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Abstract: The work continues a series of articles devoted to the peculiarities of solving coefficient
inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection-
type with data on the position of the reaction front. In this paper, we place the emphasis on some
problems of the numerical solving process. One of the approaches to solving inverse problems of the
class under consideration is the use of methods of asymptotic analysis. These methods, under certain
conditions, make it possible to construct the so-called reduced formulation of the inverse problem.
Usually, a differential equation in this formulation has a lower dimension/order with respect to the
differential equation, which is included in the full statement of the inverse problem. In this paper,
we consider an example that leads to a reduced formulation of the problem, the solving of which is
no less a time-consuming procedure in comparison with the numerical solving of the problem in
the full statement. In particular, to obtain an approximate numerical solution, one has to use the
methods of the numerical diagnostics of the solution’s blow-up. Thus, it is demonstrated that the
possibility of constructing a reduced formulation of the inverse problem does not guarantee its more
efficient solving. Moreover, the possibility of constructing a reduced formulation of the problem does
not guarantee the existence of an approximate solution that is qualitatively comparable to the true
one. In previous works of the authors, it was shown that an acceptable approximate solution can be
obtained only for sufficiently small values of the singular parameter included in the full statement of
the problem. However, the question of how to proceed if the singular parameter is not small enough
remains open. The work also gives an answer to this question.

Keywords: coefficient inverse problem; reaction–diffusion–advection equation; reaction–diffusion
equation; singularly perturbed problem; inverse problem with data on the position of a reaction front;
blow-up

MSC: 35R30; 65M32

1. Introduction

Nonlinear singularly perturbed reaction–diffusion–advection equations arise when solv-
ing the problems in gas dynamics [1], combustion theory [2], chemical kinetics [3–9], nonlinear
wave theory [10], biophysics [11–15], medicine [16–19], ecology [20–22], finance [23], and
other areas of science [24]. Inverse problems for the equation of this type often arise when
solving various applied problems and consist of recovering some coefficient in the equation.
To solve inverse problems, it is necessary to have additional information about the solution
of the equation. Most often, such additional information is information about the solution
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on a part of the boundary of the domain on which the equation is considered (see, for exam-
ple, [25–35]). However, recently, the formulation of inverse problems for the equation of this
type with additional information on the dynamics of the reaction front has become relevant
because the reaction front is an experimentally easily distinguishable contrast structure (see,
for example, [36,37]).

This work is a continuation of [36,38–41]. In these works, questions were considered
about the possibility of applying the methods of asymptotic analysis [3,42–44] to recover
some coefficients in inverse problems for nonlinear singularly perturbed reaction–diffusion–
advection equations with data on the position of a reaction front. The authors demonstrated
approaches on how to reduce the original formulation (full statement) of the inverse prob-
lem for a nonlinear singularly perturbed partial differential equation to a much simpler
problem with respect to the reconstructed function (coefficient). The problem obtained
using the methods of asymptotic analysis is called the reduced formulation of the inverse
problem. The authors already showed that the reduced formulations can contain (1) al-
gebraic equations for an unknown coefficient (see, for example, [38,39]), (2) differential
equations for an unknown coefficient (see, for example, [40]), and (3) integral equations for
an unknown coefficient (see, for example, [41]). It was shown that in the case of sufficiently
small values of the singular parameter included in the original partial differential equation,
the reduced formulation provides an opportunity to obtain an approximate solution close
to the solution of the inverse problem in the full statement. In this case, all the reduced
formulations obtained in the indicated works allowed the use of fairly simple algorithms
for the numerical solving of the considered problems. In this paper, we want to consider an
example that leads to a reduced formulation of the inverse problem, the solution of which is
no less a time-consuming procedure compared to the numerical solution of the problem in
the full formulation. This is due to the fact that the reduced formulation is reduced to the
need to solve a nonlinear boundary value problem for the eigenvalues. Moreover, according
to the results of [39–41], the question of what to do in the case when the value of the singular
parameter is not small enough remained open. When solving real applied problems, it
is often not known in advance whether the singular parameter contained in the problem
statement can be considered small enough to apply the approaches from [36,39–41]. Can
the solution obtained by the methods from [36,39–41] be defined more precisely? We give
an answer to this question as well.

The already mentioned feature of the reduced formulation of the inverse problem is the
need to solve nonlinear boundary value problems for the eigenvalues. These eigenvalues
will determine the unknown coefficient pointwise. Classical approaches to solving the
obtained problem, for example, the shooting method, are inapplicable. This is due to
the fact that the Cauchy problem arising in the implementation of the shooting method
may not have a solution for some numerical approximations of the desired coefficient.
The question arises: Is it possible to diagnose the absence of a solution to such an auxiliary
problem and use this information to construct an effective numerical algorithm in order to
find the solution? The absence of a solution to the Cauchy problem arising in the shooting
method is due to the fact that the norm of the derivative of the solution tends to infinity
on a finite set. Therefore, this problem belongs to the “blow-up” problems’ class. To date,
there are three main groups of methods for the analytical study of the phenomena of
the solution’s blow-up. These are the method of nonlinear capacity (trial functions) [45]
in various versions, the energy method and its modifications [46–48], and the method
of self-similar modes, based on various comparison criteria, developed in [49,50]. All
these methods can only give a rough estimate for the desired parameter of the blow-up.
Therefore, numerical diagnostics of the existence of a solution to the corresponding Cauchy
problem becomes relevant. Problems of this type are complex, and there is an extensive
literature devoted to them. Thus, adaptive approaches are often used, associated with
a decrease in the grid step (in time and, possibly, in space) [51,52] and with a posteriori
estimates [52]. These include methods based on the transition from a temporary variable
to an expanded variable [53], for example, to the length of the graph arc. In some cases,
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the solution is scaled as it grows [54]. The method for diagnosing the existence of a solution
used in this work is based on the idea of the a posteriori accuracy estimate. Its main ideas
were outlined in [55,56]. In short, on a smooth solution, the effective order of accuracy
tends to be the theoretical one for the given scheme; hence, a sharp change in the effective
order of accuracy indicates the solution’s blow-up. Conceptually, the method of [57] is close
to it, which diagnoses the blow-up by the growth of the residual of a numerical solution
when the grid parameter tends to zero (for a smooth solution, the residual must decrease).
The application of these approaches makes it possible to construct a numerical algorithm
for solving the inverse problem in a reduced formulation.

The structure of this paper is as follows. Section 2 contains a full statement of the inverse
problem under consideration. Section 2.2 contains a reduced formulation of the inverse
problem resulting from the application of asymptotic analysis methods. In Section 2.3, a
numerical algorithm for solving the reduced problem, based on the method of numerical
diagnostics of the solution’s blow-up, is discussed in detail. Section 2.4 contains numerical
experiments demonstrating the applicability of the proposed approach to solving the inverse
problem considered in this work. At the same time, an example is also demonstrated for the
case of an insufficiently small value of the singular parameter, for which the approach based
on the use of methods of asymptotic analysis does not give a satisfactory result. Section 3.1
contains a modified formulation of the inverse problem, which allows applying a solution
method based on minimizing the target functional. Section 3.2 contains the formulas for
the gradient minimization method. As an initial approximation in the gradient method,
the information about the solution obtained by the methods of asymptotic analysis is used.
Section 3.3 demonstrates numerical results that support the effectiveness of the proposed
approach. In the Conclusion, the features and limitations of the proposed solution method
are discussed.

2. Statement of the Inverse Problem and a Method for Its Solution Based on the
Results of Applying the Methods of Asymptotic Analysis
2.1. Full Statement of the Inverse Problem

Consider the problem for a nonlinear singularly perturbed reaction–diffusion equation:
ε2 ∂2u

∂x2 − ε
∂u
∂t

= B
(
u, x, t, q(t)

)
, x ∈ (0, 1), t ∈ (0, T],

ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T],

u(x, 0) = uinit(x), x ∈ [0, 1].

(1)

Here, ε is a small singular parameter and B
(
u, x, t, q(t)

)
and uinit(x) are sufficiently

smooth functions. Moreover, the function B
(
u, x, t, q(t)

)
for all t ∈ [0, T] has three such

simple isolated real roots ϕ(−)(x, t), ϕ(+)(x, t), and q(t) that ϕ(−)(x, t) < q(t) < ϕ(+)(x, t)
for all x ∈ [0, 1], t ∈ [0, T].

Under certain conditions (see [58]), the problem (1) can have a solution of a moving-
front-type (see Figure 1). A solution of this type is a function that has a narrow inner
transition layer in a small (of the order of ε| ln ε|) neighborhood of some point moving
according to the law x = xt.p.(t). We call the point xt.p.(t) the “transition point” (“t.p”).
Outside this neighborhood, the solution is close to one of two functions, ϕ(−)(x, t) or
ϕ(+)(x, t) (see Figure 1a).
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Figure 1. Typical form of a solution of a moving-front-type in Problem (1) at a fixed time t. (a) The
physical meaning of the value xt.p.(t); (b) the formal definition of the value of xt.p.(t) when applying
the methods of asymptotic analysis (see Section 2.2) or the gradient method for minimizing the target
functional (see Section 3.1).

The inverse problem is to determine the coefficient q(t), t ∈ [0, T], in (1) from the
known additional information about the position of the reaction front:

xt.p.(t) = f1(t), t ∈ [0, T]. (2)

Remark 1. When solving this inverse problem, we use the function of one variable f1(t) as
additional information. Therefore, we can restore only the function of one variable—in our case,
the function q(t). If it is necessary to restore the function of two variables q(x, t) when setting the
corresponding inverse problem, we would need additional information in the form of some function
depending on the argument x.

In practice, instead of exact data f1(t), their approximate values f1δ1
(t) are known

(see Figure 1a), estimated experimentally, wherein:

‖ f1 − f1δ1
‖L2 ≤ δ1.

To solve the inverse problem, an explicit connection between the sought function
q(t) and the data of the inverse problem f1(t) is required. When constructing a reduced
formulation of the inverse problem (Section 2.2) and when using the gradient method
for minimizing the target functional (Section 3.1), the following formal definition of the
function x = xt.p.(t) ≡ f1(t) through the parameters of the problem (1) is used. According
to [3,58], the function x = xt.p.(t) can be found as a solution of a functional equation (see
Figure 1b):

u(x, t) = q(t), t ∈ [0, T].

Remark 2. According to the formal definition of the function f1(t) (see Figure 1b), one might
get the impression that the required function q(t) can be defined in the simplest way, namely,
as q(t) := u( f1(t), t). However, taking into account possible significant errors in the experimental
determination of the values of the function u(x, t) lying on the reaction front, this method of
restoring the function q(t) is incorrect.

2.2. Reduced Statement of the Inverse Problem

The methods of asymptotic analysis [3] make it possible to obtain a representation of
the function xt.p.(t) in the form:

xt.p.(t) = x0(t) + O(ε). (3)
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Here, x0(t) is the zero approximation for the coordinate of the localization point of
the reaction front at time t. The methods of asymptotic analysis [58] allow us to write
out the following problem for determining the principal term x0(t) of the asymptotic
approximation in terms of the small singular parameter ε of the exact position xt.p.(t):

dv
dũ

+
dx0

dt
(t) =

B
(
ũ, x0(t), t, q(t)

)
v

, ũ ∈
(

ϕ(−)(x0(t), t
)
, ϕ(+)

(
x0(t), t

))
,

v
(

ϕ(−)(x0(t), t)
)
= 0, v

(
ϕ(+)(x0(t), t)

)
= 0.

(4)

According to (3), we can replace in (4) the zero-order term x0(t) by the function f1(t),
which determines the position of the reaction front. As a result, we obtain the problem:

dv
dũ

+
d f1

dt
(t) =

B
(
ũ, f1(t), t, q(t)

)
v

, ũ ∈
(

ϕ(−)( f1(t), t
)
, ϕ(+)

(
f1(t), t

))
,

v
(

ϕ(−)( f1(t), t
))

= 0, v
(

ϕ(−)( f1(t), t
))

= 0.
(5)

Remark 3. Such replacement is justified only for sufficiently small values of the singular parameter
ε (from (3), it follows that

∥∥xt.p.(t)− x0(t)
∥∥ = O(ε)).

Thus, we obtained a reduced formulation (5) of the original inverse problems (1) and
(2). This statement connects the function q(t), which must be restored when solving the in-
verse problem, with the data of the inverse problem—the function f1(t), which determines
the position of the moving reaction front xt.p.(t) ≡ f1(t) measured experimentally.

Remark 4. The problem (5) (1) does not contain a small parameter and (2) is a nonlinear boundary
value problem for eigenvalues with respect to the values of the unknown function q(t) at each
separate fixed time moment t.

2.3. Numerical Algorithm for Solving the Inverse Problem in the Reduced Statement

In Section 2.2, we obtained a reduced formulation of the problem (5), containing known
information about the exact position xt.p.(t) ≡ f1(t) of the moving front of the reaction
(internal layer). Note again that this problem is an eigenvalue problem to determine the
value of q(t) for each fixed value of the parameter t. For the convenience of the subsequent
numerical solving, we reformulated the problem (5) in the following form: for each value
of the parameter t, it is necessary to find a value q̃ such that the function v(ũ), which is a
solution to the Cauchy problem:

dv
dũ

+
d f1

dt
(t) =

B(ũ, f1(t), t, q̃)
v

, ũ ∈
(

ϕ(−)( f1(t), t
)
, ϕ(+)

(
f (t), t

)]
,

v
(

ϕ(−)( f1(t), t
))

= 0,
(6)

satisfies the condition:
v
(

ϕ(+)
(

f1(t), t
))

= 0. (7)

We denote this value of q̃ as q(t). It is the desired value.

Remark 5. When solving the problem (6) numerically, the value of the right-hand side B
(
ũ, f1(t),

t, q(t)
)
/v at the starting point ũ = ϕ(−)( f1(t), t

)
is needed. At this point, v(ũ) = 0, which

gives the uncertainty of the expression B
(
ũ, f (t), t, q(t)

)
/v. However, in the neighborhood of
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v(ϕ(−)) = 0, we can estimate the value of v(ũ) with the order of the accuracy equal to O
(
(ũ−

ϕ(−))p), p ∈ {1; 2; 3; 4} [58]:

v(ũ) =
p−1

∑
i=1

Ki
(
ũ− ϕ(−))i

+ O
((

ũ− ϕ(−))p
)

, (8)

where:

K1 = −0.5V +
√

0.25V2 + B′ũ
(
ũ, f1(t), t, q̃

) ∣∣∣∣
ũ=ϕ(−)

,

K2 =
0.5 · B′′ũũ

(
ũ, f1(t), t, q̃

)
·
(
− 0.5V +

√
0.25V2 + B′ũ

(
ũ, f1(t), t, q̃

) )
B′ũ
(
ũ, x, t, q̃

)
+ 2 ·

(
− 0.5V +

√
0.25V2 + B′ũ

(
ũ, f1(t), t, q̃

) )2

∣∣∣∣∣
ũ=ϕ(−)

,

K3 =

(1
6
· B′′′ũũũ

(
ũ, f1(t), t, q̃

)
− 2K2

2

)
· K1

B′ũ
(
ũ, f1(t), t, q̃

)
+ 3K2

1

∣∣∣∣∣
ũ=ϕ(−)

.

When solving the Cauchy problem (6) numerically, due to machine round-off errors,
it is impossible to achieve exact fulfillment of the condition (7) at any value of q̃. One of the
following two cases will always be true:

1. The solution to the Cauchy problem (6) exists throughout the entire area:

Ũ ≡
[

ϕ(−)( f1(t), t
)
, ϕ(+)

(
f1(t), t

)]
.

Moreover, v(ũ) > 0 for all ũ ∈ Ũ, including v
(

ϕ(+)
(

f1(t), t
))

> 0 (see Figure 2a);

2. The solution to the Cauchy problem (6) does not exist in the entire domain Ũ,

but only in some subdomain
[

ϕ(−)( f1(t), t
)
, ϕ∗
]
∈ Ũ, where ϕ(−)( f1(t), t

)
< ϕ∗ <

ϕ(+)
(

f1(t), t
)
, including the values v

(
ũ) for ũ > ϕ∗, it will not exist (see Figure 2b).

Figure 2. An example of typical solutions to the Cauchy problem (6), obtained numerically for
various values of the parameter q̃. Pictures correspond to the calculation of an approximate solution
v(2

S−1 N)(ũ) of the Cauchy problem (6) according to the ERK4 scheme with N = 50 and S = 6 for

parameters ϕ(−) ≡ −1, ϕ(+) ≡ 1,
d f
dt

= 0.1231, and (a) q̃ = 0.0025, (b) q̃ = 0.09. For both cases,
the exact value of q is q = 0.085.

In connection with this feature of the numerical solution of the Cauchy problem (6),
we propose the following approach for determining a good approximation for the exact
value of q. This approach is a generalization of the dichotomy method. We chose two
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such values q(1) and q(2) where the solution of the Cauchy problem (6) for one of them
exists on the whole set Ũ and for another, where it does not exist on this whole set. Further,
by dividing the segment in half, we obtain q(3) = (q(1) + q(2))/2 and check whether for
q̃ = q(3), the solution on the whole set Ũ exists or not. From two segments

[
q(1), q(3)

]
and[

q(3), q(2)
]
, choose one for one of the boundary values of which the solution to the Cauchy

problem (6) exists on the entire set Ũ and for another boundary value, which does not exist
on this entire set. Continuing the process of dividing the segment in half, we can achieve
the convergence of the sequence q(s) to the exact value q with a given accuracy.

Thus, it becomes necessary to diagnose the existence of a solution on the entire domain
Ũ. To do this, we used the method of the numerical diagnostics of the existence of a solution
based on the method of refining grids [55,56,59–61].

The idea of the method is as follows. Let us introduce a basic uniform grid ŨN
with respect to the variable ũ: ŨN = {ũn, 0 6 n 6 N : ũn = ϕ(−)( f1(t), t

)
+ h̃ n, h̃ =(

ϕ(+)( f1(t), t)− ϕ(−)( f1(t), t
))

/N}. Suppose that to solve the Cauchy problem (6), we
use a scheme with an order of accuracy O(h̃p) (further, when carrying out numerical
experiments, we used a four-stage Runge–Kutta scheme, ERK4, with p = 4). First, we
performed calculations on the base grid ŨN . Then, we refined this grid by an integer
number of r and performed calculations on the refined grid ŨrN . Continuing the process of
refining the grids S− 1 times, as a result, we obtain solutions v(r

s−1 N)(ũ) on grids Ũrs−1 N
(here, s is the grid number, s = 1, S; the superscript for v denotes the number of grid
intervals on which the approximate numerical solution are found). In particular, the most
convenient choice of the thickening factor is r = 2. In this case, each subsequent mesh will
have nodes that coincide with the nodes of the base mesh. At these nodes, we can estimate
the effective order of the accuracy [59,60]:

p e f f
(s) (ũ) = logr

|v(rs−2 N)(ũ)− v(r
s−3 N)(ũ)|

|v(rs−1 N)(ũ)− v(rs−2 N)(ũ)|
.

At the nodes ũ ∈
(

ϕ(−)( f1(t), t
)
, ϕ(+)

(
f1(t), t

)]
, in which the solution of the problem (6)

has continuous derivatives of order p, the convergence takes place [56]:

p e f f
(s) (ũ) −−−→s→∞

p theor ≡ p.

The violation of this convergence indicates a loss of the smoothness of the exact solu-

tion on the interval ũ ∈
(

ϕ(−)( f1(t), t
)
, ϕ(+)

(
f1(t), t

)]
[55,56]. In particular, if p e f f

(s) (ũ) −−−→s→∞
p e f f < 0 for some node ũ ∈ Ũ, the solution does not exist globally on the domain Ũ (see
Figure 3).

Figure 3. Typical form of the functions p e f f
(s) (ũ), which correspond to the solutions of the Cauchy

problems shown in Figure 2. Subfigures (a,b) correspond to the subfigures in Figure 2.
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Thus, the numerical algorithm for solving the problems (6) and (7) for the search for
q(t) is formulated as follows:

1. Introduce uniform grids:

llTM =

{
tm, 0 6 m 6 M : tm = 0 + τm, τ =

T − 0
M

}
,

ŨN =

{
ũn, 0 6 n 6 N : ũn = ϕ(−)( f1(t), t

)
+ h̃ n, h̃ =

ϕ(+)
(

f1(t), t
)
− ϕ(−)( f1(t), t

)
N

}
;

2. Smooth the function f1δ1
(t) given by a set of grid values ( f1)m ≡ f1δ1

(tm), m = 0, M,
using the s3(t) smoothing cubic spline. Spline s3 minimizes functional:

Fp(s3) = p
M

∑
m=0

∣∣( f1)m − s3(tm)
∣∣2 + (1− p)

M

∑
m=0

∣∣D2s3(tm)
∣∣2τ. (9)

Here, D2s3(t) denotes the second derivative of the function s3(t). The smoothing
parameter p can be selected based, for example, on the generalized residual princi-
ple [62]:

M

∑
m=0

∣∣( f1)m − sp
3 (tm)

∣∣2 − δ2
1 = 0,

where sp
3 is the extremal of the functional Fp(s3).

Next, redefine ( f1)m := s3(tm), m = 0, M;

3. Calculate
d f1

dt
(tm):

d f1

dt
(tm) =



−3 ( f1)0 + 4 ( f1)1 − ( f1)2

2τ
, if m = 0,

( f1)m+1 − ( f1)m−1

2τ
, if m = 1, M− 1,

3 ( f1)M − 4 ( f1)M−1 + ( f1)M−2

2τ
, if m = M;

4. For each tm ∈ TM, calculate q(tm) ≡ h with a given accuracy ∆ using the analogue of
the dichotomy method proposed above for solving the problems (6) and (7):

(a) As an initial approximation, we chose h(0) and h(1) such that G(h(0))G(h(1)) <
0. The algorithm for calculating the auxiliary function G(h) is shown below;

(b) Let us set the iteration number s := 1;

(c) Define the next approximation as h(s+1) :=
h(s) + h(s−1)

2
;

(d) If G(h(s+1))G(h(s−1)) > 0, redefine h(s) := h(s−1);
(e) Redefine s := s + 1. If |h(s) − h(s−1)| > ∆, then go to Item 4c. Otherwise, we

stop the iterative process and define h := h(s) as the solution.

The algorithm for calculating the auxiliary function G(h) is as follows:

(a) Calculate the set of solutions v(r
s−1 N)(ũ) of the problem (6) for the value

q̃ = h on the sequence from S grids Ũrs−1 N with numbers s = 1, S using some
numerical scheme with a theoretical order of accuracy p > 1;

(b) Calculate p e f f
(S) (ũ) at the nodes of the base grid ŨN :

p e f f
(S) (ũn) = logr

|v(rS−2 N)(ũn)− v(r
S−3 N)(ũn)|

|v(rS−1 N)(ũn)− v(rS−2 N)(ũn)|
, n = 1, N;
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(c) Calculate the function G(h) by the formula:

G(h) =

 1, if p e f f
(S) (ũn) ≥ 1 for all n = 1, N,

−1, if there is n ∈ 1, N, for which p e f f
(S) (ũn) 6 0.

Thus, we recover the unknown function q(t) pointwise at each point t = tm, m = 0, M.

2.4. Numerical Experiments

Let us consider the efficiency of the proposed algorithm by the example of solving the
inverse problems (1) and (2) for the following set of model parameters:

B
(
u, x, t, q(t)

)
=
(
u− 1

)(
u + 1

)(
u− q(t)

)
, uinit(x) = tanh

( x− 0.5
ε

)
, T = 2π,

q(t) ≡ qmodel(t) =
2

30
exp

[
− 4

5

(
t− 14π

30

)2
]
+

1
10

exp

[
− 1

2

(
t− 6π

5

)2
]

.
(10)

For the specified set of model parameters, by solving the problem in the full statement,
the function f1(t) was simulated, which was then noisy with some error δ1 according to
the following algorithm:

1. Let us solve the direct problem (1) numerically for the known q(t) ≡ qmodel(t). Thus,
we obtain a set of grid values of the function u(x, tm), m = 0, M, for each tm, m = 0, M;

2. For each value tm, find the intersection of the functions u(x, tm) and qmodel(tm) (see
Figure 1b). This means that we have to find the root x of the following nonlinear equa-
tion:

u(x, tm)− qmodel(tm) = 0.

The found root x will be the true position f1(tm) of the moving front of the reaction at
the moment of time tm;

3. Let us introduce noise into the simulated input data of the inverse problem as follows:

f1δ1
(tm) = f1(tm)

(
1 + ξ

δ

100%

)
,

where ξ—a random number uniformly distributed on the segment [−1, 1] and δ—the
upper estimate of the experimental error in percent. Then, redefine δ1 := ‖ f1− f1δ1

‖L2 .

Let us first carry out calculations for the value of the singular parameter ε = 10−2.
Figure 4 shows the result of restoring the function q(t) ≡ qinv(t) from simulated data
f1δ1

(t) set with relative errors of 0% and 5%. When implementing the proposed search
algorithm q(t), we used grids with N = 50 and M = 50 intervals, ∆ = 10−6, S = 6.

It can be seen from the calculation results that the reconstructed function qinv(t)
reproduces the model function qmodel(t) rather well. This is because the singular parameter
ε is small enough. Therefore, the solution q(t) obtained from the reduced formulation
of the problem (5) can be used as a solution to the original inverse problem in the full
statements (1) and (2).

Let us investigate the question of the stability of the solution to the inverse problem
depending on the level of errors in the input data δ1 for different values of the parameter
ε. For this, for different values of ε and different values of δ1, we found an approximate
solution to the inverse problem qinv(t) from the reduced formulation of the problem (5).
Figure 5 shows the dependence of ‖qinv(t) − qmodel(t)‖L2([0,T]) on the error level input
data “δ1” = δ1/ < ‖ f1δ1

(t)‖L2([0,T]) > ·100%, expressed in percent, where < · > means
averaging over a set of experiments (10 pieces) for the same δ1. It can be seen that as
δ1 decreases, the accuracy of retrieving the function qinv(t) increases. Moreover, smaller
values of ε lead to a more accurate reconstruction of the required function q(t).

Let us demonstrate separately the calculation results for the set of model parameters (10)
and the value of the singular parameter ε = 10−1. Figure 6 shows the result of restoring
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the function q(t) from simulated data f1δ1
(t), specified with relative errors at the levels of

0% and 5%.

Figure 4. Exact model solution (function qmodel(t)) and the result of its reconstruction (function
qinv(t)) from the input data of the inverse problem defined by function f1δ1

(t) simulated for a set of
model parameters (10) and ε = 10−2 with error (a) δ1 = 0 (matches δ = 0%) and (b) δ1 ∼ 3.5× 10−2

(matches δ = 5%).

Figure 5. The norm of the residual ‖qinv(t) − qmodel(t)‖L2([0,T]) versus the noise level “δ1” of the
inverse problem data for various ε.

Figure 6. Exact model solution (function qmodel(t)) and the result of its reconstruction (function
qinv(t)) from the input data of the inverse problem defined by function f1δ1

(t) simulated for a set of
model parameters (10) and ε = 10−1 with error (a) δ1 = 0 (matches δ = 0%) and (b) δ1 ∼ 3.5× 10−2

(matches δ = 5%).
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It can be seen from the results of the calculations that the reconstructed function qinv(t)
differs quite strongly from the model solution qmodel(t) both quantitatively and qualitatively
(for example, the number of clearly distinguishable local extrema of functions qmodel(t) and
qinv(t) is different). This is due to the fact that the “small” singular parameter ε in the case of
the problem under consideration for the set of parameters (10) does not satisfy the conditions
of applicability of the proposed solution algorithm. In this regard, the original problem must
be solved in a full statement. However, the solution obtained using the considered algorithm
can be used as a good initial approximation when implementing the gradient method for
minimizing the target functional when solving the problem in its full statement.

3. Modified Statement of the Inverse Problem and a Method for Its Solution Based on
Minimizing the Target Functional
3.1. Full Statement of the Inverse Problem with Additional Information

Let us consider a situation in which the value of the “small” singular parameter ε
in the problem (1) does not satisfy the conditions of the applicability of the methods of
asymptotic analysis. In this case, we cannot search for a solution to the inverse problems (1)
and (2) in the form of a solution to the reduced formulation of the problem (5). Therefore,
we modified the formulation of the inverse problem considered in Section 2.1 as follows.
In addition to the input information about the position of the reaction front, we require
the availability of information about the value of the function u on the curve determined
by the trajectory of the reaction front. This additional information makes it possible to
reduce the solution of the inverse problem in its full statement to the search for a solution
by the gradient method of minimizing the target functional. Thus, the inverse problem
with refined input data can be formulated as follows.

The inverse problem is to determine the function q(t), t ∈ [0, T], in (1) from the
known additional information about the position of the reaction front and the value of the
function u at this front (see Figure 1b):

xt.p.(t) = f1(t), u
(
xt.p.(t), t

)
= f2(t), t ∈ [0, T]. (11)

Note that, in practice, instead of exact data f1(t) and f2(t), their approximate values
f1δ1

and f2δ2
are known, such that:

‖ f1 − f1δ1
‖L2 ≤ δ1, ‖ f2 − f2δ2

‖L2 ≤ δ2.

Remark 6. Note that according to the formal definition of the function f2(t) (see Figure 1b), one
might get the impression that the required function q(t) can be defined in the simplest way, namely,
as q(t) := f2δ2

(t). However, taking into account possible significant errors in the experimental
determination of the values of the function u(x, t) lying on the reaction front, such a definition of
the function q(t) is incorrect (see Figure 7).

The algorithm proposed below makes it possible to obtain a reasonable approximation
of the sought function.

3.2. Numerical Algorithm for Solving the Inverse Problem in a Full Statement

The solution to the inverse problems (1)–(11) can be found as an element qinv(t),
realizing the minimum of the Tikhonov functional [62]:

J[q] =
T∫

0

(
u
(

f1(t), t; q
)
− f2(t)

)2
dt + α Ω[q]. (12)
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Here, Ω[q] is a smoothing functional. In this paper, we used Ω[q] ≡ ‖q‖2
W2

2
:

Ω[q] =
T∫

0

(
q2(t) + q′2(t)

)
dt.

Furthermore, in (12): u(x, t; q)—the solution of the direct problem (1) for a given
function q(t) and α—the regularization parameter, which can be chosen, for example,
according to the generalized discrepancy principle.

Figure 7. Typical form of the function f2δ2
(t), determined in the experiment, in comparison with

f2(t). The figure shows the simulation result for a set of model parameters (10), ε = 10−1, with errors
δ1 = 0 and δ2 ∼ 7.15× 10−2 (matches “δ′′1 = 0% and “δ′′2 = 75%).

The algorithm for the numerical solution of the inverse problem in the full
statements (1)–(11), based on the minimization of the functional (12), can be implemented
in the following form.

1. Let us set s := 0 and q(0)(t), t ∈ (0, T), as the initial approximation. The function
q(0)(t) can be any arbitrary function. A rational way of choosing it is indicated below:

2. Let us find the solution u(s)(x, t) of the direct problem:
ε2 ∂2u(s)

∂x2 − ε
∂u(s)

∂t
= B

(
u(s), x, t, q(s)(t)

)
, x ∈ (0, 1), t ∈ (0, T],

u(s)
x (0, t) = uxle f t(t), u(s)

x (1, t) = uxright(t), t ∈ (0, T],

u(s)(x, 0) = uinit(x), x ∈ [0, 1];

3. Let us find the solution ψ(s)(x, t) of the adjoint problem:
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

ε2 ∂2ψ(s)

∂x2 + ε
∂ψ(s)

∂t
= ψ(s) ∂B

∂u
(
u(s), x, t, q(s)(t)

)
+

+ 2δ
(

x− f1(t)
)(

u(s)(x, t)− f2(t)
)
, x ∈ (0, 1), t ∈ [0, T),

ψ
(s)
x (0, t) = 0, ψ

(s)
x (1, t) = 0, t ∈ [0, T),

ψ(s)(x, T) = 0, x ∈ [0, 1].

(13)

Here, δ(x) is the Dirac delta function;
4. Find the gradient of the functional (12):

J′
[
q(s)
]
(t) = −

1∫
0

(
u(s) − ϕ(−))(u(s) − ϕ(+)

)
ψ(s) dx + αΩ′

[
q(s)
]
(t).

The derivative Ω′
[
q(s)
]
(t) of the smoothing functional can be calculated either analyt-

ically or numerically;
5. Let us find an approximate solution at the next iteration step:

q(s+1)(t) = q(s)(t)− βs J′
[
q(s)
]
(t),

where βs is the descent parameter;
6. Let us check the condition for stopping the iterative process (see [36]). If it holds, we

set qinv(t) := q(s+1)(t) as a solution to the inverse problem. Otherwise, set s := s + 1,
and go to Step 2.

Remark 7. When solving the inverse problem in its full statement by the gradient method described
above, we cannot recover the function q(t) at the boundary points t = 0 and t = T.

The presence of a priori information about the desired solution allows significantly
reducing the number of iterations when implementing the algorithm [63,64]. As such
a priori information, we used the function q(0)(t), obtained as a solution to the inverse
problem in the reduced formulation (5).

Remark 8. When calculating the gradient of the functional, the approach [65] can be used, which
allows minimizing the RAM costs by almost two-times compared to the standard approach, as well
as the computing resources of the processor are used in a more efficient way.

3.3. Numerical Experiments

Let us consider the efficiency of the proposed algorithm, based on minimizing the
target functional (12), using as an example the model set of parameters (10), ε = 10−1,
function f1δ1

(t) with the specified noise level “δ1“ = 0%, and function f2δ2
(t) with the

specified noise level “δ2“ = 75%. As an initial approximation q(0)(t), we used the solution
of the problem in the reduced formulation (5). The details of the numerical implementation
of the algorithm were described in [36], p. 4.

Figure 8 shows the result of restoring the function qinv(x) in the case of starting with a
“good” initial approximation q(0)(t). The obtained solution is no longer qualitatively and
quantitatively different from the true one, especially considering that it was reconstructed
from the data f2δ2

(t) given with significant errors.
Additionally, it is possible to carry out a numerical study of the dependence ‖qinv −

q(0)‖L2 on the error {δ1, δ2} for specifying the input data f1δ1
and f2δ2

for different values
of the small parameter ε (see Figure 9).

The meaning of this dependence is the magnitude of the discrepancy between the
initial approximation, chosen based on the methods of asymptotic analysis, and the solution
of the inverse problem in the full statement. The smaller the value of the corresponding
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norm of the difference, the closer the initial approximation lies to the true solution. On the
one hand, from the results obtained, it is possible to draw an additional conclusion about at
what values of the singular parameter ε, the solution found from the reduced formulation
of the problem is sufficiently close to the solution of the considered inverse problem in the
full statement. On the other hand, we can conclude at what values of ε, the method based
on the minimization of the target functional (12) makes it possible to significantly refine
the initial approximation q(0), which is only a rough approximation of the true solution.

Figure 8. Result of restoring the function qinv(x) using the gradient method of minimizing the
target functional (12). The functions f1δ1

(t) and f2δ2
(t), simulated for a set of model parameters (10),

ε = 10−1, and errors {δ1, δ2} = {0, 7.15× 10−2} (matches “δ1“ = 0% and “δ2“ = 75%). The gradient
method was started with a “good” initial approximation q(0)(t), which coincides in the case of the
selected errors with those shown in Figure 6a.

Figure 9. The norm of the residual ‖qinv − q(0)‖L2 versus the noise level “δ2” of the inverse problem
data for various ε (“δ1”= 0%).

4. Conclusions

The paper considered some features of the numerical reconstruction of an unknown
coefficient in one inverse problem for an equation of the reaction–diffusion-type with data
on the position of a reaction front. To solve the inverse problem, we used both (1) a method
based on solving the problem in a reduced formulation obtained using the methods of
asymptotic analysis and (2) a method based on minimizing the objective functional by a
gradient method with the choice of an initial approximation, the search for which was
based on the use of the methods of asymptotic analysis. It was shown that under certain
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conditions, the gradient method can significantly refine the a priori information about the
solution obtained by the methods of asymptotic analysis. However, based on the results of
the study, it is necessary to make the following remarks:

1. When constructing a “good” initial approximation q(0)(t) using the proposed algo-
rithm, the error determining the difference between this approximation and the true
solution was estimated only numerically. The question of the possibility of perform-
ing rigorous analytical estimates remains open and is of significant interest as a topic
for a separate work;

2. The question of strict conditions under which a “good” initial approximation is
guaranteed to lie in the vicinity of the global minimum of the objective functional is
open. The corresponding question is also of significant interest and may be the topic
of a separate work devoted to the properties of global convergence [66–70]. Note that
a globally converging algorithm means an algorithm that allows one to find the global
minimum regardless of the choice of the initial approximation. In the event that a
“good” initial approximation, chosen automatically using the proposed algorithm, lies
in the vicinity of a global minimum, the algorithm will have the properties of global
convergence;

3. As prospects for the development of the proposed method, the implementation
of methods for performing a posteriori estimation of the accuracy of the obtained
solution should be noted (see, for example, [71–81]).
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