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Abstract: In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the
symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred
to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in
Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations
of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness”
postulates for species-sampling models, and then investigate analogous predictive characterizations
for the more general feature-sampling models. In particular, we present a “sufficientness” postu-
late for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss
analogous characterizations in the general setup of feature-sampling models.

Keywords: Bayesian nonparametrics; exchangeability; feature-sampling model; de Finetti
theorem; Johnson’s “sufficientness” postulate; predictive distribution; scaled process prior; species-
sampling model

1. Introduction

Exchangeability (de Finetti [1]) provides a natural modeling assumption in a large
variety of statistical problems, and it amounts to the assumption that the order in which
observations are recorded is not relevant. Consider a sequence of random variables (Zj)j≥1
defined on a common probability space (Ω, A ,P) and taking values in an arbitrary space,
which is assumed to be Polish. The sequence (Zj)j≥1 is exchangeable if and only if

(Z1, . . . , Zn)
d
= (Zσ(1), . . . , Zσ(n))

for any permutation σ of the set {1, . . . , n} and any n ≥ 1. By virtue of the celebrated de
Finetti representation theorem, exchangeability of (Zj)j≥1 is tantamount to asserting the
existence of a random element µ̃, defined on a (parameter) space Θ, such that, conditionally
on µ̃, the Zjs are independent and identically distributed with common distribution pµ̃, i.e.,

Zj | µ̃
iid∼ pµ̃ j ≥ 1

µ̃ ∼M ,
(1)

where M is the distribution of µ̃. In a Bayesian setting, M takes on the interpretation of a
prior distribution for the parameter object of interest. In this sense, the de Finetti representa-
tion theorem is a natural framework for Bayesian statistics. For mathematical convenience,
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Θ is assumed to be a Polish space, equipped with the Borel σ-algebra B(Θ). Hereafter,
with the term parameter, we refer to both a finite- and an infinite-dimensional object.

Within the framework of exchangeability (1), a critical role is played by the predictive
distributions, namely, the conditional distributions of the (n + 1)th observation Zn+1 given
Zn := (Z1, . . . , Zn). The problem of characterizing prior distributions M in terms of their
predictive distributions has a long history in Bayesian statistics, starting from the seminal
work of the English philosopher Johnson [2] who provided a predictive characterization
of the symmetric Dirichlet prior distribution. Such a characterization is typically referred
to as Johnson’s “sufficientness” postulate. Species-sampling models (Pitman [3]) provide
arguably the most popular infinite-dimensional generalization of the Dirichlet distribution.
They form a broad class of nonparametric prior models that correspond to the assumption
that pµ̃ in (1) is an almost surely discrete random probability measure

p̃ = ∑
i≥1

p̃iδz̃i , (2)

where: (i) ( p̃i)i≥1 are non-negative random weights almost surely summing up to 1;
(ii) (z̃i)i≥1 are random species’ labels, independent of ( p̃i)i≥1, and i.i.d. with common
(non-atomic) distribution P. The term species refers to the fact that the law of p̃ is a prior
distribution for the unknown species composition ( p̃i)i≥1 of a population of individuals
Zjs, with Zj belonging to a species z̃i with probability p̃i for j, i ≥ 1. In the context of species-
sampling models, Regazzini [4] and Lo [5] provided a “sufficientness” postulate for the
Dirichlet process (Ferguson [6]). Such a characterization was then extended by Zabell [7] to
the Pitman–Yor process (Perman et al. [8], Pitman and Yor [9]) and by Bacallado et al. [10]
to the more general Gibbs-type prior models (Gnedin and Pitman [11]).

In this paper, we introduce and discuss Johnson’s “sufficientness” postulates in the
feature-sampling setting, which generalizes the species-sampling setting by allowing each
individual of the population to belong to multiple species, now called features. We point
out that feature-sampling models are extremely important in different areas of application;
see, e.g., Griffiths and Ghahramani [12], Ayed et al. [13] and the references therein. Under
the framework of exchangeability (1), the feature-sampling setting assumes that

Zj|µ̃ = ∑
i≥1

Aj,iδw̃i ∼ pµ̃, (3)

and
µ̃ = ∑

i≥1
p̃iδw̃i

where: (i) conditionally on µ̃, (Aj,i)i≥1 are independent Bernoulli random variables with
parameters ( p̃i)i≥1; (ii) ( p̃i)i≥1 are (0, 1)-valued random weights; (iii) (w̃i)i≥1 are random
features’ labels, independent of ( p̃i)i≥1, and i.i.d. with common (non-atomic) distribution
P. That is, individual Zj displays feature w̃i if and only if Aj,i = 1, which happens
with probability p̃i. For example, if, conditionally on µ̃, Zj displays only two features,
say w̃1 and w̃5, it equals the random measure δw̃1 + δw̃5 . The distribution pµ̃ is the law
of a Bernoulli process with parameter µ̃, which is denoted by BeP(µ̃), whereas the law
of µ̃ is a nonparametric prior distribution for the unknown feature probabilities ( p̃i)i≥1,
i.e., a feature-sampling model. Here, we investigate the problem of characterizing prior
distributions for µ̃ in terms of their predictive distributions, with the goal of providing
“sufficientness” postulates for feature-sampling models. We discuss such a problem and
present partial results for a class of feature-sampling models referred to as Scaled Process
(SP) priors for µ̃ (James et al. [14], Camerlenghi et al. [15]). With these results, we aim at
stimulating future research in this field to obtain “sufficientness” postulates for general
feature-sampling models.

The paper is structured as follows. In Section 2, we present a brief review on Johnson’s
“sufficientness” postulates for species-sampling models. Section 3 focuses on nonparametric
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prior models for the Bernoulli process, i.e., feature-sampling models; we review their
definitions, properties, and sampling structures. In Section 4, we present a “sufficientness”
postulate for SPs. Section 5 concludes the paper by discussing our results and conjecturing
analogous results for more general classes of feature-sampling models.

2. Species-Sampling Models

To introduce species-sampling models, we assume that the observations are Z-valued
random elements, and Z is supposed to be a Polish space whose Borel σ-algebra is denoted
by Z . Thus, Z contains all the possible species’ labels of the populations. When we deal
with species-sampling models, the hierarchical formulation (1) specializes as

Zj| p̃
iid∼ p̃ j ≥ 1

p̃ ∼M
(4)

where p̃ = ∑i≥1 p̃iδz̃i is an almost surely discrete random probability measure on Z, and
M denotes its law. We also remind the reader that: (i) ( p̃i)i≥1 are non-negative random
weights almost surely summing up to 1; (ii) (z̃i)i≥1 are random species’ labels, independent
of ( p̃i)i≥1, and i.i.d. as a common (non-atomic) distribution P. Using the terminology
of Pitman [3], the discrete random probability measure p̃ is a species-sampling model. In
Bayesian nonparametrics, popular examples of species-sampling models are: the Dirichlet
process (Ferguson [6]), the Pitman–Yor process (Perman et al. [8], Pitman and Yor [9]), and
the normalized generalized Gamma process (Brix [16], Lijoi et al. [17]). These are examples
belonging to a peculiar subclass of species-sampling models, which are referred to as Gibbs-
type prior models (Gnedin and Pitman [11], De Blasi et al. [18]). More general subclasses
of species-sampling models are, e.g., the homogeneous normalized random measures
(Regazzini et al. [19]) and the Poisson–Kingman models (Pitman [20,21]). We refer to Lijoi
and Prünster [22] and Ghosal and van der Vaart [23] for a detailed and stimulating account
on species-sampling models and their use in Bayesian nonparametrics.

Because of the almost sure discreteness of p̃ in (4), a random sample Zn := (Z1, . . . , Zn)
from p̃ features ties, that is,P(Zj1 = Zj2) > 0 if j1 6= j2. Thus, Zn induces a random partition
of the set {1, . . . , n} into Kn = k ≤ n blocks, labeled by Z∗1 , . . . , Z∗Kn

, with corresponding
frequencies (Nn,1, . . . , Nn,Kn) = (n1, . . . , nk), such that Ni,n ≥ 1 and ∑1≤i≤Kn Ni,n = n.
From Pitman [3], the predictive distribution of p̃ is of the form

P(Zn+1 ∈ A|Zn) = g(n, k, n)P(A) +
k

∑
i=1

fi(n, k, n)δZ∗i
(A), A ∈ Z , (5)

for any n ≥ 1, having set n = (n1, . . . , nk), with g and fi being arbitrary non-negative
functions that satisfy the constraint g(n, k, n) + ∑k

i=1 fi(n, k, n) = 1. The predictive distribu-
tion (5) admits the following interpretation: (i) g(n, k, n) corresponds to the probability that
Zn+1 is a new species, that is, a species not observed in Zn; (ii) fi(n, k, n) corresponds to the
probability that Zn+1 is a species Z∗i in Zn. The functions g and fi completely determine
the distribution of the exchangeable sequence (Zj)j≥1 and, in turn, the distribution of the
random partition of N induced by (Zj)j≥1. Predictive distributions of popular species-
sampling models, e.g., the Dirichlet process, the Pitman–Yor process, and the normalized
generalized Gamma process, are of the form (5) for suitable specification of the functions
g and fi. We refer to Pitman [21] for a detailed account of random partitions induced by
species-sampling models and generalizations thereof.

Here, we recall the predictive distribution of Gibbs-type prior models (Gnedin and
Pitman [11], De Blasi et al. [18]). Let us first introduce the definition of these processes.
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Definition 1. Let σ ∈ (−∞, 1) and let P be a (non-atomic) distribution on (Z, Z ). A Gibbs-type
prior model is a species-sampling model with a predictive distribution of the form

P(Zn+1 ∈ A|Zn) =
Vn+1,k+1

Vn,k
P(A) +

Vn+1,k

Vn,k

k

∑
i=1

(ni − σ)δZ∗i
(A), A ∈ Z , (6)

for any n ≥ 1, where {Vn,k : n ≥ 1, 1 ≤ k ≤ n} is a collection of non-negative weights that
satisfy the recurrence relation Vn,k = (n− σk)Vn+1,k + Vn+1,k+1 for all k = 1, . . . , n, n ≥ 1, with
the proviso V1,1 = 1.

Note that the Dirichlet process is a Gibbs-type prior model that corresponds to

Vn,k =
θk

(θ)n

for θ > 0, where we have denoted by (a)b = Γ(a + b)/Γ(a) the Pochhammer symbol
for the rising factorials. Moreover, the Pitman–Yor process is a Gibbs-type prior model
corresponding to

Vn,k =
∏k−1

i=0 (θ + iσ)
(θ)n

for σ ∈ (0, 1) and θ > −α. We refer to Pitman [20] for other examples of Gibbs-type prior
models and for a detailed account of the Vn,ks; see also Pitman [21] and the references
therein.

Because of de Finetti’s representation theorem, there exists a one-to-one correspon-
dence between the functions g and fi in the predictive distribution (5) and the law M of p̃,
i.e., the de Finetti measure. This is at the basis of Johnson’s “sufficientness” postulates, char-
acterizing species-sampling models through their predictive distributions. Regazzini [4]
and, later, Lo [5] provided the first “sufficientness” postulate for species-sampling models,
showing that the Dirichlet process is the unique species-sampling model for which the
function g depends on Zn only through n, and the function fi depends on Zn only through
n and ni for i ≥ 1. Such a result was extended in Zabell [24], providing the following
“sufficientness” postulate for the Pitman–Yor process: The Pitman–Yor process is the unique
species-sampling model for which the function g depends on Zn only through n and k,
and the function fi depends on Zn only through n and ni for i ≥ 1. Bacallado et al. [10]
discussed the “sufficientness” postulate in the more general setting of Gibbs-type prior
models, showing that Gibbs-type prior models are the sole species-sampling models for
which the function g depends on Zn only through n and k, and the function fi depends
on Zn only through n, k, and ni. This result shows a critical difference—at the sampling
level—between the Pitman–Yor process and Gibbs-type prior models, which lies in the
inclusion of the sampling information on the observed number of distinct species in the
probability of observing, at the (n + 1)-th draw, a species already observed in the sample.

3. Feature-Sampling Models

Feature-sampling models generalize species-sampling models by allowing each in-
dividual to belong to more than one species, which are now called features. To introduce
feature-sampling models, we consider a space of features W, which is assumed to be a
Polish space, and we denote by W its Borel σ-field. Thus, W contains all the possible
features’ labels of the population. Observations are represented through the counting
measure (3), whose parameter µ̃ is an almost surely discrete measure with masses in (0, 1).
When we deal with feature-sampling models, the hierarchical formulation (1) specializes as

Zj|µ̃
iid∼ BeP(µ̃)

µ̃ ∼M
(7)
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where µ̃ = ∑i≥1 p̃iδw̃i is an almost surely discrete random measure onW, and M denotes
its law. We also remind the reader that: (i) conditionally on µ̃, (Aj,i)i≥1 are indepen-
dent Bernoulli random variables with parameters ( p̃i)i≥1; (ii) ( p̃i)i≥1 are (0, 1)-valued
random weights; (iii) (w̃i)i≥1 are random features’ labels, independent of ( p̃i)i≥1, and
i.i.d. with common (non-atomic) distribution P. Completely random measures (CRMs)
(Daley and Vere-Jones [25], Kingman [26]) provide a popular class of nonparametric priors
M , the most common examples of which are the Beta process prior and the stable Beta pro-
cess prior (Teh and Gorur [27], James [28]); see also Broderick et al. [29] and the references
therein for other examples of CRM priors and generalizations thereof. Recently, Camer-
lenghi et al. [15] investigated an alternative class of nonparametric priors M , generalizing
CRM priors and referring to these as Scaled Processes (SPs). SP priors first appeared in the
work of James [28].

We assume a random sample Zn := (Z1, . . . , Zn) to be modeled as in (7), and we
introduce the predictive distribution of µ̃, that is, the conditional probability of Zn+1 given
Zn. Note that, because of the pure discreteness of µ̃, the observations Zn may share a
random number of distinct features, say Kn = k, denoted here as W∗1 , . . . , W∗Kn

, and each
feature W∗i is displayed exactly by Mn,i = mi of the n individuals as i = 1, . . . , k. Since
the features’ labels are immaterial and i.i.d. form the base measure P, the conditional
distribution of Zn+1, given Zn, may be equivalently characterized through the vector
(Yn+1, A∗n+1,1, . . . , A∗n+1,Kn

), where: (i) Yn+1 is the number of new features displayed by
the (n + 1)th individual, namely, hitherto unobserved out of the sample Zn; (ii) A∗n+1,i
is a {0, 1}-valued random variable for any i = 1, . . . , Kn, and A∗n+1,i = 1 if the (n + 1)th
individual displays feature W∗i ; it equals 0 otherwise. Hence, the predictive distribution of
µ̃ is

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn) = f (y, a1, . . . , ak; n, k, m) (8)

where we denote by f a probability distribution evaluated at (y, a1, . . . , ak), and where
n, k and m := (m1, . . . , mk) is the sampling information. In the rest of this section, we
specify the function f under the assumption of a CRM prior and an SP prior, showing its
dependence on n, Kn, and (Mn,1, . . . , Mn,Kn). In particular, we show how SP priors allow
one to enrich the predictive distribution of CRM priors by including additional sampling
information in terms of the number of distinct features and their corresponding frequencies.

3.1. Priors Based on CRMs

Let MW denote the space of all bounded and finite measures on (W, W ), that is to say,
µ ∈ MW iff µ(A) < +∞ for any bounded set A ∈ W . Here, we recall the definition of a
Completely Random Measure (CRM) (see, e.g., Daley and Vere-Jones [25]).

Definition 2. A Completely Random Measure (CRM) µ̃ on (W, W ) is a random element taking
values in the space MW such that the random variables µ̃(A1), . . . , µ̃(An) are independent for any
choice of bounded and disjoint sets A1, . . . , An ∈ W and for any n ≥ 1.

We remind the reader that Kingman [26] proved that a CRM may be decomposed as the
sum of a deterministic drift and a purely atomic component. In Bayesian nonparametrics, it
is common to consider purely atomic CRMs without fixed points of discontinuity, that is to
say, µ̃ may be represented as µ̃ := ∑i≥1 η̃iδw̃i , where (η̃i)i≥1 is a sequence of random atoms
and (w̃i)i≥1 are the random locations. An appealing property of purely atomic CRMs is the
availability of their Laplace functional; indeed, for any measurable function f : W→ R+,
one has

E
[
e−
∫
W

f (w)µ̃(dw)
]
= exp

{
−
∫
W×R+

(1− e−s f (w))ν(dw, ds)
}

(9)
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where ν is a measure onW×R+ called the Lévy intensity of the CRM µ̃, and it is such that

ν({w} ×R+) = 0 ∀w ∈W, and
∫

A×R+
min{s, 1}ν(dw, ds) < ∞ (10)

for any bounded Borel set A. Here, we focus on homogeneous CRMs by assuming that
the atoms η̃is and the locations w̃is are independent; in this case, the Lévy measure may be
written as

ν(dw, ds) = λ(s)dsP(dw)

for some measurable function λ : R+ → R+ and a probability measure P on (W, W ),
called the base measure, which is assumed to be diffuse. In this case, the distribution of µ̃
will be denoted as CRM(λ; P), and the second integrability condition in (10) reduces to
the following: ∫

R+
min{s, 1}λ(s)ds < +∞. (11)

In the feature-sampling framework, µ̃ may be used as a prior distribution if the sequence
of atoms (η̃i)i≥1 is in between [0, 1], which happens if the Lévy intensity has support on
W× [0, 1]. A noteworthy example, widely used in this setting, is the stable Beta process
prior (Teh and Gorur [27]). It is defined as a CRM with Lévy intensity

λ(s) = α · Γ(1 + c)
Γ(1− σ)Γ(c + σ)

s−1−σ(1− s)c+σ−11(0,1)(s) (12)

where c > 0, σ ∈ (0, 1), and α > 0 (James [28], Masoero et al. [30]). Now, we describe
the predictive distribution for an arbitrary CRM µ̃. For the sake of clarity, we fix the
following notation:

Poiss(y; C) :=
Cye−C

y!
, y ∈ N and Bern(a; p) := pa(1− p)1−a, a ∈ {0, 1}

to denote the probability mass functions of a Poisson with parameter C > 0 and a Bernoulli
random variable with parameter p ∈ [0, 1], respectively. We refer to James [28] for a
detailed posterior analysis of CRM priors; see also Broderick et al. [29] and the references
therein.

Theorem 1 (James [28]). Let Z1, Z2, . . . be exchangeable random variables modeled as in (7),
where M equals CRM(λ; P). If Zn is a random sample that displays Kn = k distinct fea-
tures {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times in the samples, such
as i = 1, . . . , Kn, then

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= Poiss
(

y;
∫ 1

0
s(1− s)nλ(s)ds

) k

∏
i=1

Bern(ai; p∗i )
(13)

being

p∗i :=

∫ 1
0 smi+1(1− s)n−mi λ(s)ds∫ 1

0 smi (1− s)n−mi λ(s)ds
.

Proof. We consider James [28] (Proposition 3.2) for Bernoulli product models (see also
Camerlenghi et al. [15] (Proposition 1)); thus, the distribution of Zn+1, given Zn, equals the
distribution of

Z′n+1 +
Kn

∑
i=1

A∗n+1,iδW∗i
, (14)
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where Z′n+1|µ̃′ = ∑i≥1 A′n+1,iδw̃′i
∼ BeP(µ̃′) such that µ̃′ ∼ CRM((1 − s)nλ; P), and

A∗n+1,1, . . . , A∗n+1,Kn
are Bernoulli random variables with parameters J1, . . . , JKn , respec-

tively, such that each Ji is a random variable whose distribution is with a density function
of the form

f Ji (s) ∝ (1− s)n−mi smi λ(s).

By exploiting the previous predictive characterization, we can derive the posterior
distribution of Yn+1 given Zn by means of a direct application of the Laplace functional.
Indeed, the distribution of Yn+1|Zn equals ∑i≥1 A′n+1,i. Thus, for any t ∈ R, we have
the following:

E[e−tYn+1 |Zn] = E[e−t ∑i≥1 A′n+1,i ] = E
[
∏
i≥1

e−tA′n+1,i
]
= E

[
E
[
∏
i≥1

e−tA′n+1,i | µ̃′
]]

= E
[
∏
i≥1

(
e−tη̃′i + (1− η̃′i )

)]
,

where we used the representation µ̃′ = ∑i≥1 η̃′i δw̃′i
and the fact that the An+1,is are indepen-

dent Bernoulli random variables conditionally on µ̃′. We now use the Laplace functional
for µ̃′ to get

E[e−tYn+1 |Zn] = E

[
exp

{
∑
i≥1

log(1 + η̃′i (e
−t − 1))

}]

= exp
{
−(1− e−t)

∫ 1

0
(1− s)nsλ(s)ds

}
.

As a direct consequence, the posterior distribution of Yn+1 given Zn is a Poisson distri-
bution with mean

∫ 1
0 (1− s)nsλ(s)ds. Again, by exploiting the predictive representation (14),

the posterior distribution of A∗n+1,i, as i = 1, . . . , Kn, is a Bernoulli with the following mean:

E[Ji] =
∫ 1

0
s f Ji (s)ds =

∫ 1
0 (1− s)n−mi smi+1λ(s)ds∫ 1

0 (1− s)n−mi smi λ(s)ds
.

Corollary 1. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M is
the law of the stable Beta process. If Zn is a random sample that displays Kn = k distinct
features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times in the samples, such as
i = 1, . . . , Kn, then

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= Poiss
(

y; α
(c + σ)n

(c + 1)n

) k

∏
i=1

Bern
(

ai;
mi − σ

n + c

)
,

(15)

where (x)y = Γ(x + y)/Γ(x) denotes the Pochhammer symbol for x, y > 0.

Proof. It is sufficient to specialize Theorem 1 for the stable Beta process. In particular, from
Theorem 1, the posterior distribution of Yn+1 given Zn is a Poisson distribution with mean∫ 1

0
s(1− s)nλ(s)ds

(12)
=

αΓ(1 + c)
Γ(1− σ)Γ(c + σ)

∫ 1

0
s−σ(1− s)n+c+σds = α

(c + σ)n

(c + 1)n
.
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Moreover, the parameters of the Bernoulli random variables A∗n+1,1, . . . , A∗n+1,Kn
are

equal to

p∗i =

∫ 1
0 smi+1(1− s)n−mi λ(s)ds∫ 1

0 smi (1− s)n−mi λ(s)ds

(12)
=

B(mi + 1− σ, c + σ + n−mi)

B(mi − σ, c + σ + n−mi)
=

mi − σ

n + c

as i = 1, . . . , Kn.

3.2. SP Priors

From Theorem 1, under CRM priors, the distribution of the number of new features
Yn+1 is a Poisson distribution that depends on the sampling information only through
the sample size n. Moreover, the probability of observing a feature already observed in
the sample, say W∗i , depends only on the sample size n and the frequency mi of feature
W∗i out of the initial sample. Camerlenghi et al. [15] showed that SP priors allow one to
enrich the predictive structure of CRM priors, including additional sampling information
in the probability of discovering new features. To introduce SP priors, consider a CRM
µ̃ = ∑i≥1 τ̃iδw̃i onW, where (τ̃i)i≥1 are positive random atoms and (w̃i)i≥1 are i.i.d. random
atoms, with Lévy intensity ν(dw, ds) = λ(s)dsP(dw) satisfying∫ ∞

0
min{s, 1}λ(s)ds < +∞. (16)

Consider the ordered jumps ∆1 > ∆2 > · · · of the CRM µ̃ and define the random measure

µ̃∆1 = ∑
i≥1

∆i+1

∆1
δw̃i

normalizing µ̃ by the largest jump. The definition of SPs follows with a suitable change in
the measure of ∆1 (James et al. [14], Camerlenghi et al. [15]). Let us denote by L ( · , a) a
regular version of the conditional probability distribution of (∆i+1/∆1)i≥1 given ∆1 = a.
Now denote by Ψ1 a positive random variable with density function fΨ1 on R+ and define

L ( · ) :=
∫
R+

L ( · , a) fΨ1(a)da

The distribution of (∆i+1/∆1)i≥1 is obtained by mixing L ( · , a) with respect to the
density function fΨ1 . Thus, we are ready to define an SP.

Definition 3. A Scaled Process (SP) prior on (W, W ) is defined as the almost surely discrete
random measure

µ̃Ψ1 := ∑
i≥1

η̃iδw̃i , (17)

where (η̃i)i≥1 has distribution L and (w̃i)i≥1 is a sequence of independent random variables with
common distribution P, also independent of (η̃i)i≥1. We will write µ̃Ψ1 ∼ SP(ν, fΨ1).

A thoughtful account with a complete posterior analysis for SPs is given in Camer-
lenghi et al. [15]. Here, we characterize the predictive distribution (8) of SPs.

Theorem 2 (Camerlenghi et al. [15], James [28]). Let Z1, Z2, . . . be exchangeable random
variables modeled as in (7), where M equals SP(ν, fΨ1). If Zn is a random sample that displays
Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times
in the samples, such as i = 1, . . . , Kn, then the conditional distribution of Ψ1, given Zn, has
posterior density:

fΨ1|Zn(a) ∝ e−∑n
i=1
∫ 1

0 s(1−s)n−1aλ(as)ds
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a). (18)
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Moreover, conditionally on Zn and Ψ1,

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn, Ψ1)

= Poiss
(

y;
∫ 1

0
sΨ1(1− s)nλ(sΨ1)ds

) k

∏
i=1

Bern(ai; p∗i (Ψ1))
(19)

being

p∗i (Ψ1) :=

∫ 1
0 smi+1(1− s)n−mi λ(sΨ1)ds∫ 1

0 smi (1− s)n−mi λ(sΨ1)ds
.

Proof. The representation of the predictive distribution (19) follows from Camerlenghi
et al. [15] (Proposition 2). Indeed, the posterior distribution of the largest jump directly
follows from [15] (Equation (4)). In addition, the authors of [15] (Proposition 2) showed
that the conditional distribution of Zn+1, given Zn and Ψ1, equals the distribution of the
following counting measure:

Z′n+1 +
Kn

∑
i=1

A∗n+1,iδW∗i
, (20)

where Z′n+1|µ̃′ = ∑i≥1 A′n+1,iδw̃′i
∼ BeP(µ̃′Ψ1

) and µ̃′Ψ1
is a CRM with Lévy intensity of

the form
ν′Ψ1

(dw, ds) = (1− s)nΨ1λ(Ψ1s)1(0,1)(s)dsP(dw).

Moreover, A∗n+1,1, . . . , A∗n+1,Kn
are Bernoulli random variables with parameters J1, . . . , JKn ,

respectively, such that conditionally on Ψ1, each Ji has a distribution with a density function of
the form

f Ji |Ψ1
(s) ∝ (1− s)n−mi smi Ψ1λ(Ψ1s) on (0, 1).

As in the proof of Theorem 1, we show that the distribution of Yn+1|(Ψ1, Zn) equals
∑i≥1 A′n+1,i. Thus, by the evaluation of the Laplace functional, one may easily realize

that the last random sum has a Poisson distribution with mean
∫ 1

0 (1− s)nsΨ1λ(Ψ1s)ds.
Moreover, by exploiting the posterior representation (20), the variables A∗n+1,i, such as
i = 1, . . . , Kn, conditionally on Zn and Ψ, are independent and Bernoulli distributed
with mean

E[Ji|Ψ1] =
∫ 1

0
s f Ji |Ψ1

(s)ds =

∫ 1
0 (1− s)n−mi smi+1Ψ1λ(sΨ1)ds∫ 1

0 (1− s)n−mi smi Ψ1λ(sΨ1)ds
.

Remark 1. According to (18), the conditional distribution of Ψ1 given Zn may include the whole
sampling information, depending on the specification of ν and fΨ1 , and hence, the conditional
distribution of Yn+1 given Zn may also include such sampling information. As a corollary of
Theorem 2, the conditional distribution of Yn+1 given Zn is a mixture of Poisson distributions that
may include the whole sampling information; in particular, the amount of sampling information
in the posterior distribution is uniquely determined by the mixing distribution, namely by the
conditional distribution of Ψ1, given Zn.

Hereafter, we specialize Theorem 2 for the stable SP, that is, a peculiar SP defined
through a CRM with a Lévy intensity ν such that λ(s) = σs−1−σ for a parameter σ ∈ (0, 1).
We refer to Camerlenghi et al. [15] for a detailed posterior analysis of the stable SP prior.

Corollary 2. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M equals
SP(ν, fΨ1), with λ(s) = σs−1−σ for some σ ∈ (0, 1). If Zn is a random sample that displays
Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times
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in the samples, such as i = 1, . . . , Kn, then the conditional distribution of Ψ1, given Zn, has
posterior density:

fΨ1|Zn(a) ∝ a−kσe−σa−σ ∑n
i=1 B(1−σ,i) fΨ1(a) (21)

having denoted by B( · , · ) the classical Euler Beta function. Moreover, conditionally on Zn and Ψ1,

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn, Ψ1)

= Poiss
(
y; σΨ−σ

1 B(1− σ, n + 1)
) k

∏
i=1

Bern
(

ai;
mi − σ

n− σ + 1

)
.

(22)

Proof. The proof is a plain application of Theorem 2 under the choice λ(s) = σs−1−σ.

4. Predictive Characterizations for SPs

In this section, we introduce and discuss Johnson’s “sufficientness” postulates in the
context of feature-sampling models under the class of SP priors. According to Theorem 1, if
the feature-sampling model is a CRM prior, then the conditional distribution of Yn+1, given
Zn, is a Poisson distribution that depends on the sampling information Zn only through
the sample size n. Moreover, the conditional probability of generating an old feature W∗i
given Zn depends on the sampling information Zn only through n and mi. As shown in
Theorem 2, SP priors enrich the predictive structure of CRM priors through the conditional
distribution of the latent variable Ψ1 given the observable sample Zn. In the next theorem,
we characterize the class of SP priors for which the conditional distribution of Yn+1 given
Zn depends on the sampling information only through n.

Theorem 3. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M equals
SP(ν, fΨ1) and ν(dw, ds) = λ(ds)dsP(dw). Moreover, suppose that Zn is a random sample that
displays Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi
times in the samples, such as i = 1, . . . , Kn. If fΨ1 : (0, r) → R+ is a continuous function
on the compact support (0, r) with r > 0, and the function λ : R+ → R+ is continuous on
its domain, then the conditional distribution of the latent variable Ψ1 given Zn depends on the
sampling information Zn only through n if and only if λ(s) = Cs−1 on (0, r) for some constant
C > 0.

Proof. First of all, if fΨ1 is defined on the compact support (0, r) and if λ(s) = Cs−1 on
(0, r) for some constant C > 0, then it is easy to see that the posterior distribution of
Ψ1 in (18) depends only on n and not on the other sample statistics. We now show the
reverse implication. The posterior density of Ψ1, conditionally on Zn, satisfies (18), and it
is proportional to

fΨ1|Zn(a) ∝
n

∏
i=1

e−φi(a)
Kn

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a),

where φi(a) =
∫ 1

0 s(1 − s)i−1aλ(as)ds. Then, there exists c(m1, . . . , mk, k, n) such that
it holds that

fΨ1|Zn(a) =
∏n

i=1 e−φi(a) ∏Kn
i=1

∫ 1
0 smi (1− s)n−mi aλ(as)ds fΨ1(a)

c(m1, . . . , mk, k, n)
. (23)

Because of the assumptions imposed, the distribution of Ψ1|Zn does not depend on Kn,
nor on the corresponding sample frequencies Mn,1, . . . , Mn,Kn . Accordingly, the function

f1(a, n) := f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a), a ∈ (0, r), (24)
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depends only on a and n, but not on k and (m1, . . . , mk). Then, putting together (23)
and (24), it holds that

f1(a, n) ·
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds = c(m1, . . . , mk, n, k) ∀a ∈ (0, r), (25)

where c is the normalizing factor, and it does not depend on the variable a. By choosing
m1 = . . . = mk = n ∈ N, thanks to Equation (25), we can state that the following function:

f1(a, n)
(∫ 1

0
snaλ(as)ds

)k

, (26)

which is defined for any a ∈ (0, r) and does not depend on a, but only on k and n. Since
the previous assertion is true for any k ≥ 1, one may select k = 1, thus obtaining the
following identity:

f1(a, n) = c∗
(∫ 1

0
snaλ(as)ds

)−1

(27)

for some constant c∗, independent of a, but that may depend on n. Substituting (27)
into (26), we obtain that

c∗
(∫ 1

0
snaλ(as)ds

)k−1

(28)

is a function that does not depend on a, but only on n and k. As a consequence, we have that∫ 1

0
snaλ(as)ds =

∫ a

0

sn

an λ(s)ds = C∗∗

for a suitable constant C∗∗, which does not depend on a ∈ (0, r). To conclude, we take a
derivative of the previous expression with respect to a, and this allows us to show that

anλ(a) = nan−1C∗∗,

namely, λ(a) = C/a for a ∈ (0, r), where C is a positive constant. This is a Lévy inten-
sity; indeed, it satisfies the condition (11). Outside the interval (0, r), λ may be defined
arbitrarily; indeed, the values of λ on [r + ∞) do not affect the posterior distribution of
Ψ1 (18).

Remark 2. Note that in Theorem 3, we have supposed that fΨ1 has a compact support on (0, r);
thus, we are interested in defining λ on (0, r); outside the interval, λ can be defined arbitrarily
because it does not affect the posterior distribution (18) of Ψ1. From the proof of Theorem 3,
it becomes apparent that if the support of fΨ1 is the entire positive real line R+, the posterior
distribution of the largest jump depends only on n if and only if λ(s) = Cs−1 on R+ for some
constant C > 0. However, in this case, λ does not meet the integrability condition (11); hence, this
can only considered a limiting case. It is interesting to observe that such a limiting situation, with
the additional assumption fΨ1 = f∆1 , corresponds to the Beta process case with σ = 0 and c = 1
(Griffiths and Ghahramani [12]).

Now, we characterize SPs for which the posterior distribution of Ψ1 depends only on
n and Kn, but not on the sample frequencies of the different features m. Here, we assume
that fΨ1 has full support a priori. The following characterization has been provided in
Camerlenghi et al. [15] (Theorem 3), but for completeness, we report the proof.

Theorem 4 (Camerlenghi et al. [15]). Let Z1, Z2, . . . be exchangeable random variables modeled
as in (7), where M equals SP(ν, fΨ1) and ν(dw, ds) = λ(ds)dsP(dw). Suppose that Zn is a
random sample that displays Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears
exactly Mn,i = mi times in the sample, such as i = 1, . . . , Kn. If fΨ1 : R+ → R+ is a strictly
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positive function on R+ and continuously differentiable, and λ is continuously differentiable, then
the conditional distribution of the latent variable Ψ1, given Zn, depends on Zn only through n and
Kn if and only if λ(s) = Cs−1−σ on R+ for some constant C > 0 and σ ∈ (0, 1).

Proof. By arguing as in the proof of Theorem 3, the posterior density of Ψ1 given Zn is
proportional to

n

∏
i=1

e−φi(a)
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a),

where φi(a) =
∫ 1

0 s(1 − s)i−1aλ(as)ds. Then, there exists c(m1, . . . , mk, n, k) such that
it holds that

fΨ1|Zn(a) =
∏n

i=1 e−φi(a) ∏k
i=1
∫ 1

0 smi (1− s)n−mi aλ(as)ds fΨ1(a)
c(m1, . . . , mk, n, k)

.

As a consequence,

f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a)
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a) = c(m1, . . . , mk, n, k). (29)

If the density function fΨ1|Zn(a) does not depend on m1, . . . , mk, then the following
function

f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a) fΨ1(a) = f1(a, k, n)

depends only on k, n and a, but not on the frequency counts. Therefore, (29) boils down to

f1(a, k, n) ·
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds = c(m1, . . . , mk, n, k). (30)

where the function on the right-hand side of (30) is independent of a for any choice of the
vector of sampling information (m1, . . . , mk, n, k). Now, since the vector (m1, . . . , mk, n, k)
can be chosen arbitrarily, we can make the choice m1 = · · · = mk = m > 0, such that
the function [

w(a, k, n)
∫ 1

0
sm(1− s)n−maλ(as)ds

]k

(31)

does not depend on a ∈ R+, where w(a, k, n) = k
√

f1(a, k, n). Moreover, suppose that
m = n; thus,

w(a, k, n)
∫ 1

0
snaλ(as)ds (32)

does not depend on a ∈ R+, which implies that

w(a, k, n) = c∗
(∫ 1

0
snaλ(as)ds

)−1

(33)

for a constant c∗ > 0 with respect to a, which can only depend on k and n. By substitut-
ing (33) into (31), we obtain[

c∗∫ 1
0 snλ(as)ds

·
∫ 1

0
sm(1− s)n−mλ(as)ds

]k

,
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which is independent of a ∈ R+. Now, it is possible to choose m = n− 1 in the previous
function. Therefore, there exists a constant c∗∗ independent of a such that the following
identity holds: ∫ 1

0
sn−1λ(as)ds−

∫ 1

0
snλ(as)ds = c∗∗

∫ 1

0
snλ(as)ds.

By taking the derivative of the previous equation two times with respect to a,
one obtains

λ(a)(1− nc∗∗) = aλ′(a)c∗∗,

which is an ordinary differential equation in λ that can be solved by separation of variables.
In particular, we obtain

λ(a) = Ca(1−nc∗∗)/c∗∗ , for C > 0. (34)

To conclude, observe that the exponent of a in (34) should satisfy the integrability
condition (11) for homogeneous CRMs. Accordingly, it is easy to see that we must consider

λ(a) = C
1

a1+σ

where C > 0 and σ ∈ (0, 1). The reverse implication of the theorem is trivially satisfied;
hence, the proof is completed.

We recall from Theorem 2 that the conditional distribution of Ψ1 given Zn uniquely
determines the amount of sampling information included in the conditional distribution of
the number of new features Yn+1 given Zn. Such sampling information may range from
the whole information, in terms of n, Kn, and (M1,n, . . . , MKn ,n), to the sole information on
the sample size n. According to Theorem 4, the stable SP prior of Corollary 2 is the sole
SP prior for which the conditional distribution of the number of new features Yn+1 given
Zn depends on the sampling information Zn only on n and Kn. Moreover, according to
Theorem 3, the Beta process prior is the sole SP prior for which the conditional distribution
of the number of new features Yn+1 given Zn depends on the sampling information Zn only
on n. In particular, Theorems 3 and 4 show that the Beta process prior and the stable SP
prior may be considered, to some extent, the feature sampling counterparts of the Dirichlet
process prior the Pitman–Yor process prior.

5. Discussion and Conclusions

In this paper, we have introduced and discussed Johnson’s “sufficientness” postu-
lates in the context of feature-sampling models. “Sufficientness” postulates have been
investigated extensively in the context of species-sampling models, providing an effective
classification of species-sampling models on the basis of the form of their corresponding
predictive distributions. Here, we made a first step towards the problem of providing an
analogous classification for feature-sampling models. In particular, we obtained Johnson’s
“sufficientness” postulates when the class of feature-sampling models is restricted to the
class of scaled process priors. However, the results presented in the paper remain prelimi-
nary, and do not at all provide a complete answer to the characterization problem within
the general class of feature-sampling models. This problem remains open.

Within the feature-sampling setting, the predictive distribution is of the form (8),
though for the purpose of providing “sufficientness” postulates, one may focus on feature-
sampling models exhibiting a general predictive distribution of the following type:

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= g(y; n, k, m)
k

∏
i=1

fi(ai; n, k, m).
(35)
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Note that (35) is a probability distribution, and it must satisfy a consistency condition,
as usual. Among all the feature-sampling models whose predictive distribution can be
written in the form (35), we are interested in characterizing nonparametric priors such that:
(i) The function g depends on the sampling information only through n, and the function
fi depends only on (n, mi); (ii) g depends only on (n, k) and fi depends only on (n, mi);
(iii) g depends only on (n, k) and fi depends only on (n, k, mi). In our view, these charac-
terizations may provide a complete picture of sufficientness postulates within the feature
setting, and they are also fundamental to guiding the selection of the prior distribution.
We conjecture that CRMs are the nonparametric priors satisfying the characterization (i),
the SP with a stable Lévy measure is an example of prior satisfying (ii), and no examples
satisfying (iii) have been considered in the current literature. Results in this direction are
in Battiston et al. [31], where the authors characterize an exchangeable feature allocation
probability function (Broderick et al. [32]) in product forms; this could be a stimulating
point of departure to study the characterization problem depicted above.

Author Contributions: Writing–original draft, F.C. and S.F.; writing–review and editing, F.C. and S.F.
The authors contributed equally to this work. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program under grant agreement No. 817257.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: F.C. is extremely grateful to Eugenio Regazzini for the time spent at the Depart-
ment of Mathematics of University of Pavia during his Ph.D. studies in Mathematical Statistics; F.C.
wants to especially thank Eugenio Regazzini for having introduced him to the study of Bayesian
Statistics with a stimulating Ph.D. course held together with Antonio Lijoi. S.F. wishes to express his
gratitude to Eugenio Regazzini, whose fundamental contributions to Bayesian statistics have always
been a great source of inspiration, transmitting enthusiasm and methods for the development of his
own research. The authors gratefully acknowledge the financial support from the Italian Ministry of
Education, University, and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022. F.C. is a
member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de Finetti, B. La prévision: Ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 1937, 7, 1–68.
2. Johnson, W.E. Probability: The Deductive and Inductive Problems. Mind 1932, 41, 409–423. [CrossRef]
3. Pitman, J. Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory; IMS Lecture

Notes Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1996; Volume 30, pp. 245–267. [CrossRef]
4. Regazzini, E. Intorno ad alcune questioni relative alla definizione del premio secondo la teoria della credibilità. Giornale

dell’Istituto Italiano degli Attuari 1978, 41, 77–89.
5. Lo, A.Y. A characterization of the Dirichlet process. Stat. Probab. Lett. 1991, 12, 185–187. [CrossRef]
6. Ferguson, T.S. A Bayesian analysis of some nonparametric problems. Ann. Statist. 1973, 1, 209–230. [CrossRef]
7. Zabell, S.L. Symmetry and its discontents. In Cambridge Studies in Probability, Induction, and Decision Theory; Essays on the history

of inductive probability, with a preface by Brian Skyrms; Cambridge University Press: New York, NY, USA, 2005; p. xii+279.
8. Perman, M.; Pitman, J.; Yor, M. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 1992,

92, 21–39. [CrossRef]
9. Pitman, J.; Yor, M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 1997,

25, 855–900. [CrossRef]
10. Bacallado, S.; Battiston, M.; Favaro, S.; Trippa, L. Sufficientness postulates for Gibbs-type priors and hierarchical generalizations.

Stat. Sci. 2017, 32, 487–500. [CrossRef]
11. Gnedin, A.; Pitman, J. Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.

Steklov. (POMI) 2005, 325, 83–102. 244–245. [CrossRef]

http://doi.org/10.1093/mind/XLI.164.409
http://dx.doi.org/10.1214/lnms/1215453576
http://dx.doi.org/10.1016/0167-7152(91)90075-3
http://dx.doi.org/10.1214/aos/1176342360
http://dx.doi.org/10.1007/BF01205234
http://dx.doi.org/10.1214/aop/1024404422
http://dx.doi.org/10.1214/17-STS619
http://dx.doi.org/10.1007/s10958-006-0335-z


Mathematics 2021, 9, 2891 15 of 15

12. Griffiths, T.L.; Ghahramani, Z. The Indian buffet process: An introduction and review. J. Mach. Learn. Res. 2011, 12, 1185–1224.
13. Ayed, F.; Battiston, M.; Camerlenghi, F.; Favaro, S. Consistent estimation of small masses in feature sampling. J. Mach. Learn. Res.

2021, 22, 1–28.
14. James, L.F.; Orbanz, P.; Teh, Y.W. Scaled subordinators and generalizations of the Indian buffet process. arXiv 2015,

arXiv:1510.07309.
15. Camerlenghi, F.; Favaro, S.; Masoero, L.; Broderick, T. Scaled process priors for Bayesian nonparametric estimation of the unseen

genetic variation. arXiv 2021, arXiv:2106.15480.
16. Brix, A. Generalized gamma measures and shot-noise Cox processes. Adv. Appl. Probab. 1999, 31, 929–953. [CrossRef]
17. Lijoi, A.; Mena, R.H.; Prünster, I. Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B

Stat. Methodol. 2007, 69, 715–740. [CrossRef]
18. De Blasi, P.; Favaro, S.; Lijoi, A.; Mena, R.H.; Prunster, I.; Ruggiero, M. Are Gibbs-type priors the most natural generalization of

the Dirichlet process? IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 212–229. [CrossRef]
19. Regazzini, E.; Lijoi, A.; Prünster, I. Distributional results for means of normalized random measures with independent increments.

Ann. Stat. 2003, 31, 560–585. [CrossRef]
20. Pitman, J. Poisson-Kingman Partitions; Lecture Notes-Monograph Series; Institute of Mathematical Statistics: Beachwood, OH,

USA, 2003; pp. 1–34.
21. Pitman, J. Combinatorial Stochastic Processes; Lecture Notes in Mathematics; Lectures from the 32nd Summer School on Probability

Theory held in Saint-Flour, 7–24 July 2002, with a foreword by Jean Picard; Springer: Berlin, Germany, 2006; Volume 1875,
p. x+256.

22. Lijoi, A.; Prünster, I. Models beyond the Dirichlet process. In Bayesian Nonparametrics; Hjort, N.L., Holmes, C., Müller, P., Walker,
S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 80–136.

23. Ghosal, S.; van der Vaart, A. Fundamentals of Nonparametric Bayesian Inference; Cambridge Series in Statistical and Probabilistic
Mathematics; Cambridge University Press: Cambridge, UK, 2017; Volume 44, p. xxiv+646.

24. Zabell, S.L. The continuum of inductive methods revisited. In The Cosmos of Science: Essays of Exploration; University of Pittsburgh
Press: Pittsburgh, PA, USA, 1997; pp. 351–385.

25. Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure (Probability and Its
Applications), 2nd ed.; Springer: New York, NY, USA, 2008; p. xviii+573,

26. Kingman, J. Completely random measures. Pac. J. Math. 1967, 21, 59–78. [CrossRef]
27. Teh, Y.; Gorur, D. Indian buffet processes with power-law behavior. Adv. Neural Inf. Process. Syst. 2009, 22, 1838–1846.
28. James, L.F. Bayesian Poisson calculus for latent feature modeling via generalized Indian buffet process priors. Ann. Stat. 2017,

45, 2016–2045. [CrossRef]
29. Broderick, T.; Wilson, A.C.; Jordan, M.I. Posteriors, conjugacy, and exponential families for completely random measures.

Bernoulli 2018, 24, 3181–3221. [CrossRef]
30. Masoero, L.; Camerlenghi, F.; Favaro, S.; Broderick, T. More for less: Predicting and maximizing genomic variant discovery via

Bayesian nonparametrics. Biometrika 2021, asab012, [CrossRef]
31. Battiston, M.; Favaro, S.; Roy, D.M.; Teh, Y.W. A characterization of product-form exchangeable feature probability functions.

Ann. Appl. Probab. 2018, 28, 1423–1448. [CrossRef]
32. Broderick, T.; Pitman, J.; Jordan, M.I. Feature allocations, probability functions, and paintboxes. Bayesian Anal. 2013, 8, 801–836.

[CrossRef]

http://dx.doi.org/10.1239/aap/1029955251
http://dx.doi.org/10.1111/j.1467-9868.2007.00609.x
http://dx.doi.org/10.1109/TPAMI.2013.217
http://dx.doi.org/10.1214/aos/1051027881
http://dx.doi.org/10.2140/pjm.1967.21.59
http://dx.doi.org/10.1214/16-AOS1517
http://dx.doi.org/10.3150/16-BEJ855
http://dx.doi.org/10.1093/biomet/asab012
http://dx.doi.org/10.1214/17-AAP1333
http://dx.doi.org/10.1214/13-BA823

	Introduction
	Species-Sampling Models
	Feature-Sampling Models
	Priors Based on CRMs
	SP Priors

	Predictive Characterizations for SPs
	Discussion and Conclusions
	References

