their linear combination is a
trivial approximate conservation law. In general, a finite set S of approximate conservation
laws is linearly dependent if there exists a set of constants, not all zero, such that the linear
combination of the elements in S is trivial. In this case, at least one of the approximate
conservation laws in S can be expressed as a linear combination of the remaining ones.

It is well known that for variational problems, i.e., differential equations derived
from a Lagrangian function, the determination of conservation laws is ruled by Noether’s
theorem [9], establishing a correspondence between symmetries of the action integral and
conservation laws through an explicit formula involving the infinitesimal generator of the
Lie symmetry and the Lagrangian itself.

In the sequel, let us limit ourselves to Lagrangian functions involving first order
derivatives, albeit the procedure can be straightforwardly extended in the case of higher
order Lagrangians.

Let
L
(

x, u, u(1); ε
)

(17)
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a Lagrangian function involving a small parameter ε. After inserting the expansion (2)
in (17), we have

L
(

x, u, u(1); ε
)
≈ L0

(
x, u(0), u(1)

(0)

)
+

p

∑
k=1

εkLk

(
x, u(0), . . . , u(k), u(1)

(0), . . . , u(1)
(k)

)
,

(18)

where L0 = L
(

x, u(0), u(1)
(0); 0

)
is the unperturbed Lagrangian and the remaining terms

in (18) represent the perturbation up to the order p in ε.
Let us consider the Lagrangian action

J
(

x, u, u(1); ε
)
=
∫

Ω
L
(

x, u, u(1); ε
)

dx ≈

≈
∫

Ω

(
p

∑
k=0

εkLk

(
x, u(0), . . . , u(k), u(1)

(0), . . . , u(1)
(k)

))
dx,

(19)

over a domain Ω. By requiring the first variation of the Lagrangian action (19) to be
O(εp+1) under variations of order O(εp+1) at the boundary of Ω, we obtain the approximate
Lagrange equations

p

∑
k=0

εk

(
∂Lk

∂u(0)α
−

n

∑
i=1

Di

(
∂Lk

∂u(0)α,i

))
≈ 0, α = 1, . . . , m. (20)

Now, we have all the ingredients to state the approximate Noether theorem.

Theorem 1 (Approximate Noether theorem). Let us consider a variational system of differential
equations arising from a first order Lagrangian function. Let expression (4) be the generator of an
approximate Lie symmetry of the approximate Lagrangian action (19), say

p

∑
k=0

εk

(
k

∑
j=0

(
Ξ̃(1)
(j)Lk−j + Lk−j

n

∑
i=1

Di ξ̃(j)i

)
−

n

∑
i=1

Diφ
i
(k)

)
≈ 0, (21)

where φi
(k)

(
x, u(0), . . . , u(k)

)
(i = 1, . . . , n) are functions of their arguments to be suitably deter-

mined. Then, the approximate conservation law

p

∑
k=0

εk
n

∑
i=1

DiΦ̃i
(k) ≈ 0, (22)

where

Φ̃i
(k) =

k

∑
`=0

(
m

∑
α=1

((
η̃(`)α −

n

∑
j=1

ξ̃(`)ju(`)α,j

)
k−`
∑
q=0

∂Lk−`
∂u(q)α,i

)
+ ξ̃(`)iLk−`

)
− φi

(k), (23)

is recovered.
In the case of only one independent variable, say the time t, the approximate Noether theorem

provides a conserved quantity

I =
p

∑
k=0

εkΦ̃(k)

such that
DI
Dt
≈ 0.
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Proof. The proof is immediate and is simply an adaptation of the proof of classical Noether
theorem in the approximate context.

Remark 1. A Noether theorem, as well as an approximate Noether theorem, can be easily stated in
the case of higher order Lagrangian functions (see, for instance, [7] for the exact case).

Remark 2. The generators of approximate variational Lie symmetries leave the Lagrangian action
approximately invariant; consequently, they are admitted as approximate Lie symmetries of the
approximate Lagrange equations. As in the exact case, the converse is not true, since not all
the approximate Lie symmetries of the Euler–Lagrange equations are approximate variational Lie
symmetries.

4. Applications

In this Section, we consider some examples of physical interest where the procedure
for the approximate variational Lie symmetries can be applied. The first two examples have
been considered in literature and analyzed by means of the BGI approach to approximate
Lie symmetries, the third one faces the planar three body problem where one of the material
points has a mass of order ε. Moreover, we limit ourselves to first order approximate
variational Lie symmetries of first order perturbed Lagrangian functions, and determine the
corresponding first order approximate conservation laws. The computation of approximate
variational Lie symmetries and approximate conservation laws has been done by means of
the program ReLie [31].

4.1. Perturbed Harmonic Oscillator

As first example, we consider the one-dimensional perturbed harmonic oscillator, say
the differential equation

ü + u + εF(u) = 0, (24)

derived from the Lagrangian

L(u, u̇; ε) =
1
2

(
u̇2 − u2

)
− ε

∫
F(u)du, (25)

where the dot stands for differentiation with respect to time, and F(u) is an arbitrary

function of u such that
d2F
du2 6= 0. This model has been studied in [33] for the classification of

the admitted approximate Lie symmetries, and in [24], where an analysis of the approximate
Noether symmetries and the corresponding approximate conservation laws has been
developed. In order to perform the algorithmic procedure for approximate variational Lie
symmetries described in the previous Section, let us expand u(t; ε) at first order in ε, i.e.,

u(t; ε) = u(0)(t) + εu(1)(t) + O(ε2), (26)

whereupon we have the first order perturbed Lagrangian

L ≡ L0

(
u(0), u̇(0)

)
+ εL1

(
u(0), u(1), u̇(0), u̇(1)

)
=

=
1
2

(
u̇2
(0) − u2

(0)

)
+ ε

(
u̇(0)u̇(1) − u(0)u(1) −

∫
F0(u(0))du(0)

)
,

(27)

with F(u) ≈ F0(u(0)) + ε
dF0(u(0))

du(0)
u(1).

By solving the approximate determining equations, a classification is needed according
to the functional form of F(u):

(1) F(u) arbitrary;
(2) F(u) = (u + δ)2, δ constant;
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(3) F(u) =
κ

u3 , κ constant.

For F(u) arbitrary, we determine the following generators of approximate variational
Lie symmetries together with the expansion of the associated function φ entering the
invariance condition (21):

Ξ1 =
∂

∂t
, φ(0) = φ(1) = 0;

Ξ2 = ε sin(t)
∂

∂u
, φ(0) = 0, φ(1) = − cos(t)u(0);

Ξ3 = ε cos(t)
∂

∂u
, φ(0) = 0, φ(1) = sin(t)u(0);

Ξ4 = ε

(
sin(2t)

∂

∂t
+ cos(2t)u(0)

∂

∂u

)
, φ(0) = 0, φ(1) = sin(2t)u2

(0);

Ξ5 = ε

(
cos(2t)

∂

∂t
− sin(2t)u(0)

∂

∂u

)
, φ(0) = 0, φ(1) = cos(2t)u2

(0);

Ξ6 = εΞ1, φ(0) = φ(1) = 0;

(28)

the application of Theorem 1 yields the following approximate conserved quantities:

I1 =
1
2

(
u̇2
(0) + u2

(0)

)
+ ε

(
u̇(0)u̇(1) + u(0)u(1) +

∫
F0(u(0))du(0)

)
,

I2 = ε
(

sin(t)u̇(0) − cos(t)u(0)

)
,

I3 = ε
(

cos(t)u̇(0) + sin(t)u(0)

)
,

I4 = ε
((

sin(t)u̇(0) − cos(t)u(0)

)(
cos(t)u̇(0) + sin(t)u(0)

))
,

I5 = ε
(

sin(t)u̇(0) − cos(t)u(0)

)2
,

I6 = εI1.

For F(u) = (u + δ)2, in addition to (28), we have two further generators of approxi-
mate variational Lie symmetries, namely

Ξ7a = 4ε sin(t)
∂

∂t
+
(
−3 cos(t) + ε

(
3δt sin(t) + 2 cos(t)u(0)

)) ∂

∂u
,

φ(0) = −3 sin(t)u(0),

φ(1) = sin(t)u2
(0) − 3δ(t cos(t) + sin(t))u(0) − 3 sin(t)u(1) − 3δ2 sin(t);

Ξ8a = 4ε cos(t)
∂

∂t
+
(

3 sin(t) + ε
(

3δt cos(t)− 2 sin(t)u(0)

)) ∂

∂u
,

φ(0) = −3 cos(t)u(0),

φ(1) = cos(t)u2
(0) + 3δ(t sin(t)− cos(t))u(0) − 3 cos(t)u(1) − 3δ2 cos(t);

the associated approximate conserved quantities turn out to be

I7a = cos(t)u̇(0) + sin(t)u(0) + ε

(
2
3

sin(t)u̇2
(0) −

(
2
3

cos(t)u(0) + δt sin(t)
)

u̇(0)

+
sin(t)

3
u2
(0) + δ(t cos(t) + sin(t))u(0) + cos(t)u̇(1) + sin(t)u(1) + δ2 sin(t)

)
,

I8a = sin(t)u̇(0) − cos(t)u(0) + ε

(
−2

3
cos(t)u̇2

(0) −
(

2
3

sin(t)u(0) − δt cos(t)
)

u̇(0)

− cos(t)
3

u2
(0) + δ(t sin(t)− cos(t))u(0) + sin(t)u̇(1) − cos(t)u(1) − δ2 cos(t)

)
.
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Finally, for F(u) =
κ

u3 , we have, besides generators (28), the following generators of
approximate variational Lie symmetries, say

Ξ7b = cos(2t)
∂

∂t
− sin(2t)

(
u(0) + εu(1)

) ∂

∂u
φ(0) = cos(2t)u2

(0), φ(1) = 2 cos(2t)u(0)u(1);

Ξ8b = sin(2t)
∂

∂t
+ cos(2t)

(
u(0) + εu(1)

) ∂

∂u
,

φ(0) = sin(2t)u2
(0), φ(1) = 2 sin(2t)u(0)u(1);

thus, the following approximate conserved quantities are obtained:

I7b = cos(2t)
u̇2
(0) − u2

(0)

2
+ sin(2t)u̇(0)u(0) + ε

((
cos(2t)u̇(1) + sin(2t)u(1)

)
u̇(0)

+
(

sin(2t)u̇(1) − cos(2t)u(1)

)
u(0) − κ

cos(2t)
2u2

(0)

)
,

I8b = sin(2t)
u̇2
(0) − u2

(0)

2
− cos(2t)u̇(0)u(0) + ε

((
sin(2t)u̇(1) − cos(2t)u(1)

)
u̇(0)

−
(

cos(2t)u̇(1) + sin(2t)u(1)

)
u(0) − κ

sin(2t)
2u2

(0)

)
.

Remark 3. The approximate Noether symmetries above recovered are just the expansion of those
determined in [24]; this explains essentially the concept that our approach, compared with the BGI
method, is consistent with the principles of perturbation analysis; moreover, the corresponding first
order approximate conserved quantities obtained in this paper are somehow different from those
reported in [24] (maybe some formulas of the latter paper are not completely correct: We underline
that, albeit in [24] first order approximate conserved quantities are considered, the results there
provided include also higher order terms in ε).

4.2. A Second Order System of ODEs

Let us consider the following perturbed second order system of ordinary differential
equations investigated in [34],

ü +
α

u3 − ε
1
u3

dF(v)
dv

= 0,

v̈− 4α
v
u4 + 2

1
u

u̇v̇ + 2ε
1
u4

d
dv

(vF(v)) = 0;
(29)

system (29) can be derived from the Lagrangian

L(u, v, u̇, v̇; ε) = vu̇2 + uu̇v̇− α
v
u2 + ε

F(v)
u2 , (30)

where u ≡ u(t; ε), v ≡ v(t; ε), F(v) arbitrary smooth function of its argument, and
α constant.

In [34], system (29) was analyzed as an approximate variational problem, and some
approximate conserved quantities for arbitrary F(v) have been determined. As our con-
sistent procedure requires, expanding u(t; ε) and v(t; ε) at first order in ε, we get the first
order perturbed Lagrangian
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L ≈ L0

(
u(0), v(0), u̇(0), v̇(0)

)
+ εL1

(
u(0), v(0), u(1), v(1), u̇(0), v̇(0), u̇(1), v̇(1)

)
=

= v(0)u̇
2
(0) + u(0)u̇(0)v̇(0) − α

v(0)
u2
(0)

+ ε

(
2v(0)u̇(0)u̇(1) + v(1)u̇

2
(0) + u(0)u̇(0)v̇(1) + u(0)u̇(1)v̇(0) + u(1)u̇(0)v̇(0)

−α

(
v(1)
u2
(0)

− 2
v(0)
u3
(0)

u(1)

)
+

F(v(0))

u2
(0)

)
;

(31)

by imposing the approximate invariance of the action integral, we are able to obtain the
following approximate generators together with the expansion of the associated function φ
entering condition (21):

Ξ1 =
∂

∂t
, φ(0) = φ(1) = 0;

Ξ2 = t2 ∂

∂t
+ t
(

u(0) + εu(1)

) ∂

∂u
, φ(0) = −u2

(0)v(0),

φ(1) = −u(0)

(
u(0)v(1) + 2v(0)u(1)

)
;

Ξ3 = 2t
∂

∂t
+
(

u(0) + εu(1)

) ∂

∂u
, φ(0) = φ(1) = 0;

Ξ4 = εΞ1, φ(0) = φ(1) = 0;

Ξ5 = εΞ2, φ(0) = 0, φ(1) = −u2
(0)v(0);

Ξ6 = εΞ3, φ(0) = φ(1) = 0;

(32)

these generators provide the following approximate conserved quantities:

I1 = u̇2
(0)v(0) + u̇(0)v̇(0)u(0) + α

v(0)
u2
(0)

+ ε

(
u̇2
(0)v(1) + u̇(0)v̇(0)u(1) + 2u̇(0)u̇(1)v(0)

+u̇(0)v̇(1)u(0) + v̇(0)u̇(1)u(0) + α
u(0)v(1) − 2v(0)u(1)

u3
(0)

− F0

u2
(0)

)
,

I2 = t2

(
u̇2
(0)v(0) + u̇(0)v̇(0)u(0) + α

v(0)
u2
(0)

)
− t
(

2u̇(0)u(0)v(0) + v̇(0)u
2
(0)

)
+ u2

(0)v(0)

+ ε

(
t2

(
u̇2
(0)v(1) + u̇(0)v̇(0)u(1) + 2u̇(0)u̇(1)v(0) + u̇(0)v̇(1)u(0) + v̇(0)u̇(1)u(0)

+ α
u(0)v(1) − 2v(0)u(1)

u3
(0)

− F0

u2
(0)

)
− t
(

2u̇(0)

(
u(0)v(1) + u(1)v(0)

)
+ 2v̇(0)u(0)u(1)

+2u̇(1)u(0)v(0) + v̇(1)u
2
(0)

)
+ u2

(0)v(1) + 2u(0)v(0)u(1)

)
,
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I3 = 2t

(
u̇2
(0)v(0) + u̇(0)v̇(0)u(0) + α

v(0)
u2
(0)

)
− 2u̇(0)u(0)v(0) − v̇(0)u

2
(0)

+ ε

(
2t

(
u̇2
(0)v(1) + u̇(0)v̇(0)u(1) + 2u̇(0)u̇(1)v(0) + u̇(0)v̇(1)u(0) + v̇(0)u̇(1)u(0)

+α
u(0)v(1) − 2v(0)u(1)

u3
(0)

− F0

u2
(0)

)
−
(

2u̇(0)

(
u(0)v(1) + u(1)v(0)

)
+ 2v̇(0)u(0)u(1)

+2̇u(1)u(0)v(0) + v̇(1)u
2
(0)

))
,

I4 = εI1, I5 = εI2, I6 = εI3,

where F(v) ≈ F0(v(0)) + ε
dF0(v(0))

dv(0)
v(1).

Remark 4. In this application, we recovered a set of approximate conserved quantities different
from that reported in [34]; furthermore, there is no need to consider special instances of the arbitrary
function F(v).

4.3. The Three-Body Problem

Let us now focus on the problem of three bodies with masses mα (α = 1, 2, 3) moving
under their mutual gravitational attraction. We assume that the mass m3 of the third body
is much smaller than m1 and m2, and that the three point masses move in a fixed plane.
Therefore, we consider a planar restricted problem without neglecting the gravitational
action of the third body on the two main bodies. Let ri ≡ (xi, yi, 0) (i = 1, 2, 3) be the
position vectors of the three point masses in a fixed frame reference, and rij = ri − rj
(1 ≤ i < j ≤ 3). Under these hypotheses, the motion equations are:

r̈1 + Gm2
r12

|r12|3
+ εGm3

r13

|r13|3
= 0,

r̈2 − Gm1
r12

|r12|3
+ εGm3

r23

|r23|3
= 0,

r̈3 − Gm1
r13

|r13|3
− Gm2

r23

|r23|3
= 0,

(33)

where G is the gravitational constant. Equation (33) derive from the Lagrangian function

L =
1
2

(
m1 ṙ2

1 + m2 ṙ2
2

)
+

Gm1m2

|r12|
+ ε

(
m3 ṙ2

3 +
Gm1m3

|r13|
+

Gm2m3

|r23|

)
. (34)

Let us expand the dependent variables at first order in ε, i.e.,

ri = r(0)i + εr(1)i + O(ε2) ≡

≡
(

x(0)i(t) + εx(1)i(t) + O(ε2), y(0)i(t) + εy(1)i(t) + O(ε2), 0
)

, i = 1, 2, 3,
(35)

whereupon we have

rij = r(0)ij + εr(1)ij + O(ε2) = r(0)i − r(0)j + ε
(

r(1)i − r(1)j

)
+ O(ε2), (36)
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and
L ≈ L0 + εL1 =

=
1
2

(
m1 ṙ2

(0)1 + m2 ṙ2
(0)2

)
+

Gm1m2

|r(0)12|

+ ε

(
m1 ṙ(0)1 ṙ(1)1 + m2 ṙ(0)2 · ṙ(1)2 + m3 ṙ2

(0)3

−Gm1m2

|r(0)12|3
r(0)12 · r(1)12 +

Gm1m3

|r(0)13|
+

Gm2m3

|r(0)23|

)
;

(37)

by searching for the approximate variational Lie symmetries, we are able to determine the
following approximate generators together with the expansion of the associated function φ
entering the invariance condition (21):

Ξ1 =
∂

∂t
, φ(0) = φ(1) = 0;

Ξ2a =
3

∑
i=1

∂

∂xi
, Ξ2b =

3

∑
i=1

∂

∂yi
, φ(0) = φ(1) = 0;

Ξ3a = t
3

∑
i=1

∂

∂xi
, φ(0) = −

2

∑
i=1

mix(0)i, φ(1) = −
2

∑
i=1

mix(1)i −m3x(0)3;

Ξ3b = t
3

∑
i=1

∂

∂yi
, φ(0) = −

2

∑
i=1

miy(0)i, φ(1) = −
2

∑
i=1

miy(1)i −m3y(0)3;

Ξ4 =
3

∑
i=1

((
y(0)i + εy(1)i

) ∂

∂xi
−
(

x(0)i + εx(1)i
) ∂

∂yi

)
, φ(0) = φ(1) = 0;

Ξ5 =
3

∑
j=1

2

∑
i=1

(
miy(0)i + εmiy(1)i

) ∂

∂xj
+ εm3y(0)3

2

∑
j=1

∂

∂xj

−
3

∑
j=1

2

∑
i=1

(
mix(0)i + εmix(1)i

) ∂

∂yj
− εm3x(0)3

2

∑
j=1

∂

∂yj
, φ(0) = φ(1) = 0;

Ξ6 = ε

((
y(0)2 − y(0)1

)(
m2

∂

∂x1
−m1

∂

∂x2

)
+
(

x(0)1 − x(0)2
)(

m2
∂

∂y1
−m1

∂

∂y2

))
, φ(0) = φ(1) = 0;

Ξ7 = εΞ1, φ(0) = φ(1) = 0;

Ξ8a = εΞ2a, Ξ8b = εΞ2b, φ(0) = φ(1) = 0;

Ξ9a = εt
2

∑
i=1

∂

∂xi
, φ(0) = 0, φ(1) = −

2

∑
i=1

mix(0)i;

Ξ9b = εt
2

∑
i=1

∂

∂yi
, φ(0) = 0, φ(1) = −

2

∑
i=1

miy(0)i;

Ξ10 = ε
2

∑
i=1

(
y(0)i

∂

∂xi
− x(0)i

∂

∂yi

)
, φ(0) = φ(1) = 0;

Ξ11 = ε
∂

∂x3
, Ξ12 = ε

∂

∂y3
, φ(0) = φ(1) = 0.

As far as the non trivial conservation laws are concerned, the results that we obtain are
as follows:
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• from generator Ξ1 we have the first order approximate conservation of total energy

I1 =
1
2

(
m1 ṙ2

(0)1 + m2 ṙ2
(0)2

)
− Gm1m2

|r(0)12|

+ ε

(
1
2

m3 ṙ2
(0)3 + m1 ṙ(0)1 · ṙ(1)1 + m2 ṙ(0)2 · ṙ(1)2

−Gm1m3

|r(0)13|
− Gm2m3

|r(0)23|
+

Gm1m2

|r(0)23|3
r(0)12 · r(1)12

)
;

• from generators Ξ2a and Ξ2b, we have the approximate conservation of total linear
momentum

I2 = m1 ṙ(0)1 + m2 ṙ(0)2 + ε
(

m1 ṙ(1)1 + m2 ṙ(1)2 + m3 ṙ(0)3
)

;

• from the generators Ξ3a and Ξ3b we have

I3 = m1(tṙ(0)1 − r(0)1) + m2(tṙ(0)2 − r(0)2)

+ ε
(

m1(tṙ(1)1 − r(1)1) + m2(tṙ(1)2 − r(1)2) + m3(tṙ(0)3 − r(0)3)
)

,

expressing that the approximate (at order ε) barycenter of the system has a uniform
and rectilinear motion;

• from the generator Ξ4 we have the approximate conservation of total angular momentum

I4 = m1r(0)1 ∧ ṙ(0)1 + m2r(0)2 ∧ ṙ(0)2

+ ε
(

m1

(
r(0)1 ∧ ṙ(1)1 + r(1)1 ∧ ṙ(0)1

)
+ m2

(
r(0)2 ∧ ṙ(1)2 + r(1)2 ∧ ṙ(0)2

)
+m3r(0)3 ∧ ṙ(0)3

)
.

Therefore, we recovered the approximate conservation laws we expect. The remaining
generators do not yield new independent conserved quantities. In fact:

• the generator Ξ5 produces

I5 =
(

m1r(0)1 + m2r(0)2
)
∧
(

m1 ṙ(0)1 + m2 ṙ(0)2 + ε
(

m1 ṙ(1)1 + m2 ṙ(1)2 + m3 ṙ(0)3
))

+ ε
(

m1r(1)1 + m2r(1)2 + m3r(0)3
)
∧
(

m1 ṙ(0)1 + m2 ṙ(0)2
)
=

=

(∫
I2dt

)
∧ I2;

• the generator Ξ6 produces

I6 = ε
(

r(0)1 − r(0)2
)
∧
(

ṙ(0)1 − ṙ(0)2)
)
= ε

(m1 + m2)I4 − I5

m1m2
;

• the generator Ξ7 produces εI1;
• the generators Ξ8a and Ξ8b produce εI2;
• the generators Ξ9a and Ξ9b produce εI3;
• the generator Ξ10 produces εI5;
• the generators Ξ11 and Ξ12 produce only trivial conserved quantities.

5. Concluding Remarks

In this paper, we used the recently introduced method for determining approximate
Lie symmetries of differential equations [26] in order to state an approximate Noether
theorem and explicitly construct conservation laws in the cases where the Lagrangian
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function involves terms with a small order of magnitude. The approach to approximate
Lie symmetries of differential equations proposed in [26] is consistent with the classical
principles of perturbation analysis [10], and has some advantages if compared with the
BGI and FS approaches. The approximate Noether theorem has been stated for Lagrangian
functions depending on n independent variables, m dependent variables and first order
derivatives of the latter with respect to the former, and the structure of approximate
conservation laws in terms of the generators of approximate variational Lie symmetries
and the Lagrangian itself has been derived. We observe that a generalization of such an
approximate Noether theorem to higher order Lagrangians can be immediately deduced.
All the needed computations have been done by means of the program ReLie [31].

The consistent approach to approximate variational Lie symmetries has been illus-
trated through some ordinary differential equations arising from a Lagrangian function: a
nonlinearly perturbed harmonic oscillator, a system of two coupled second order ordinary
differential equations, and the three-body planar restricted problem without neglecting the
gravitational attraction of the smallest body on the main bodies.

Work is in progress about the application of the present approximate Noether theorem
to higher order Lagrangian functions occurring in field theory, as well as to use our ap-
proach to approximate Lie symmetries [26] with the method of partial Lagrangians [35–37].

Author Contributions: Conceptualization, M.G. and F.O.; methodology, M.G. and F.O.; investigation,
M.G. and F.O.; writing—original draft preparation, M.G. and F.O.; writing—review & editing, M.G.
and F.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: Work supported by G.N.F.M. of “Istituto Nazionale di Alta Matematica”. M.G.
acknowledges the support through the “Progetto Giovani No. GNFM 2020”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982.
2. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986.
3. Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1. Symmetries, Exact Solutions, and

Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994.
4. Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 2. Applications in Engineering and Physical

Sciences; CRC Press: Boca Raton, FL, USA, 1995.
5. Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 3. New Trends in Theoretical Developments

and Computational Methods; CRC Press: Boca Raton, FL, USA, 1996.
6. Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2002.
7. Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York,

NY, USA, 2009.
8. Marsden, J.E.; Ratiu, T.; Abraham, R. Manifolds, Tensor Analysis and Applications; Springer: New York, NY, USA, 2001.
9. Noether, E. Invariante variationsprobleme. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-

Physikalische Klasse; Weidmannsche Buchhandlung: Berlin, Germany, 1918; pp. 235–257; English Translation in Transp. Theory Stat.
Phys. 1971, 1, 186–207.

10. Nayfeh, A.H. Introduction to Perturbation Techniques; Wiley: New York, NY, USA, 1981.
11. Baikov, V.A.; Gazizov, R.I.; Ibragimov, N.K. Approximate symmetries. Matematicheskii Sbornik 1988, 136, 435–450. [CrossRef]
12. Ibragimov, N.H.; Kovalev, V.K. Approximate and Renormgroup Symmetries; Higher Education Press: Beijing, China; Springer:

Berlin/Heidelberg, Germany, 2009.
13. Fushchich, W.I.; Shtelen, W.H. On approximate symmetry and approximate solutions of the non–linear wave equation with a

small parameter. J. Phys. A Math. Gen. 1989, 22, 887–890. [CrossRef]
14. Wiltshire, R.J. Perturbed Lie symmetry and systems of non-linear diffusion equations. Nonlinear Math. Phys. 1996, 3, 130–138.

[CrossRef]

http://doi.org/10.1070/SM1989v064n02ABEH003318
http://dx.doi.org/10.1088/0305-4470/22/18/007
http://dx.doi.org/10.2991/jnmp.1996.3.1-2.14


Mathematics 2021, 9, 2900 14 of 14

15. Baikov, V.A.; Kordyukova, S.A. Approximate symmetries of the Boussinesq equation. Quaest. Math. 2003, 26, 1–14. [CrossRef]
16. Dolapçi, I.T.; Pakdemirli, M. Approximate symmetries of creeping flow equations of a second grade fluid. Int. J. Non-Linear Mech.

2004, 39, 1603–1618. [CrossRef]
17. Wiltshire, R. Two approaches to the calculation of approximate symmetry exemplified using a system of advection–diffusion

equations. J. Comput. Appl. Math. 2006, 197, 287–301. [CrossRef]
18. Gazizov, R.K.; Ibragimov, N.H.; Lukashchuk, V.O. Integration of ordinary differential equation with a small parameter via

approximate symmetries: Reduction of approximate symmetry algebra to a canonical form. Lobachevskii J. Math. 2010, 31, 141–151.
[CrossRef]

19. Gazizov, R.K.; Ibragimov, N.H. Approximate symmetries and solutions of the Kompaneets equation. J. Appl. Mech. Tech. Phys.
2014, 55, 220–224. [CrossRef]

20. Euler, N.; Shulga, M.W.; Steeb, W.H. Approximate symmetries and approximate solutions for a multi-dimensional Landau-
Ginzburg equation. J. Phys. Math. Gen. 1992, 25, 1095–1103. [CrossRef]

21. Euler, M.; Euler, N.; Köhler, A. On the construction of approximate solutions for a multidimensional nonlinear heat equation. J.
Phys. Math. Gen. 1994, 27, 2083–2092. [CrossRef]

22. Euler, N.; Euler, M. Symmetry properties of the approximations of multidimensional generalized Van der Pol equations. J.
Nonlinear Math. Phys. 1994, 1, 41–59. [CrossRef]

23. Diatta, B.; Wafo Soh, C.; Khalique, C.M. Approximate symmetries and solutions of the hyperbolic heat equation. Appl. Math.
Comput. 2008, 205, 263–272. [CrossRef]

24. Govinder, K.; Heil, T.; Uzer, T. Approximate Noether symmetries. Phys. Lett. A 1998, 240, 127–131. [CrossRef]
25. Ibragimov, N.H.; Ünal, G.; Jogréus, C. Approximate symmetries and conservation laws for Itô and Stratonovich dynamical

systems. J. Math. Anal. Appl. 2004, 297, 152–168. [CrossRef]
26. Di Salvo, R.; Gorgone, M.; Oliveri, F. A consistent approach to approximate Lie symmetries of differential equations. Nonlinear

Dyn. 2018, 91, 371–386. [CrossRef]
27. Valenti, A. Approximate symmetries for a model describing dissipative media. In Proceedings of the 10th International

Conference in Modern Group Analysis, Larnaca, Cyprus, 24–31 October 2005; pp. 236–243.
28. Gorgone, M. Approximately invariant solutions of creeping flow equations. Int. J. Non-Linear Mech. 2018, 105, 212–220. [CrossRef]
29. Gorgone, M.; Oliveri, F. Approximate Q-conditional symmetries of partial differential equations. Electron. J. Differ. Equ. 2018,

25, 133–147.
30. Gorgone, M.; Oliveri, F. Consistent approximate Q-conditional symmetries of PDEs: Application to a hyperbolic reaction-

diffusion-convection equation. Z. Angew. Math. Phys. 2021, 72, 119. [CrossRef]
31. Oliveri, F. ReLie: A Reduce package for Lie group analysis of differential equations. Symmetry 2021, 13, 1826. [CrossRef]
32. Hearn, A.C.; Schöpf, R. Reduce User’s Manual. Free Version, 2021. Available online: https://reduce-algebra.sourceforge.

io/(accessed on 13 September 2021).
33. Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H.; Mahomed, F.M. Closed orbits and their stable symmetries. J. Math. Phys. 1994,

35, 6525–6535. [CrossRef]
34. Campoamor-Stursberg, R. Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries.

Acta Mech. 2016, 227, 1941–1956. [CrossRef]
35. Kara, A.H.; Mahomed, F.M. Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 2006,

45, 367–383. [CrossRef]
36. Kara, A.H.; Mahomed, F.M.; Naeem, I.; Wafo Soh, C. Partial Noether operators and first integrals via partial Lagrangians. Math.

Methods Appl. Sci. 2007, 30, 2079–2089. [CrossRef]
37. Johnpillai, A.G.; Kara, A.H.; Mahomed, F.M. Approximate Noether-type symmetries and conservation laws via partial La-

grangians for PDEs with a small parameter. J. Comput. Appl. Math. 2009, 223, 508–518. [CrossRef]

http://dx.doi.org/10.2989/16073600309486039
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.01.002
http://dx.doi.org/10.1016/j.cam.2005.11.003
http://dx.doi.org/10.1134/S1995080210020058
http://dx.doi.org/10.1134/S0021894414020047
http://dx.doi.org/10.1088/0305-4470/25/18/002
http://dx.doi.org/10.1088/0305-4470/27/6/031
http://dx.doi.org/10.2991/jnmp.1994.1.1.3
http://dx.doi.org/10.1016/j.amc.2008.06.060
http://dx.doi.org/10.1016/S0375-9601(98)00067-X
http://dx.doi.org/10.1016/j.jmaa.2004.05.003
http://dx.doi.org/10.1007/s11071-017-3875-5
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.05.018
http://dx.doi.org/10.1007/s00033-021-01554-2
http://dx.doi.org/10.3390/sym13101826
https://reduce-algebra.sourceforge.io/
https://reduce-algebra.sourceforge.io/
http://dx.doi.org/10.1063/1.530689
http://dx.doi.org/10.1007/s00707-016-1621-6
http://dx.doi.org/10.1007/s11071-005-9013-9
http://dx.doi.org/10.1002/mma.939
http://dx.doi.org/10.1016/j.cam.2008.01.020

	Introduction
	The Consistent Approach to Approximate Lie Symmetries
	Approximate Noether Theorem
	Applications
	Perturbed Harmonic Oscillator
	A Second Order System of ODEs
	The Three-Body Problem

	Concluding Remarks
	References

