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Abstract: A modified lattice hydrodynamic model is proposed, in which the impact of strong wind 
and the optimal estimation of flux difference integral are simultaneously analyzed. Based on the 
control theory, the stability condition is acquired through linear analysis. The modified Korteweg-
de Vries (mKdV) equation is derived via nonlinear analysis, in order to express a description of the 
evolution of density waves. Then, numerical simulation is conducted. From the simulation results, 
strong wind can largely influence the traffic flow stability. The stronger the wind becomes, the more 
stable the traffic flow is, to some extent. Similarly, the optimal estimation of flux difference integral 
also contributes to stabilizing traffic flow. The simulation results show no difference compared with 
the theoretical findings. In conclusion, the new model is able to make the traffic flow more stable. 

Keywords: traffic flow; the lattice hydrodynamic model; control signal; strong wind; optimal  
estimation of flux difference integral 
 

1. Introduction 
As is known to us, traffic congestion is a very distressing problem, caused by the 

substantial increase in the number of vehicles. The bad traffic has seriously affected our 
travel and production activities. To better study and resolve the traffic problems, scholars 
put forward a number of traffic flow models [1–38] from diverse points of view, such as 
car-following models [9–20], cellular automation models [21–23], continuum models [24–
27], and lattice hydrodynamic models [28–38]. These models provided reliable theoretical 
guidance for resolving traffic jams. 

In 1998, Nagatani [39] gained a great deal of enlightenment from the car-following 
theory, and then proposed the earliest lattice hydrodynamic model. The model can depict 
the actual traffic flow appropriately. Afterwards, large numbers of traffic factors were 
combined into Nagatani’s model. Tian [40] took the density difference into consideration. 
Zhao [41] developed a model accounting for historical current integration, and its effec-
tiveness in enhancing traffic flow stability was tested. The model that takes into account 
the characteristics of drivers was brought forward by Sharma [42]. In fact, drivers also 
tend to have a strong desire of driving smoothly. For this reason, a modified model was 
proposed by Wang [43]. 

However, the models above are mostly from the perspectives of human factors. The 
effort is few and far between what has been made to research the influence of the ex-
tremely bad weather, in particular, strong winds. In our daily life, we often hear the news 
that numerous traffic accidents have happened because of strong wind. As a result, the 
research of strong wind is of great necessity, and many experts have committed them-
selves to researching the influence of strong wind on traffic flow. Kwon [44] reported that 
traffic accidents may occur due to the wind force. The effect of strong wind was studied 
by Liu [45]. The research results of a study applying a car-following model suggest that 
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strong wind is advantageous for the stability of traffic flow. Here, we study this factor in 
a lattice model. 

What is more, lots of traffic information, which can be conducive to ease traffic jams, 
should be used as soon as possible, especially the information of the optimal estimation 
of flux difference. Yang [46] examined this information on a single lane. Then, this factor 
was incorporated into a two-lane system by Peng [47]. In reality, driving is a successive 
process. Therefore, in order to better reflect the real traffic, the continuous information of 
the optimal estimation of flux difference between time t  and t τ−  (named as the opti-
mal estimation of flux difference integral) is considered in this paper. The control method 
was a good approach to maintain the traffic flow stability, which has been examined by 
many researchers. For instance, delayed-feedback control was exerted to significantly in-
vestigate the lattice model by Ge [48]. The control signal is of significant value to ease 
traffic congestion. Recently, Zhu [49] regarded the rate of optimal velocity change as a 
novel control strategy. Up until now, the optimal estimation of flux difference integral 
and strong wind have not been examined in any lattice models. Motivated by the men-
tioned viewpoints, the two factors are explored in an extended model, to reveal their im-
pact on traffic flow. Within this model, the optimal estimation of flux difference integral 
is regarded as the new control signal. 

The structure of the current paper is shown below. The first step is to propose the 
new model, which can be observed in Section 2. Then, the model’s stability condition is 
explored via the control method in Section 3.1. The next two steps, shown in Section 3.2 
and Section 4, are about the detailed description of the nonlinear analysis and numerical 
simulations, respectively. The final section eventually presents the conclusions of the re-
search. 

2. Methods: The Modified Model 
Hydrodynamics models are widely exerted to simulate phase change phenomena in 

traffic. The initial lattice model on a single lane is presented by Nagatani [24], and the 
scholars became accustomed to writing it in the following discretized form: 

( )0 1 1 0t j j j j jv vρ ρ ρ ρ − −∂ + − = , (1)

( ) ( )0 1t j j j j jv a V a vρ ρ ρ ρ+∂ = − . (2)

where jρ  stands for the density of lattice j , jv  is the velocity of lattice j , 0ρ  signi-
fies the local average density, a  is the reciprocal of the driver’s delay time, indicating the 
driver’s sensitivity. Equation (1) is the continuity equation that is one of the three basic 
equations of hydrodynamics and is the concrete expression of the law of mass conserva-
tion in hydrodynamics. Similarly to the car-following model, Equation (2) utilizes the op-
timal velocity function ( )V ⋅  to realize that drivers can adjust their speed according to the 
number of vehicles in front of them. 

In fact, driving tends to be affected by strong wind. When the wind becomes great 
enough, drivers have to adjust the speed of their vehicles to avoid the impact of it. On the 
grounds of the analysis of the impact of strong wind in a car-following model [45], we 
further explore the impact of wind in a lattice model. Moreover, the effect of optimal esti-
mation of flux difference integral [46] has not been researched in the wind. According to 
the opinions above, the modified model is demonstrated as below: 

( )0 1 0t j j jq qρ ρ −∂ + − = , (3)

( ) ( ) ( ) ( ) ( )0 1 0 01
t

t j j j jt
q a V aq ak V q t dt

τ
ρ ξ ρ ρ ρ+ −

 ∂ = − − + −  . (4)
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where ξ  is the coefficient that varies with the change in wind force. When 0ξ = , vehicles 
are not under the influence of strong wind; k  represents the control coefficient; 

( ) ( )0 0

t

jt
V q t dt

τ
ρ ρ

−
 −   stands for the optimal estimation of flux difference integral; ( )V ⋅  

reflects the optimal velocity function, and its formats exerted in this investigation is ex-
pressed as follows: 

( ) max 1 1 1tanh tanh
2 c c

vV ρ
ρ ρ ρ

    
= − +    

     
. (5)

where cρ  denotes safety density and m axv  is maximum speed. 

3. Discussion 
3.1. Linear Stability Analysis 

The control method is properly utilized to implement the linear analysis of the novel 
model, and the linear stability condition is deduced in this part. To start with, the steady 
state of the traffic flow is displayed as the following: 

[ ] * *, ,
TT

n n n nρ q ρ q =   , (6)

where *
nρ  and *

nq  are the expected density and flux, separately. 
Subsequently, with the consideration of small disturbances around the steady state, 

the following equation is derived: 

( )1 0 1 0t j j jq qδρ ρ δ δ+ +∂ + − = , (7)

( ) ( ) ( ) ( )0 1 0 01t j j j jq a a q ak V q tδ ρ ξ δρ δ τ ρ ρ δ γτ+  ∂ = − Λ − + − −  . (8)

where ( )
1

1

1

|
n

n

n

V
ρ ρ

ρ
ρ ∗

+

+
=

+

∂
Λ =

∂
, j jδρ ρ ρ ∗= −  and j jq q qδ ∗= − . 

After the Laplace transform is applied, Equations (7) and (8) can be rewritten as be-
low: 

( ) ( ) ( ) ( )1 1 0 10 0j j j jsP s Q s Q sρ ρ+ + + − + − =  , (9)

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 0
10 1 s

j j j j jsQ s q a P s aQ s ak V e Q s
s

γτρ ξ τ ρ ρ −
+

 − = − Λ − + −  
. (10)

where ( ) ( )1 1j jL P sρ + +=
, ( ) ( )j jL q Q s=

 and 
( )( ) ( )s
j jL q t e Q sγτγτ −− =

. 
When ( )1jP s+  in Equations (9) and (10) is eliminated, the transfer relationship can be 

described in the following form: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2
0 0

1 1 0 0

1 1 10 0j j j j

a a
Q s Q s ak V q

p s p s p s
ρ ξ ρ ξ

ρ τρ ρ+ +

− − Λ − Λ
= + + + . (11)

where ( ) ( ) ( ) ( )2 2 2
01 1 1p s ak s a k s aγτ τ ρ ξ= − + + − − Λ  indicates the characteristic polyno-

mial. Then, the transfer function ( )G s  is acquired in accordance with Equation (11), and 

( )G s  represents the relationship between flux jQ  and 1jQ + . The expression of ( )G s  is 
as follows: 

( ) ( )
( ) ( ) ( )

2
0

2 2 2
0

1
1 1 1

a
G s

ak s a k s a
ρ ξ

γτ τ ρ ξ
− − Λ

=
− + + − − Λ

. (12)
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In the control system, as long as ( )p s  is steady and ( ) 1G s
∞

≤ , traffic congestion 
will not take place. Based on the Hurwitz stability criterion, if all the coefficients of the 

quadratic polynomial ( )p s  are greater than zero, namely, 2

1k
aγτ

≤  and 

2
0 (1 ) 0aρ ξ− − Λ > , we can derive that ( )p s  is stable. Next, the process of solving the ine-

quality ( ) 1G s
∞

≤  is given below: 

( )
[ )

( )
0,

sup 1G s G j
ω

ω
∞ ∈ ∞

= ≤ , (13)

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

22
0

2 22 2 2 2 2
0

1
| | 1

1 1 1

a
G j G j G j

ak a a k

ρ ξ
ω ω ω

γτ ω ρ ξ τ ω

− Λ
= − = ≤

− + − Λ + +
. (14)

The condition of ( ) 1G s
∞

≤  is rewritten by further simplifying Equation (14), as 
follows: 

( ) ( ) ( )22 2 2 2 2
0 02 1 2 1 1 0a a k a kρ ξ ρ ξ γτ τ− Λ− − Λ + + ≥ . (15)

Finally, the sufficient condition of Equation (15) can be simplified in the following 
form: 

( )
( ) ( )

2
0

2 2 2
0

2 1
1 2 1

a
k k

ρ ξ
τ γτ ρ ξ

− − Λ
≤

+ − − Λ
. (16)

The neutral stability curves are illustrated in Figure 1, where the density–sensitivity 
space is separated into two parts by the curves; without satisfying the stability condition, 
the region below the solid line is an unstable area. Conversely, the other part, satisfying 
the stability condition, is the stability area. By observing Figure 1a, we could find that the 
stable region significantly expands when ξ  increases. In Figure 1b, with the rise in k , the 
unstable region declines. This means that both the strong wind and optimal flux difference 
integral do help to boost the enhancement of traffic flow stability, thus reducing the oc-
currence of traffic congestion. 

 
(a) (b) 

Figure 1. Phase diagram in parameter space ( ),ρ α . (a) 0k = , (b) 0.1ξ = . 

3.2. Nonlinear Analysis 
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Aimed to acquire the mKdV equation describing the kink–antikink soliton wave, 
nonlinear analysis was conducted near the critical point ( ),c cρ a . Firstly, we define the 

slow variables X  and T with time t  and lattice j  in the following form: 

3( ), , 0 1X j bt T tε ε ε= + = <  , (17)

where b stands for an undetermined parameter. For ( )jρ t , the following equation is 
satisfied: 

( ) ( ),j ct R X Tρ ρ ε= + , (18)

Employing Equations (17) and (18) to replace Equation (4), and then expanding it to 
the fifth order of ε  through Taylor’s formula, we obtain the following nonlinear equa-
tion: 

2 3 2
1 2

4 3 3 5 4 2 3
8 3 4 5 6 7 0
X X

T X X X T X X

ε k R ε k R

ε k R k R k R ε k R k R k R

∂ + ∂

   + ∂ + ∂ + ∂ + ∂ ∂ + ∂ + ∂ =   
. (19)

where ( )1, 2 , , 8ik i = ⋅ ⋅ ⋅  is elaborated in Table 1, ( )
cρ ρ

V ρ
V

ρ =

∂
′ =

∂
and ( )3

0
3 cρ ρ

V ρ
V

ρ =

∂
′′′ =

∂
. 

Using ( ) ( )2 1
1

c cρ ξ V ρ
b

kτ
′−

= −
+

 and ( )21ca a ε= + , 2ε  and 3ε  are eliminated in 

Equation (19). Then, the formula can be simplified as follows: 

( ) ( )4 3 3 5 4 2 3 2
1 2 4 5 3 0X X T X X Xε g R g R R ε g R g R g R∂ + ∂ +∂ + ∂ + ∂ + ∂ = , (20)

where ( )1, 2 , , 8ig i = ⋅ ⋅ ⋅  is elaborated in Table 2. 

After Equation (20) is transformed with 1

1 2

1 , gT T R R
g g

′ ′= = , the regularized 

mKdV equation that has the correction term ( )O ε , is obtained: 

3 3 2 4 2 33 54

1 1 2
T X X X X X

g ggR R R ε R R R
g g g′
 ′ ′ ′ ′ ′ ′∂ = ∂ −∂ + ∂ + ∂ + ∂ 
 

, (21)

When the ( )O ε  is ignored, the regularized mKdV equation can be obtained, and its 
soliton solution is as follows: 

( ) ( ), tanh
2o
cR X T c X cT′ ′ ′= − . (22)

To derive the propagation velocity c  in Equation (22), the equation
( ) ( ) ( )1, , ,oR X T R X T εR X T′ ′ ′ ′ ′ ′= +  is presumed, and the solvability condition given be-

low must be satisfied: 

[ ]( ) [ ], 0o o o oR M R dX R M R
+∞

−∞
′ ′ ′ ′ ′≡ = , (23)

where [ ] 2 4 2 33 54

1 1 2
o X X X

g ggM R R R R
g g g

′ ′ ′ ′= ∂ + ∂ + ∂ . Consequently, we acquire the general 

speed c , shown as follows: 

2 3

2 4 1 5

5
2 3

g gc
g g g g

=
−

. (24)

Table 1. The coefficients ik  of the new model. 
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1k  ( )( )2 1 ( )c ca b ρ ξ V ρ kbτ′+ − +  

2k  ( ) ( )2 2 2 21 11
2 2c cb a V akbρ ξ ρ τ′+ − −  

3k  ( ) ( )( )2 3 31 1
6 c ca V akbρ ξ ρ τ′− +  

4k  ( ) ( )21 1
6 c ca Vρ ξ ρ′′′−  

5k  22b akbτ−  

6k  ( ) ( )( )2 4 41 1
24 c cV bρ ξ ρ τ′− −  

7k  ( )21
12 c ca Vρ ρ′′′  

8k  ( )1a kτ+  

 

Table 2. The coefficients ig  of the new model. 

1g  ( ) ( )( )2 3 31 1
6 c ca V akbρ ξ ρ τ′− +  

2g  ( ) ( )21 1
6 c ca Vρ ξ ρ′′′−  

3g  ( ) ( )
( )

24 2

2

1
1

c cV

k

ρ ξ ρ
τ

′−

+
 

4g  ( ) ( )( )2 4 41 1
24 c ca V bρ ξ ρ τ′− −  

5g  ( ) ( )21 1
12 c ca Vρ ξ ρ′′′−  
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Then, utilizing 
1

1T T
g

′=  and 1

2

gR R
g

′=  for substitution in Equation (22), the ex-

pression of ( ),R X T  is shown as follows: 

( ) ( )1
1

2

, tanh
2

g c cR X T X cg T
g

 
= −  

 
. (25)

Eventually, the general solution of the kink–antikink soliton of the density wave is 
deduced by inserting Equation (25) into Equation (18), as follows: 

1
1

2

( ) tanh ( )
2j c

g c ct X cg T
g

ρ ρ ε
 

= + −  
 

, (26)

4. Results of Numerical Simulation 
To investigate the effect of strong wind and optimal estimation of flux difference in-

tegral, numerical simulation is conducted on the proposed model. We choose 100N = , 
signifying the total number of sites, and the original conditions for the new model are 
given as follows: 

( )

0

0

0

, , 1,
2 2

1 (0) 0.05, ,
2

0.05, 1.
2

j j

N Nj

Nj

Nj

ρ

ρ ρ ρ

ρ

 ≠ +

= = − =

 + = +

, (27)

where 0 0.25cρ ρ= = , 1.3a= , 3000t = , and max 2v = . 
Figures 2 and 3 only consider the effect of strong wind, whereas Figure 2 illustrates 

the space-time evolution of the densities for 0, 0.1, 0.2, 0.3ξ = , severally. With the rise in 
the value of ξ , the amplitude of the curve decreases. In Figure 3, the density profile at 
time 3000t s= , with different ξ , is demonstrated. Comparing the patterns from (a) to (d) 
in Figure 3, it could be discovered that the fluctuation amplitude of the curves obviously 
declines. Based on the figures above, when the wind force becomes stronger and stronger, 
the traffic flow tends to be more stable, to some extent. That is to say, the strong wind is 
conducive to stabilizing the traffic flow. 

Then, we further consider the control signal on the grounds of accounting for the 
strong wind. The simulation result is given in Figures 4 and 5. 

Figure 4 represents the space-time evolution of the densities for different coefficients 
0, 0.1, 0.15, 0.2k = , where 0.1ξ = . Figure 5 depicts the density profile at time 3000t s=

, corresponding to Figure 4. From the two figures, we know that the oscillation amplitude 
of the density wave lessens with the rise in k. In view of the results, traffic flow becomes 
steadier when the control signal is taken into consideration. 

In the congested areas, driving must become very difficult, and drivers have to ac-
celerate or decelerate to alter the condition of the traffic. Diverse traffic flow state paths of 
acceleration or deceleration would result in the hysteresis phenomenon, which is demon-
strated not only in the flux–density diagram, but also in the velocity–density diagram. 
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(a) (b) 

  
(c) (d) 

Figure 2. The evolution of the traffic densities for different values of parameter ξ . (a) 0ξ = , (b) 
0.1ξ = , (c) 0.2ξ = , (d) 0.3ξ = . 

  
(a) (b) 

  
(c) (d) 

Figure 3. The density profile at 3000t s=  under the different values of ξ . (a) 0ξ = , (b) 0.1ξ =
, (c) 0.2ξ = , (d) 0.3ξ = . 
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(a) (b) 

  
(c) (d) 

Figure 4. The evolution of the traffic flux for different values of parameter k . (a) 0k = , (b) 
0.1k = , (c) 0.15k = , (d) 0.2k = . 

  
(a) (b) 

  
(c) (d) 

Figure 5. The flux profile at 3000t s=  under the different value of k . (a) 0k = , (b) 0.1k = , (c) 
0.15k = , (d) 0.2k = . 
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Figures 6 and 7 show the hysteresis loops of traffic flux and density, and the hystere-
sis loops of velocity and density, respectively, under the influence of strong wind. A sim-
ilarity between the two figures is that the size of the hysteresis loop decreases with the 
rise in coefficient ξ . The above phenomenon reflects that the stability of traffic flow has 
been enhanced. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The hysteresis loops of traffic flux and density for different ξ . (a) 0ξ = , (b) 0.1ξ = , (c) 
0.2ξ = , (d) 0.3ξ = . 

  
(a) (b) 

  
(c) (d) 
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Figure 7. The hysteresis loops of velocity and density for different ξ . (a) 0ξ = , (b) 0.1ξ = , (c) 
0.2ξ = , (d) 0.3ξ = . 

Then, we fix the coefficient ξ  and further consider the feedback control. The corre-
sponding hysteresis loops are shown in Figures 8 and 9. The hysteresis loop narrows to a 
point, indicating that traffic congestion was largely absent at the moment when the value 
k  increased to 0.2. 

  
(a) (b) 

  
(c) (d) 

Figure 8. The hysteresis loops of traffic flux and density for different k . (a) 0k = , (b) 0.1k = , 
(c) 0.15k = , (d) 0.2k = . 

  
(a) (b) 
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(c) (d) 

Figure 9. The hysteresis loops of velocity and density for different k . (a) 0k = , (b) 0.1k = , (c) 
0.15k = , (d) 0.2k = . 

5. Conclusions 
The impact of strong wind and optimal flux difference integral are incorporated in a 

new model, and the influence of the two factors on traffic flow has been investigated 
through linear analysis, as well as nonlinear analysis, in this paper. In the linear analysis, 
the stability condition was obtained by utilization of the control method. The mKdV equa-
tion, which describes the propagating features of traffic density waves, is acquired via 
nonlinear analysis. Then, numerical simulation carried out on the new model revealed 
that the optimal flux difference integral avails to stabilize the traffic flow. Moreover, to a 
certain extent, the traffic flow becomes more stable with the increase in strong wind. The 
simulation presents the same results as the theoretical analysis. Hence, the model pro-
posed in this study is conducive to understanding the underlying mechanism of traffic 
congestion, thus alleviating traffic jams. 
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