
mathematics

Article

Impact of Strong Wind and Optimal Estimation of Flux
Difference Integral in a Lattice Hydrodynamic Model

Huimin Liu and Yuhong Wang *

����������
�������

Citation: Liu, H.; Wang, Y. Impact of

Strong Wind and Optimal Estimation

of Flux Difference Integral in a Lattice

Hydrodynamic Model. Mathematics

2021, 9, 2897. https://doi.org/

10.3390/math9222897

Academic Editor: Yumin Cheng

Received: 12 October 2021

Accepted: 11 November 2021

Published: 14 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; 1911084015@nbu.edu.cn
* Correspondence: wangyuhong@nbu.edu.cn

Abstract: A modified lattice hydrodynamic model is proposed, in which the impact of strong wind
and the optimal estimation of flux difference integral are simultaneously analyzed. Based on the
control theory, the stability condition is acquired through linear analysis. The modified Korteweg-de
Vries (mKdV) equation is derived via nonlinear analysis, in order to express a description of the
evolution of density waves. Then, numerical simulation is conducted. From the simulation results,
strong wind can largely influence the traffic flow stability. The stronger the wind becomes, the more
stable the traffic flow is, to some extent. Similarly, the optimal estimation of flux difference integral
also contributes to stabilizing traffic flow. The simulation results show no difference compared with
the theoretical findings. In conclusion, the new model is able to make the traffic flow more stable.

Keywords: traffic flow; the lattice hydrodynamic model; control signal; strong wind; optimal
estimation of flux difference integral

1. Introduction

As is known to us, traffic congestion is a very distressing problem, caused by the
substantial increase in the number of vehicles. The bad traffic has seriously affected our
travel and production activities. To better study and resolve the traffic problems, scholars
put forward a number of traffic flow models [1–38] from diverse points of view, such as car-
following models [9–20], cellular automation models [21–23], continuum models [24–27],
and lattice hydrodynamic models [28–38]. These models provided reliable theoretical
guidance for resolving traffic jams.

In 1998, Nagatani [39] gained a great deal of enlightenment from the car-following
theory, and then proposed the earliest lattice hydrodynamic model. The model can depict
the actual traffic flow appropriately. Afterwards, large numbers of traffic factors were
combined into Nagatani’s model. Tian [40] took the density difference into consideration.
Zhao [41] developed a model accounting for historical current integration, and its effective-
ness in enhancing traffic flow stability was tested. The model that takes into account the
characteristics of drivers was brought forward by Sharma [42]. In fact, drivers also tend to
have a strong desire of driving smoothly. For this reason, a modified model was proposed
by Wang [43].

However, the models above are mostly from the perspectives of human factors. The
effort is few and far between what has been made to research the influence of the ex-tremely
bad weather, in particular, strong winds. In our daily life, we often hear the news that
numerous traffic accidents have happened because of strong wind. As a result, the research
of strong wind is of great necessity, and many experts have committed themselves to
researching the influence of strong wind on traffic flow. Kwon [44] reported that traffic
accidents may occur due to the wind force. The effect of strong wind was studied by
Liu [45]. The research results of a study applying a car-following model suggest that
strong wind is advantageous for the stability of traffic flow. Here, we study this factor in a
lattice model.
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What is more, lots of traffic information, which can be conducive to ease traffic jams,
should be used as soon as possible, especially the information of the optimal estimation
of flux difference. Yang [46] examined this information on a single lane. Then, this factor
was incorporated into a two-lane system by Peng [47]. In reality, driving is a successive
process. Therefore, in order to better reflect the real traffic, the continuous information of
the optimal estimation of flux difference between time t and t− τ (named as the optimal
estimation of flux difference integral) is considered in this paper. The control method
was a good approach to maintain the traffic flow stability, which has been examined by
many researchers. For instance, delayed-feedback control was exerted to significantly
investigate the lattice model by Ge [48]. The control signal is of significant value to ease
traffic congestion. Recently, Zhu [49] regarded the rate of optimal velocity change as a
novel control strategy. Up until now, the optimal estimation of flux difference integral and
strong wind have not been examined in any lattice models. Motivated by the mentioned
viewpoints, the two factors are explored in an extended model, to reveal their impact on
traffic flow. Within this model, the optimal estimation of flux difference integral is regarded
as the new control signal.

The structure of the current paper is shown below. The first step is to propose the new
model, which can be observed in Section 2. Then, the model’s stability condition is explored
via the control method in Section 3.1. The next two steps, shown in Sections 3.2 and 4,
are about the detailed description of the nonlinear analysis and numerical simulations,
respectively. The final section eventually presents the conclusions of the research.

2. Methods: The Modified Model

Hydrodynamics models are widely exerted to simulate phase change phenomena in
traffic. The initial lattice model on a single lane is presented by Nagatani [24], and the
scholars became accustomed to writing it in the following discretized form:

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
= 0, (1)

∂t
(
ρjvj

)
= aρ0V

(
ρj+1

)
− aρjvj. (2)

where ρj stands for the density of lattice j, vj is the velocity of lattice j, ρ0 signifies the
local average density, a is the reciprocal of the driver’s delay time, indicating the driver’s
sensitivity. Equation (1) is the continuity equation that is one of the three basic equations
of hydrodynamics and is the concrete expression of the law of mass conservation in
hydrodynamics. Similarly to the car-following model, Equation (2) utilizes the optimal
velocity function V(·) to realize that drivers can adjust their speed according to the number
of vehicles in front of them.

In fact, driving tends to be affected by strong wind. When the wind becomes great
enough, drivers have to adjust the speed of their vehicles to avoid the impact of it. On
the grounds of the analysis of the impact of strong wind in a car-following model [45],
we further explore the impact of wind in a lattice model. Moreover, the effect of op-
timal estimation of flux difference integral [46] has not been researched in the wind.
According to the opinions above, the modified model is demonstrated as below:

∂tρj + ρ0
(
qj − qj−1

)
= 0, (3)

∂t
(
qj
)
= aρ0(1− ξ)V

(
ρj+1

)
− aqj + ak

∫ t

t−τ

[
ρ0V(ρ0)− qj(t)

]
dt. (4)

where ξ is the coefficient that varies with the change in wind force. When ξ = 0, ve-
hicles are not under the influence of strong wind; k represents the control coefficient;∫ t

t−τ

[
ρ0V(ρ0)− qj(t)

]
dt stands for the optimal estimation of flux difference integral; V(·)
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reflects the optimal velocity function, and its formats exerted in this investigation is ex-
pressed as follows:

V(ρ) =
vmax

2

[
tanh

(
1
ρ
− 1

ρc

)
+ tanh

(
1
ρc

)]
. (5)

where ρc denotes safety density and vmax is maximum speed.

3. Discussion
3.1. Linear Stability Analysis

The control method is properly utilized to implement the linear analysis of the novel
model, and the linear stability condition is deduced in this part. To start with, the steady
state of the traffic flow is displayed as the following:

[ρn, qn]
T = [ρ∗n, q∗n]

T , (6)

where ρ∗n and q∗n are the expected density and flux, separately.
Subsequently, with the consideration of small disturbances around the steady state,

the following equation is derived:

∂tδρj+1 + ρ0
(
δqj+1 − δqj

)
= 0, (7)

∂t
(
δqj
)
= aρ0(1− ξ)Λδρj+1 − aδqj + akτ

[
ρ0V(ρ0)− δqj(t− γτ)

]
. (8)

where Λ = ∂V(ρn+1)
∂ρn+1

∣∣∣
ρn+1=ρ∗

, δρj = ρj − ρ∗ and δqj = qj − q∗.

After the Laplace transform is applied, Equations (7) and (8) can be rewritten as below:

sPj+1(s)− ρj+1(0) + ρ0
[
Qj+1(s)−Qj(s)

]
= 0, (9)

sQj(s)− qj(0) = aρ0(1− ξ)ΛPj+1(s)− aQj(s) + akτ

[
1
s

ρ0V(ρ0)− e−sγτQj(s)
]

. (10)

where L
(
ρj+1

)
= Pj+1(s), L

(
qj
)
= Qj(s) and L

(
qj(t− γτ)

)
= e−sγτQj(s).

When Pj+1(s) in Equations (9) and (10) is eliminated, the transfer relationship can be
described in the following form:

Qj(s) =
−aρ2

0(1− ξ)Λ
p(s)

Qj+1(s) +
aρ0(1− ξ)Λ

p(s)
ρj+1(0) + akτρ0V(ρ0) +

1
p(s)

qj(0). (11)

where p(s) =
(
1− akγτ2)s2 + a(1 + kτ)s− aρ2

0(1− ξ)Λ indicates the characteristic poly-
nomial. Then, the transfer function G(s) is acquired in accordance with Equation (11),
and G(s) represents the relationship between flux Qj and Qj+1. The expression of G(s) is
as follows:

G(s) =
−aρ2

0(1− ξ)Λ
(1− akγτ2)s2 + a(1 + kτ)s− aρ2

0(1− ξ)Λ
. (12)

In the control system, as long as p(s) is steady and ‖G(s)‖∞ ≤ 1, traffic congestion
will not take place. Based on the Hurwitz stability criterion, if all the coefficients of the
quadratic polynomial p(s) are greater than zero, namely, k ≤ 1

aγτ2 and −aρ2
0(1− ξ)Λ > 0,

we can derive that p(s) is stable. Next, the process of solving the inequality ‖G(s)‖∞ ≤ 1
is given below:

‖G(s)‖∞ = sup
ω∈[0,∞)

|G(jω)| ≤ 1, (13)

∣∣∣∣∣∣G(jω)

∣∣∣∣∣∣=
√

G(jω)G(−jω) =

√√√√ (
aρ2

0(1− ξ)Λ
)2(

(1− akγτ2)ω2 + aρ2
0(1− ξ)Λ

)2
+ a2(1 + kτ)2ω2

≤ 1. (14)
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The condition of ‖G(s)‖∞ ≤ 1 is rewritten by further simplifying Equation (14),
as follows:

2aρ2
0(1− ξ)Λ− 2a2ρ2

0(1− ξ)Λkγτ2 + a2(1 + kτ)2 ≥ 0. (15)

Finally, the sufficient condition of Equation (15) can be simplified in the following form:

a ≤
−2ρ2

0(1− ξ)Λ

(1 + kτ)2 − 2kγτ2ρ2
0(1− ξ)Λ

. (16)

The neutral stability curves are illustrated in Figure 1, where the density–sensitivity
space is separated into two parts by the curves; without satisfying the stability condition,
the region below the solid line is an unstable area. Conversely, the other part, satisfying
the stability condition, is the stability area. By observing Figure 1a, we could find that
the stable region significantly expands when ξ increases. In Figure 1b, with the rise in
k, the unstable region declines. This means that both the strong wind and optimal flux
difference integral do help to boost the enhancement of traffic flow stability, thus reducing
the occurrence of traffic congestion.
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3.2. Nonlinear Analysis

Aimed to acquire the mKdV equation describing the kink–antikink soliton wave,
nonlinear analysis was conducted near the critical point (ρc, ac). Firstly, we define the slow
variables X and T with time t and lattice j in the following form:

X = ε(j + bt), T = εt3, 0 < ε� 1, (17)

where b stands for an undetermined parameter. For ρj(t), the following equation is satisfied:

ρj(t) = ρc + εR(X, T), (18)

Employing Equations (17) and (18) to replace Equation (4), and then expanding it to
the fifth order of ε through Taylor’s formula, we obtain the following nonlinear equation:

ε2k1∂XR + ε3k2∂2
XR

+ε4[k8∂T R + k3∂3
XR + k4∂XR3]+ ε5[k5∂X∂T R + k6∂4

XR + k7∂2
XR3] = 0

(19)

where ki(i = 1, 2 , · · ·, 8) is elaborated in Table 1, V′ = ∂V(ρ)
∂ρ

∣∣
ρ=ρc and V ′′′ = ∂3V0(ρ)

∂ρ3

∣∣
ρ=ρc .
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Table 1. The coefficients ki of the new model.

k1 a
(
b + ρ2

c (1− ξ)V′(ρc) + kbτ
)

k2 b2 + 1
2 aρ2

c (1− ξ)V′(ρc)− 1
2 akb2τ2

k3
1
6
(
aρ2

c (1− ξ)V′(ρc) + akb3τ3)
k4

1
6 aρ2

c (1− ξ)V ′′′ (ρc)

k5 2b− akbτ2

k6
1

24
(
ρ2

c (1− ξ)V′(ρc)− b4τ4)
k7

1
12 aρ2

c V ′′′ (ρc)

k8 a(1 + kτ)

Using b = − ρ2
c (1−ξ)V′(ρc)

1+kτ and ac = a
(
1 + ε2), ε2 and ε3 are eliminated in Equation (19).

Then, the formula can be simplified as follows:

ε4
(

g1∂3
XR + g2∂XR3 + ∂T R

)
+ ε5

(
g4∂4

XR + g5∂2
XR3 + g3∂2

XR
)

= 0, (20)

where gi(i = 1, 2 , · · · , 8) is elaborated in Table 2.

Table 2. The coefficients gi of the new model.

g1
1
6
(
aρ2

c (1− ξ)V′(ρc) + akb3τ3)
g2

1
6 aρ2

c (1− ξ)V ′′′ (ρc)

g3
ρ4

c (1−ξ)2V ′2(ρc)

(1+kτ)2

g4
1

24
(
aρ2

c (1− ξ)V′(ρc)− b4τ4)
g5

1
12 aρ2

c (1− ξ)V ′′′ (ρc)

After Equation (20) is transformed with T = 1
g1

T′, R =
√

g1
g2

R′, the regularized mKdV

equation that has the correction term O(ε), is obtained:

∂T′R
′ = ∂3

XR′ − ∂XR′3 + ε

[
g3

g1
∂2

XR′ +
g4

g1
∂4

XR′ +
g5

g2
∂2

XR′3
]

, (21)

When the O(ε) is ignored, the regularized mKdV equation can be obtained, and its
soliton solution is as follows:

R′o
(
X , T′

)
=
√

c tanh
√

c
2
(
X− cT′

)
. (22)

To derive the propagation velocity c in Equation (22), the equation R′(X, T′) =
R′o(X, T′) + εR′1(X, T′) is presumed, and the solvability condition given below must
be satisfied: (

R′o, M
[
R′o
])
≡
∫ +∞

−∞
dX′R′o M

[
R′o
]
= 0, (23)

where M[R′o] =
g3
g1

∂2
XR′ + g4

g1
∂4

XR′ + g5
g2

∂2
XR′3. Consequently, we acquire the general speed

c, shown as follows:

c =
5g2g3

2g2g4 − 3g1g5
. (24)
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Then, utilizing T = 1
g1

T′ and R =
√

g1
g2

R′ for substitution in Equation (22), the

expression of R(X, T) is shown as follows:

R(X, T) =
√

g1c
g2

tanh
(√

c
2
(X− cg1T)

)
. (25)

Eventually, the general solution of the kink–antikink soliton of the density wave is
deduced by inserting Equation (25) into Equation (18), as follows:

ρj(t) = ρc + ε

√
g1c
g2

tanh
(√

c
2
(X− cg1T)

)
, (26)

4. Results of Numerical Simulation

To investigate the effect of strong wind and optimal estimation of flux difference
integral, numerical simulation is conducted on the proposed model. We choose N = 100,
signifying the total number of sites, and the original conditions for the new model are
given as follows:

ρj(1) = ρj(0) =


ρ0, j 6= N

2 , N
2 + 1,

ρ0 − 0.05, j = N
2 ,

ρ0 + 0.05, j = N
2 + 1.

, (27)

where ρ0 = ρc = 0.25, a = 1.3, t = 3000, and vmax = 2.
Figures 2 and 3 only consider the effect of strong wind, whereas Figure 2 illustrates

the space-time evolution of the densities for ξ = 0, 0.1, 0.2, 0.3, severally. With the rise
in the value of ξ, the amplitude of the curve decreases. In Figure 3, the density profile at
time t = 3000s, with different ξ, is demonstrated. Comparing the patterns from (a) to (d)
in Figure 3, it could be discovered that the fluctuation amplitude of the curves obviously
declines. Based on the figures above, when the wind force becomes stronger and stronger,
the traffic flow tends to be more stable, to some extent. That is to say, the strong wind is
conducive to stabilizing the traffic flow.
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Then, we further consider the control signal on the grounds of accounting for the
strong wind. The simulation result is given in Figures 4 and 5.
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Figure 4. The evolution of the traffic flux for different values of parameter k. (a) k = 0, (b) k = 0.1,
(c) k = 0.15, (d) k = 0.2.
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Figure 5. The flux profile at t = 3000s under the different value of k. (a) k = 0, (b) k = 0.1, (c) k = 0.15,
(d) k = 0.2.

Figure 4 represents the space-time evolution of the densities for different coefficients
k = 0, 0.1, 0.15, 0.2, where ξ = 0.1. Figure 5 depicts the density profile at time t = 3000s,
corresponding to Figure 4. From the two figures, we know that the oscillation amplitude
of the density wave lessens with the rise in k. In view of the results, traffic flow becomes
steadier when the control signal is taken into consideration.

In the congested areas, driving must become very difficult, and drivers have to accel-
erate or decelerate to alter the condition of the traffic. Diverse traffic flow state paths of
acceleration or deceleration would result in the hysteresis phenomenon, which is demon-
strated not only in the flux–density diagram, but also in the velocity–density diagram.

Figures 6 and 7 show the hysteresis loops of traffic flux and density, and the hysteresis
loops of velocity and density, respectively, under the influence of strong wind. A simi-
larity between the two figures is that the size of the hysteresis loop decreases with the
rise in coefficient ξ. The above phenomenon reflects that the stability of traffic flow has
been enhanced.

Then, we fix the coefficient ξ and further consider the feedback control. The corre-
sponding hysteresis loops are shown in Figures 8 and 9. The hysteresis loop narrows to a
point, indicating that traffic congestion was largely absent at the moment when the value k
increased to 0.2.
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a new model, and the influence of the two factors on traffic flow has been investigated
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through linear analysis, as well as nonlinear analysis, in this paper. In the linear analysis,
the stability condition was obtained by utilization of the control method. The mKdV
equation, which describes the propagating features of traffic density waves, is acquired
via nonlinear analysis. Then, numerical simulation carried out on the new model revealed
that the optimal flux difference integral avails to stabilize the traffic flow. Moreover, to
a certain extent, the traffic flow becomes more stable with the increase in strong wind.
The simulation presents the same results as the theoretical analysis. Hence, the model
proposed in this study is conducive to understanding the underlying mechanism of traffic
congestion, thus alleviating traffic jams.
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