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1. Introduction

In a very recent article [1], Liu and Zhang introduced the Hajłasz–Sobolev spaces on
an infinite connected graph G and established the boundedness for the Hardy–Littlewood
maximal operators on G and its fractional variant on the above function spaces and the
endpoint Sobolev spaces. The main purpose of this paper is extending the above results to
the multilinear setting. More precisely, we introduce two kinds of multilinear fractional
maximal operators on G and to establish the bounds for the above operators on the Hajłasz–
Sobolev spaces and endpoint Sobolev spaces on G. Although our arguments are greatly
motivated by [1], our methods and techniques are more delicate and direct than those in [1].
Particularly, some technique details need to be overcome.

We firstly recall some necessary backgrounds. The centered Hardy–Littlewood maxi-
mal operator M is often defined by

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy, f ∈ L1
loc(R

n),

where the ball B(x, r) ⊂ Rn, x is the ball center and r is the ball radius. The uncentered
maximal function M̃ f can be defined similarly. A famous result of harmonic analysis
is the Hardy–Littlewood–Wiener theorem, which states that M is of type (p, p) for 1 <
p ≤ ∞ and of weak type (1, 1). An active topic of current research is the investigation of
the regularity properties of maximal operators. About the regularity theory of maximal
operators, Lp−bound is one of the basic questions often considered: for 1 < p ≤ ∞,
whether the following inequality holds

‖∇M f ‖Lp(Rn) ≤ C‖∇ f ‖Lp(Rn), f ∈W1,p(Rn), (1)

where W1,p(Rn) is the Sobolev space defined by W1,p(Rn) = {g : g ∈ Lp(Rn),∇g ∈
Lp(Rn)}, where ∇g refers to the weak gradient. The first work was due to Kinnunen [2] in
1997 when he established the inequality (1) and showed that M is bounded on W1,p(Rn)
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for all 1 < p ≤ ∞. It was noticed that the W1,p-bound for the uncentered maximal operator
M̃ also holds by a simple modification of Kinnunen’s arguments or ([3], Theorem 1). Since
then, Kinnunen’s results were extended to a local version in [4], to a fractional version in [5]
and to a multisublinear version in [6,7]. Other interesting works related to the regularity of
maximal operators in Sobolev spaces and other function spaces are [8,9].

Due to the lack of reflexivity of L1, the W1,1-regularity for M is certainly a more
delicate issue. The endpoint regularity of maximal operator has been an active topic of
current research. A crucial question related to this topic was posed by Hajłasz and Onninen
in [3]:

Question 1. ([3]) Is the map f 7→ |∇M f | bounded from W1,1(Rn) to L1(Rn)?

In the references [10–14], Question 1 in dimension n = 1 has been completely solved,
and in [15,16], partial progress has been made on this issue for the general dimension n ≥ 2.
In 2002, Tanaka [14] first observed that if f ∈W1,1(R), then M̃ f is weakly differentiable and

‖(M̃ f )′‖L1(R) ≤ 2‖ f ′‖L1(R). (2)

Tanaka’s result was later sharpened by Aldaz and Pérez Lázaro [10]. The above authors
proved that if f is of bounded variation on R, then M̃ f is absolutely continuous and

Var
(

M̃ f
)
≤ Var( f ), (3)

where Var( f ) denotes the total variation of f on R. This yields

‖(M̃ f )′‖L1(R) ≤ ‖ f ′‖L1(R) (4)

if f ∈W1,1(R). Notice that the constant C = 1 in inequalities (3) and (4) is sharp. Inequality
(2) was recently extended to a fractional setting in ([17], Theorem 1) and to a multisublinear
fractional setting in ([18], Theorems 1.3–1.4). Very recently, Carneiro et al. [19] proved that
the map f 7→ (M̃ f )′ is continuous from W1,1(R) to L1(R). In the centered setting, Kurka [12]
showed that if f is of bounded variation on R, then inequality (3) holds for M (with constant
C = 240, 004). It was also shown in [12] that if f ∈W1,1(R), then M f is weakly differentiable
and (2) holds for M with C = 240,004. It is currently unknown whether inequality (4) holds
for M and the map f 7→ (M f )′ is continuous from W1,1(R) to L1(R). Recently, Beltran and
Madrid [15] extended Kurka’s result to the fractional version. Other interesting works can
be found in [11,13,20–27], among others.

Next, we introduce the basic knowledge of graphs and the regularity properties of
maximal operators on the graph settings. We assume that G = (VG, EG) is the undirected
combinatorial graph, where VG denotes the set of vertices and EG denotes the set of edges.
Two vertices u, v ∈ VG are said to be neighbors if they are connected by an edge u ∼ v ∈ EG.
We define NG(u) as the the set of neighbors of u ∈ VG. The graph G = (VG, EG) is said
to be finite (resp., infinite) if |VG| < +∞ (resp., |VG| = +∞). The graph G = (VG, EG) is
said to be connected if there exists a finite sequence of vertices {ui}k

i=0, k ∈ N \ {0}, so that
u = u0 ∼ u1 ∼ · · · ∼ uk = v, for any distinct u, v ∈ VG, where N is the set of {0, 1, . . .}.

In this paper, we always suppose that G = (VG, EG) is an infinite connected graph. We
use dG to represent the metric induced by the edges in EG, that is, for the given u, w ∈ VG,
we define the distance dG(u, w) by the number of edges in a shortest path connecting u
and w. BG(u, t) represents the ball whose center is u and whose radius is t, i.e.,

BG(u, t) = {w ∈ VG : dG(u, w) ≤ t}.

For instance,

BG(u, t) =
{
{u}, if 0 ≤ t < 1;
{u} ∪ NG(u), if 1 ≤ t < 2.
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Set SG(v, r) = {u ∈ VG : dG(u, v) = r}, and the notation |A|means the cardinality of
A ⊂ VG.

Then, let us introduce two types of multilinear fractional maximal operators on the
infinite connected graphs G = (VG, EG).

Definition 1. Suppose that α ≥ 0, κ ≥ 1, m ≥ 1 and the vector-valued function ~f = ( f1, . . . , fm)

with each f j : VG → R, the multilinear fractional maximal operator associated with ~f on G is
defined by

Mκ
α,G(

~f )(u) = sup
t>0
|BG(u, t)|α

m

∏
j=1

1
|BG(u, κt)| ∑

v∈BG(u,t)
| f j(v)|.

Another version is given by

M̃κ
α,G(

~f )(u) = sup
t>0

tα
m

∏
j=1

1
|BG(u, κt)| ∑

v∈BG(u,t)
| f j(v)|.

Obviously, dG(u, v) can only be natural numbers. Then, the above two types of
operators can be defined as follows; just take M̃κ

α,G(
~f ) as an example:

M̃κ
α,G(

~f )(u) = sup
t∈N

tα
m

∏
j=1

1
|BG(u, κt)| ∑

v∈BG(u,t)
| f j(v)|.

If κ = 1, we denote Mκ
α,G = Mα,G and M̃κ

α,G = M̃α,G. If m = 1, we denote Mκ
α,G = Mκ

α,G

and M̃κ
α,G = M̃κ

α,G. When κ = 1, we denote Mκ
α,G = Mα,G and M̃κ

α,G = M̃α,G. These operators
Mα,G and M̃α,G were firstly introduced by Liu and Zhang [1].

When α = 0, the operators Mα,G and M̃α,G reduce to the usual Hardy–Littlewood
maximal operator on G, which is denoted by MG. This type of maximal operator has been
studied by many authors (see [28–32]), and the auhtors obtained a lot of wonderful results.
See the literature here; we will not describe them one by one.

In fact, one can find the root of Mκ
α,G in the discrete harmonic analysis. Let m ≥ 1,

0 ≤ α < m and κ = 1. Assume that G1 = (VG1 , EG1), where VG1 = Z and EG1 = {j ∼ j + 1 :
j ∈ Z}. Mκ

α,G1
is actually the usual one-dimensional discrete centered multilinear fractional

maximal operator Mα, i.e.,

Mα(~f )(n) = sup
r∈N

1
(2r + 1)m−α

m

∏
j=1

r

∑
k=−r

| f j(n + k)|, n ∈ Z.

When α = 0, the operator Mκ
α,G1

means the usual one-dimensional discrete centered
multilinear maximal operator M, i.e.,

M(~f )(n) = sup
r∈N

1
(2r + 1)m

m

∏
j=1

r

∑
k=−r

| f j(n + k)|, n ∈ Z.

Many authors have investigated the regularity properties of M and Mα (for more
details, see [33,34]).

In order to generalize results on Rn and its discrete setting to the graph setting,
Liu and Xue [35] introduced the first-order Sobolev spaces on graphs and studied the
Sobolev regularity of the Hardy–Littlewood maximal operator on a finite connected graph.
Let us recall some definitions.

Definition 2. For 0 < p ≤ ∞ and G = (VG, EG), the Lebesgue space Lp(VG) consists of the
functions f : VG → R satisfying ‖ f ‖Lp(VG)

= (∑u∈VG
| f (u)|p)1/p < ∞ for all 0 < p < ∞ and

‖ f ‖L∞(VG)
= supu∈VG

| f (u)|.
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Definition 3. Denote W1,p(VG) the first-order Sobolev space on G = (VG, EG), it can be defined
as follows for 1 ≤ p ≤ ∞:

W1,p(VG) := { f : VG → R; ‖ f ‖W1,p(VG)
:= ‖ f ‖Lp(VG)

+ ‖|∇ f |‖Lp(VG)
< ∞},

where |∇ f |(u) :=
(

∑
v∈NG(u)

| f (v)− f (u)|2
)1/2

, for u ∈ VG.

It is not difficult to get that

‖ f ‖Lp(VG)
≤ ‖ f ‖1,p ≤ (2|VG| − 1)‖ f ‖Lp(VG)

, 1 ≤ p ≤ ∞, (5)

if the graph G is a finite connected graph.
According to (5), one can note that the space W1,p(VG) is acctually the Lebesgue space

Lp(VG) with an equivalent norm. The relationship between W1,p(VG) and Lp(VG)(Lp(VG) ⊂
W1,p(VG)) is obvious, if G = (VG, EG) is an infinite connected graph. However, generally
speaking, the inclusion relation Lp(VG) ⊂ W1,p(VG) is not valid. As a matter of fact, we
can cite a counterexample to illustrate this fact. Set VG = N, EG = {0 ∼ i : i ∈ N \ {0}}
and f (k) = χ{0}(k), k ∈ N. It is easy to know ‖ f ‖Lp(VG)

= 1 and ‖|∇ f |‖Lp(VG)
= +∞ for

all 1 ≤ p ≤ ∞; then, one can have

Lp(VG) = W1,p(VG), 1 ≤ p ≤ ∞, (6)

if
∆G := sup

v∈VG

|NG(v)| < +∞, (UBD)

where the condtion (UBD) is called the uniformly bounded degree conditon (for the
proof of (6), see [1]). Therefore, under the (UBD) condition, the boundedness of maximal
operators on W1,p(VG) is equivalent to the property of maximal operators on Lp(VG).

Recently, one of the authors and Xue [35] showed

‖|∇MG f |‖Lp(VG)
≤ Cp,n‖|∇ f |‖Lp(VG)

, 1 ≤ p ≤ ∞,

when G = (VG, EG) is a finite connected graph with n vertices. When G = (VG, EG) is
an infinite connected graph, in [1], the authors studied the endpoint Sobolev regularity
of the fractional maximal operator on G. More precisely, if G satisfies certain geometric
conditions, they showed that

max{‖|∇Mα,G f |‖L1(VG)
, ‖|∇M̃α,G f |‖L1(VG)

} ≤ C‖ f ‖L1(VG)
.

The motivation of this paper is to develop the above results for the multilinear setting.
More precisely, we shall prove that

max{‖|∇Mκ
α,G(

~f )|‖L1(VG)
, ‖|∇M̃κ

α,G(
~f )|‖L1(VG)

} ≤ C
m

∏
j=1
‖ f j‖L1(VG)

,

provided that G satisfies certain geometric conditions. These results and their proofs can
be found in Section 3. In Section 2, we give the proof of Lp boundedness of the multilinear
maximal operator on graphs and its fractional variants on graphs. These together with (6)
will lead to the bounds for the above operators on the Sobolev spaces. In Sections 3 and 4,
for the multilinear maximal operator and its fractional variants on graphs, we establish their
boundedness on endpoint Sobolev spaces and on the Hajłasz–Sobolev spaces, respectively.

In this article, we often use the following notation

fB =
1
|B| ∑

v∈B
f (v)
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for any arbitrary function f : VG → R and any subset B of VG. Throughout this article,
letters C or Cα,β,··· will denote positive constants that may change from one instance to
another and depend on parameters α, β, · · · involved.

2. Boundedness on Lebesgue Spaces

Firstly, in this section, we want to study the bounds of the multilinear fractional maxi-
mal operators on Lebesgue spaces. We begin with some geometric conditions on graphs.

Definition 4. Let G = (VG, EG).

(i) G is said to be doubling condition if

D(G) := sup
{ |BG(x, 2t)|
|BG(x, t)| : x ∈ VG, t ∈ N

}
< ∞.(D)

(ii) G is said to satisfy the lower bound condition if there is a constant Q ≥ 1, such that

B1,Q := inf
x∈VG , t∈N\{0}

|BG(x, t)|
tQ > 0.(LB −Q)

(iii) G is said to satisfy the upper bound condition if there is a constant Q ≥ 1, such that

B2,Q := sup
x∈VG , t∈N\{0}

|BG(x, t)|
tQ < ∞.(UB −Q)

(iv) Set 0 < δ ≤ 1. G is said to satisfy the δ-annular decay property if

B3,δ := sup
x∈VG ,

s, t∈N\{0},s<t

|BG(x, t)| − |BG(x, t− s)|
|BG(x, t)|

( t
s

)δ
< ∞.(ADP − ◦)

(v) G is said to satisfy the upper bounded sphere condition if there is a constant ξ > 0, such that

B4,ξ := sup
x∈VG , t∈N\{0}

|SG(x, t)|
tξ

< ∞.(UBS −∼)

It was pointed out in [1] that the following facts are valid.

Remark 1.

(i) If ∆G ≤ B4,ξ , (UBS −∼) can deduce (UBD), but (UBD) cannot deduce (UBS −∼).
(ii) (UBS −∼) may imply (UB −Q) with Q = ξ + 1 and B2,Q ≤ 2ξ+1

ξ+1B4,ξ , as well as the
condition (UB −Q) means (UBS −∼) where ξ ≥ Q and B4,ξ ≤ B2,Q.

(iii) Obviously, if 0 < δ1 ≤ δ2 ≤ 1, (ADP − ◦2) means (ADP − ◦1) .
(iv) There exsits some δ ∈ (0, 1] satisfying B3,δ < 2δ so that (ADP − ◦) means (D) with

D(G) ≤ 2δ

2δ−B3,δ
.

When the graph G = (VG, EG) satisfies (D), it is easy to check that

D(G)−[logκ
2 ]−1Mα,G f (v) ≤ Mκ

α,G f (v) ≤ Mα,G f (v), ∀v ∈ VG,

D(G)−[logκ
2 ]−1M̃α,G f (v) ≤ M̃κ

α,G f (v) ≤ M̃α,G f (v), ∀v ∈ VG.

In [1], the authors established the boundedness of the fractional maximal operator Mα,G
and M̃α,G on Lp. This together with the above estimates implies the following theorem.

Theorem 1. Suppose that κ ≥ 1, 1 < p < ∞ and G = (VG, EG) satisfies (D).
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(i) If 0 ≤ α ≤ 1/p and q = p/(1− pα), then for f ∈ Lp(VG) we have

‖Mκ
α,G f ‖Lq(VG)

≤ C‖ f ‖Lp(VG)
,

where C depends on α, p,D(G).
(ii) Assume that G = (VG, EG) satisfies (LB −Q), Q ≥ 1, 0 ≤ α ≤ Q/p and q =

pQ/(Q− αp), then for f ∈ Lp(VG) we have

‖M̃κ
α,G f ‖Lq(VG)

≤ C‖ f ‖Lp(VG)
,

where C depends on α, p, Q,D(G),B1,Q.

Applying above theorem, we can obtain the following result immediately.

Theorem 2. Assume that κ ≥ 1, ~f = ( f1, . . . , fm) with each f j ∈ Lpj(VG) for 1 < pj < ∞ and
G = (VG, EG) satisfies (D).
(i) Suppose that 0 ≤ α ≤ ∑m

i=1 1/pi, 1/q = ∑m
i=1 1/pi − α ≤ 1, we have

‖Mκ
α,G(

~f )‖Lq(VG)
≤ Cα,p1,...,pm ,D(G)

m

∏
j=1
‖ f j‖Lpj (VG)

.

(ii) Let Q ≥ 1 and G satisfy (LB −Q). If 0 ≤ α ≤ ∑m
i=1 Q/pi and 1/q = ∑m

i=1 1/pi −
α/Q ≤ 1, then

‖M̃κ
α,G(

~f )‖Lq(VG)
≤ Cα,p1,...,pm ,Q,B1,Q ,D(G)

m

∏
j=1
‖ f j‖Lpj (VG)

.

Proof. Let 1/q = 1/q1 + · · ·+ 1/qm, where 1 < qi < ∞, 1/qi = 1/pi − αi, 0 ≤ αi ≤ 1/pi
and α = ∑m

i=1 αi. For all x ∈ VG and κ ≥ 1, apparently, we have

Mκ
α,G(

~f )(x) ≤
m

∏
j=1

Mκ
αj ,G f j(x), ∀x ∈ VG.

This together with Hölder’s inequality and Theorem 1(i) implies that

‖Mκ
α,G(

~f )‖Lq(VG)
≤

m

∏
j=1
‖Mκ

αj ,G f j‖Lqj (VG)
≤ Cα,p1,...,pm ,D(G)

m

∏
j=1
‖ f j‖Lp(VG)

,

which proves part (i).
It remains to prove part (ii). Let 1/q = 1/q1 + · · · + 1/qm, where 1 < qi < ∞,

1/qi = 1/pi − αi/Q, 0 ≤ αi ≤ Q/pi and α = ∑m
i=1 αi. For all κ ≥ 1, it is easy to check that

M̃κ
α,G(

~f )(x) ≤
m

∏
j=1

M̃κ
αj ,G f j(x), ∀x ∈ VG,

which together with Hölder’s inequality and Theorem 1(ii) implies the conclusion of
part (ii).

Applying Theorem 2 and (6), we have the following regularity properties for the
multilinear maximal operator and its fractional variant.

Corollary 1. Let κ ≥ 1, ~f = ( f1, . . . , fm) with each f j ∈ Lpj(VG) for 1 < pj < ∞ and
G = (VG, EG) satisfy (D) and (UBD).
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(i) Suppose that 0 ≤ α ≤ ∑m
i=1 1/pi, 1/q = ∑m

i=1 1/pi − α ≤ 1, we have

‖Mκ
α,G(

~f )‖W1,q(VG)
≤ Cα,p1,...,pm ,D

m

∏
j=1
‖ f j‖W1,pj (VG)

.

(ii) Let Q ≥ 1 and G = (VG, EG) satisfy (LB −Q). If 0 ≤ α ≤ ∑m
i=1 Q/pi and 1/q =

∑m
i=1 1/pi − α/Q ≤ 1, then

‖M̃κ
α,G(

~f )‖W1,q(VG)
≤ Cα,p1,...,pm ,Q,B1,Q ,D

m

∏
j=1
‖ f j‖W1,pj (VG)

.

3. Endpoint Sobolev Regularity of Two Classes of Maximal Operators

Compared with the results of Section 2, this section is devoted to establishing the
endpoint Sobolev regularity for the multilinear maximal operator and its fractional variant.
Let us firstly introduce the following result.

Theorem 3. Aussme that G = (VG, EG), Q ≥ 1, κ ≥ 1, 0 < δ ≤ 1, 0 ≤ α < m and
0 < ξ < Q(m− α)+ δ− 1. If the graph G satisfies (D), (LB −Q), (ADP − δ) and (UBS − ξ),
we have

‖|∇Mκ
α,G(

~f )|‖L1(VG)
≤ C

m

∏
j=1
‖ f j‖L1(VG)

which holds for all ~f = ( f1, . . . , fm) with each f j ∈ L1(VG), and C depends on α, Q, δ, m, ξ,D,B1,Q,
B3,δ, B4,ξ .

Proof. From the definotion of Mκ
α,G(

~f ), we know that there must be a positve integer ru,
such that

Mκ
α,G(

~f )(u) = |BG(u, ru)|α
m

∏
j=1

1
|BG(u, κru)| ∑

w∈BG(u,ru)

| f j(v)|

for f j ∈ L1(VG) and any v ∈ VG. Apparently by the definiton of |∇ f |, for fixed x ∈ VG,
we can write

|∇Mκ
α,G(

~f )(x)| ≤ ∑
y∈NG(x)

|Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)|

= ∑
y∈I1(x)

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)|+ ∑
y∈I2(x)

Mκ
α,G(

~f )(y)−Mκ
α,G(

~f )(x)|

=: I I1 + I I2,

where we set
I1(x) := {y ∈ NG(x) : Mκ

α,G(
~f )(x) > Mκ

α,G(
~f )(y)},

I2(x) := {y ∈ NG(x) : Mκ
α,G(

~f )(x) < Mκ
α,G(

~f )(y)}.

We first analyze I I1. Fixing y ∈ I1(x), we have

Mκ
α,G(

~f )(y) ≥ |BG(y, rx + 1)|α
m

∏
j=1

1
|BG(y, κ(rx + 1))| ∑

w∈BG(y,rx+1)
| f j(w)|

≥ |BG(x, rx)|α
|BG(x, κrx)|m

|BG(y, κ(rx + 1))|m
m

∏
j=1

1
|BG(x, κrx)| ∑

w∈BG(x,rx)

| f j(w)|

≥ |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m Mκ

α,G(
~f )(x),
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which gives

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)

≤
(

1− |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

)
Mκ

α,G(
~f )(x)

≤ |BG(y, κ(rx + 1))|m − |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

|BG(x, rx)|α
|BG(x, κrx)|m

m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|.

By (ADP − δ) and (D), we have

|BG(y, κ(rx + 1))|m − |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

≤ |BG(x, κ(rx + 2))|m − |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

=
|BG(x, κ(rx + 2))| − |BG(x, κrx)|

|BG(y, κ(rx + 1))|m
×(|BG(x, κ(rx + 2))|m−1 + |BG(x, κ(rx + 2))|m−2|BG(x, κrx)|+ · · ·+ |BG(x, κrx)|m−1)

≤ mB3,δ

( 2
rx + 2

)δ |BG(x, κ(rx + 2))|m
|BG(y, κ(rx + 1))|m

≤ mB3,δ

( 2
rx + 2

)δ |BG(y, κ(rx + 3))|m
|BG(y, κ(rx + 1))|m

≤ mB3,δD(G)2
( 2

rx + 2

)δ
.

(7)

Applying (LB −Q), one has

|BG(x, κrx)| ≥ max{B1,Q(κrx)
Q, 1} ≥ B1,Q(2 + B1,Q)

−Q(κrx + 1)Q. (8)

In view of (7) and (8), we have that for any y ∈ I1(x),

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)

≤ mB3,δD(G)2
( 2

rx + 2

)δ(
B1,Q(2 + B1,Q)

−Q(κrx + 1)Q
)α−m m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|

≤ mB3,δD(G)22δBα−m
1,Q (2 + B1,Q)

Q(m−α)(rx + 1)Q(α−m)−δ
m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|.

(9)

For I I2 similar to I I1, we obtain

Mκ
α,G(

~f )(y)−Mκ
α,G(

~f )(x)

≤ mB3,δD(G)22δBα−m
1,Q (2 + B1,Q)

Q(m−α)(ry + 1)Q(α−m)−δ
m

∏
j=1

∑
w∈BG(y,ry)

| f j(w)|. (10)
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From (9), (10) and the inclusion relation Ii(x) ⊂ NG(x), i = 1, 2 and Remark 1 (i),
we have

|∇Mκ
α,G(

~f )(x)| ≤ Cα,Q,δ,m,D,B1,Q ,B3,δ

(
∑

y∈I1(x)
(rx + 1)Q(α−m)−δ

m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|

+ ∑
y∈I2(x)

(ry + 1)Q(α−m)−δ
m

∏
j=1

∑
w∈BG(y,ry)

| f j(w)|
)

≤ Cα,Q,δ,m,D(G),B1,Q ,B3,δ

(
(rx + 1)Q(α−m)−δ

m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|

+ (ry + 1)Q(α−m)−δ
m

∏
j=1

∑
w∈BG(x,ry+1)

| f j(w)|
)

≤ Cα,Q,δ,m,D(G),B1,Q ,B3,δ

m

∏
j=2
‖ f j‖L1(VG)

(
(rx + 1)Q(α−m)−δ ∑

w∈BG(x,rx)

| f1(w)|

+ (ry + 1)Q(α−m)−δ ∑
w∈BG(x,ry+1)

| f1(w)|
)

.

It follows that

‖|∇Mκ
α,G(

~f )|‖L1(VG)
≤ Cα,Q,δ,m,D(G)),B1,Q ,B3,δ

m

∏
j=2
‖ f j‖L1(VG)

×
(

∑
x∈VG

∑
w∈BG(x,rx)

| f1(w)|(rx + 1)Q(α−m)−δ

+ ∑
x∈VG

∑
w∈BG(x,ry+1)

| f1(w)|(ry + 1)Q(α−m)−δ
)

.

(11)

Notice that

∑
x∈VG

∑
w∈BG(x,rx)

| f1(w)|(rx + 1)Q(α−m)−δ

≤ ∑
x∈VG

∑
w∈VG

| f1(w)|χdG(w,x)≤rx (w)(rx + 1)Q(α−m)−δ

≤ ∑
w∈VG

| f1(w)| ∑
x∈VG

(dG(w, x) + 1)Q(α−m)−δ

≤ ‖ f1‖L1(VG)
sup

w∈VG
∑

x∈VG

(dG(w, x) + 1)Q(α−m)−δ.

On the other hand, one has

∑
x∈VG

∑
w∈BG(x,ry+1)

| f1(w)|(ry + 1)Q(α−m)−δ

≤ ∑
w∈VG

∑
x∈VG

| f1(w)|χdG(w,x)≤ry+1(w)(ry + 1)Q(α−m)−δ

≤ ∑
w∈VG

| f1(w)| ∑
x∈VG

dG(w, x)Q(α−m)−δ

≤ ‖ f1‖L1(VG)
sup

w∈VG
∑

x∈VG

dG(w, x)Q(α−m)−δ.

Hence, we get from (11) that

‖|∇Mκ
α,G(

~f )|‖L1(VG)

≤ CD(G),α,δ,Q,m,B1,Q ,B3,δ

m

∏
j=1
‖ f j‖L1(VG)

sup
w∈VG

∑
x∈VG

dG(w, x)Q(α−m)−δ. (12)
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Fixing w ∈ VG, by (UBS − ξ) and the fact that Q(m− α) + δ > ξ + 1,

∑
x∈VG

dG(w, x)Q(α−m)−δ

≤
∞

∑
k=0

∑
x∈VG ,dG(w,x)=k

kQ(α−m)−δ

≤ B4,τ

∞

∑
k=0

kQ(α−m)−δ+ξ ≤ Cα,m,Q,δ,ξ,B4,ξ .

(13)

Combining (13) with (12) implies that

‖|∇Mκ
α,G(

~f )|‖L1(VG)
≤ CD(G),α,δ,Q,m,ξ,B1,Q ,B3,δ ,B4,ξ

m

∏
j=1
‖ f j‖L1(VG)

.

Theorem 3 is complete.

We then give the following theorem.

Theorem 4. Assume that κ ≥ 1, Q ≥ 1, 0 < δ ≤ 1, 0 ≤ α < m and 0 < τ < Qm + δ− α− 1.
Suppose that G = (VG, EG) satisfies (D), (LB −Q), (ADP − δ) and (UBS − τ). Then,

‖|∇M̃κ
α,G(

~f )|‖L1(VG)
≤ C

m

∏
j=1
‖ f j‖L1(VG)

holds for all ~f = ( f1, . . . , fm) with each f j ∈ L1(VG), and C depends on α, Q, δ, m, τ,D,B1,Q,B3,δ,
B4,τ .

Proof. The proof of Theorem 4 is similar to Thereom 3. Here, we just give a partial
derivation for completeness. From the definotion of M̃κ

α,G(
~f ), we know that there must be

a positve integer ru, such that

M̃κ
α,G(

~f )(u) = rα
u

m

∏
j=1

1
|BG(u, κru)| ∑

v∈BG(u,ru)

| f j(v)|,

for f j ∈ L1(VG) and any v ∈ VG. We can write by definition

|∇M̃κ
α,G(

~f )(x)| ≤ ∑
y∈NG(x)

|M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)|

= ∑
y∈J1(x)

(M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)) + ∑
y∈J2(x)

(M̃κ
α,G(

~f )(y)− M̃κ
α,G(

~f )(x))

=: J J1 + J J2,

where for fixed x ∈ VG, we denote

J1(x) := {y ∈ NG(x) : M̃κ
α,G(

~f )(x) > M̃κ
α,G(

~f )(y)},

J2(x) := {y ∈ NG(x) : M̃κ
α,G(

~f )(x) < M̃κ
α,G(

~f )(y)}.
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We first analyze J J1, and for fixed y ∈ J1(x), we have

M̃κ
α,G(

~f )(y) ≥ (rx + 1)α
m

∏
j=1

1
|BG(y, κ(rx + 1))| ∑

w∈BG(y,rx+1)
| f j(w)|

≥ rα
x
|BG(x, κrx)|m

|BG(y, κ(rx + 1))|m
m

∏
j=1

1
|BG(x, κrx)| ∑

w∈BG(x,rx)

| f j(w)|

≥ |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m M̃κ

α,G(
~f )(x),

which leads to

M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)

≤
(

1− |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

)
Mκ

α,G(
~f )(x)

≤ |BG(y, κ(rx + 1))|m − |BG(x, κrx)|m
|BG(y, κ(rx + 1))|m

rα
x

|BG(x, κrx)|m
m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|.

In view of (7) and (8), we have that for y ∈ J1(x),

M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)

≤ mB3,δD(G)2
( 2

rx + 2

)δ(
B1,Q(2 + B1,Q)

−Q(κrx + 1)Q
)−m

rα
x

m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|

≤ mB3,δD(G)22δB−m
1,Q (2 + B1,Q)

Qm(rx + 1)α−Qm−δ
m

∏
j=1

∑
w∈BG(x,rx)

| f j(w)|.

(14)

Similar to J J2, we obtain that

M̃κ
α,G(

~f )(y)− M̃κ
α,G(

~f )(x)

≤ mB3,δD(G)22δB−m
1,Q (2 + B1,Q)

Qm(ry + 1)α−Qm−δ
m

∏
j=1

∑
w∈BG(y,ry)

| f j(w)|. (15)

By using (14) and (15) and the arguments similar to those used for the proof of
Theorem 3, we can obtain the conclusion of Theorem 4. The details are omitted.

From (iv) of Remark 1 together with the above two theorems, we have

Corollary 2. Assume that G = (VG, EG), κ ≥ 1, Q ≥ 1, 0 ≤ α < m, 0 < δ ≤ 1, and assume
that G satisfies (LB −Q), (UBS − τ) and (ADP − δ) with B3,δ < 2δ. Then,

(i) When 0 < τ < Q(m− α) + δ− 1, for all ~f = ( f1, . . . , fm) with each f j ∈ L1(VG), we have

‖|∇Mκ
α,G(

~f )|‖L1(VG)
≤ C

m

∏
j=1
‖ f j‖L1(VG)

,

where C depends on α, Q, δ, m, τ,D,B1,Q,B3,δ,B4,τ .
(ii) When 0 < τ < Qm + δ− α− 1, for all ~f = ( f1, . . . , fm) with each f j ∈ L1(VG), then

‖|∇M̃κ
α,G(

~f )|‖L1(VG)
≤ C

m

∏
j=1
‖ f j‖L1(VG)

,

where C depends on α, Q, δ, m, τ,D,B1,Q,B3,δ,B4,τ .
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4. Boundedness on Hajłasz–Sobolev Spaces

In this section, we want to study whether there are certain smoothing properties about
the multilinear fractional maximal operators on Hajłasz–Sobolev spaces defined on graph.
Let us now introduce the definition of the spaces.

Definition 5. Assume the function g defined on VG and s ≥ 0. The set Ds(g) consists of all
generalized s-Hajłasz gradients of g. A nonnegative function h is said to be h ∈ Ds(g) if

|g(x)− g(y)| ≤ dG(x, y)s(h(x) + h(y)), ∀x, y ∈ VG.

For 1 ≤ p < ∞, we say that a function g ∈ Lp(VG) belongs to Hajłasz–Sobolev space Ms,p(VG) if
there exist functions h ∈ Lp(VG) ∩Ds(g) and their norms satisfy

‖g‖Ms,p(VG)
=
(
‖g‖p

Lp(VG)
+ inf

h∈Ds(u)
‖h‖p

Lp(VG)

)1/p
< ∞.

We establish the following theorem.

Theorem 5. Let κ ≥ 1, Q ≥ 1 and 0 < δ ≤ 1. Let G satisfy (D), (UB −Q) and (ADP − δ).
Let ~f = ( f1, . . . , fm) with each f ∈ Lpj(VG) for 1 < pj < ∞ and δ/Q ≤ α < ∑m

i=1 1/pi. Then,

Bδ/Q
2,Q (m2δB3,δD(G)2 + 1)Mκ

α−δ/Q,G(
~f ) is a generalized δ-gradient of Mκ

α,G(
~f ). That is,

Bδ/Q
2,Q (m2δB3,δD(G)2 + 1)Mκ

α−δ/Q,G(
~f ) ∈ Dδ(Mκ

α,G(
~f )). (16)

Proof. We first choose two fixed and unequal points x, y ∈ VG, and set dG(x, y) = a.
To prove (16), we only need to prove that

|Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)|
≤ Bδ/Q

2,Q (m2δB3,δD(G)2 + 1)aδ(Mκ
α−δ/Q,G(

~f )(x) +Mκ
α−δ/Q,G(

~f )(y)).
(17)

In general, one can suppose that inequality Mκ
α,G(

~f )(x) ≥ Mκ
α,G(

~f )(y) holds. By the

definition of Mκ
α,G(

~f ), for given ε > 0, there must be positive integer r such that

Mκ
α,G(

~f )(x) ≤ |BG(x, r)|α
|BG(x, κr)|m

m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε. (18)

We consider two cases:
Case 1: (r > a). In view of (18) and BG(y, r + a) ⊃ BG(x, r), we have

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)

≤ |BG(x, r)|α
|BG(x, κr)|m

m

∏
l=1

∑
w∈BG(x,r)

| fl(w)| − |BG(y, r + a)|α
|BG(y, κ(r + a))|m

m

∏
l=1

∑
w∈BG(y,r+a))

| fl(w)|+ ε

≤ |BG(x, r)|α
( 1
|BG(x, κr)|m −

1
|BG(y, κ(r + a))|m

) m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε.

(19)
A computation similar to (7) shows that

|BG(y, κ(r + a))|m − |BG(x, κr)|m
|BG(y, κ(r + a))|m ≤ mB3,δD(G)2

( 2a
r + 2a

)δ
. (20)

By (UB −Q), we see that

r ≥ (B−1
2,Q|BG(x, r)|)−1/Q, ∀r ∈ N \ {0}. (21)



Mathematics 2021, 9, 2883 13 of 19

In view of (19)–(21), one sees that

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)

≤ m2δaδB3,δD(G)2(B−1
2,Q|BG(x, r)|)−δ/Q |BG(x, r)|α

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ m2δaδB3,δBδ/Q
2,Q D(G)2 |BG(x, r)|α−δ/Q

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ m2δaδB3,δBδ/Q
2,Q D(G)2Mκ

α−δ/Q,G(
~f )(x) + ε.

We obtain (17) in this case by letting ε→ 0+.
Case 2: (r ≤ a). In view of (18) and (21), one has

Mκ
α,G(

~f )(x)−Mκ
α,G(

~f )(y)

≤ |BG(x, r)|α
|BG(x, κr)|m

m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ |BG(x, r)|δ/Q |BG(x, r)|α−δ/Q

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ Bδ/Q
2,Q rδ |BG(x, r)|α−δ/Q

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ Bδ/Q
2,Q aδMκ

α−δ/Q,G(
~f )(x) + ε.

Thus, we obtain (17) in this case by letting ε → 0+. This completes the proof of
Theorem 5.

Theorem 6. Let κ ≥ 1, Q ≥ 1, 0 < δ ≤ 1 and δ ≤ α < m. Let ~f = ( f1, . . . , fm)
with each f ∈ Lpj(VG) for 1 < pj < ∞ and G satisfy (D) and (ADP − δ). Then, (1 +

2δmB3,δD(G)2)M̃κ
α−δ,G(

~f ) is a generalized δ-gradient of M̃κ
α,G(

~f ). That is,

(1 + 2δmB3,δD(G)2)M̃κ
α−δ,G(

~f ) ∈ Dδ(M̃κ
α,G(

~f )). (22)

Proof. In order to prove (22), it is enough to obtain

|M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)| ≤ (1 + 2δmB3,δD(G)2)aδ(M̃κ
α−δ,G(

~f )(x) + M̃κ
α−δ,G(

~f )(y)). (23)

In general, one can suppose inequality M̃κ
α,G(

~f )(x) ≥ M̃κ
α,G(

~f )(y) holds. By the definition

of M̃κ
α,G(

~f ), for given ε > 0, there must be positive integer r such that

M̃κ
α,G(

~f )(x) ≤ rα
m

∏
l=1

1
BG(x, κr) ∑

w∈BG(x,r)
| fl(w)|+ ε. (24)

We consider two cases:
Case (1): (r > a). By (24) and the fact that BG(y, r + a) ⊃ BG(x, r), we have

M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)

≤ rα

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)| − (r + a)α

|BG(y, κ(r + a))|m
m

∏
l=1

∑
w∈BG(y,r+a))

| fl(w)|+ ε

≤ rα
( 1
|BG(x, κr)|m −

1
|BG(y, κ(r + a))|m

) m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε.

(25)
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Combining (25) with (20) implies that

M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y)

≤ rαmB3,δD(G)2
( 2a

r + 2a

)δ 1
|BG(x, κr)|m

m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ 2δmB3,δD(G)2aδ rα−δ

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ 2δmB3,δD(G)2aδM̃κ
α−δ,G(

~f )(x) + ε.

This proves (23) by making ε→ 0+ in this case.
Case 2: (r ≤ a). In view of (24), one has

M̃κ
α,G(

~f )(x)− M̃κ
α,G(

~f )(y) ≤ rα

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ aδ
( r

a

)δ rα−δ

|BG(x, κr)|m
m

∏
l=1

∑
w∈BG(x,r)

| fl(w)|+ ε

≤ aδM̃κ
α−δ,G(

~f )(x) + ε.

Thus, we get (23) by making ε→ 0+ in this case. This theorem is now complete.

Next, we establish the boundedness of the multilinear fractional maximal operators
on the Hajłasz–Sobolev spaces.

Theorem 7. Let ~f = ( f1, . . . , fm) with each f j ∈ Lpj(VG) for 1 < pj < ∞. Let 0 ≤ α ≤
∑m

i=1 1/pi and 1/q = ∑m
i=1 1/pi − α ≤ 1. If G = (VG, EG) satisfies (ADP − 1) and (D) with

D(G) ∈ (1, 2), then

‖Mα,G(~f )‖M1,q(VG)
≤ Cα,D(G),m,p1,...,pm ,B3,1

m

∏
l=1
‖ f j‖M1,pj (VG)

. (26)

Proof. Let ~f = ( f1, . . . , fm) with each f j ∈ M1,pj(VG) and let gj ∈ Lpj(G) ∩D( f j). Without
loss of generality, we may assume that all f j ≥ 0. Let α = ∑m

j=1 αj with αj ∈ (0, 1). It suffices
to show that there exists a constant C > 0 such that

C
m

∑
l=1

Mαl ,Ggl ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ ∈ D(Mα,G(~f )). (27)

In fact, once (27) was proved, then (26) follows easily from (27), Theorem 1 (i) and
Theorem 2 (i).

We now prove (27). Let us choose two fixed and unequal points x, y ∈ VG, and set
dG(x, y) = a. In order to prove (27), just prove that there exists a constant C > 0 such that

|Mα,G(~f )(x)−Mα,G(~f )(y)|

≤ C
( m

∑
l=1

Mαl ,Ggl(x) ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ(x) +
m

∑
l=1

Mαl ,Ggl(y) ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ(y)
)

. (28)

In general, one can suppose Mα,G(~f )(x) ≥Mα,G(~f )(y). Given ε > 0, there must be a
positive integer r such that

Mα,G(~f )(x) ≤ |BG(x, r)|α
|BG(x, r)|m

m

∏
l=1

∑
w∈BG(x,r)

fl(w) + ε. (29)
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In view of (29) and BG(y, r + a) ⊃ BG(x, r), we have

Mα,G(~f )(x)−Mα,G(~f )(y)

≤ |BG(x, r)|α
|BG(x, r)|m

m

∏
l=1

∑
w∈BG(x,r)

fl(w)− |BG(y, r + a)|α
|BG(y, r + a)|m

m

∏
l=1

∑
w∈BG(y,r+a)

fl(w) + ε

≤ |BG(x, r)|α
( m

∏
l=1

( fl)BG(x,r) −
m

∏
l=1

( fl)BG(y,r+a)

)
+ ε

≤ |BG(x, r)|α
m

∑
l=1
|( fl)BG(x,r) − ( fl)BG(y,r+a)|

×
( l−1

∏
µ=1

( fµ)BG(y,r+a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε.

(30)

We consider two cases:
Case 1: (r ≤ 3a). Fix l ∈ {1, 2, . . . , m}. Since gl ∈ D( fl), we have

| fl(u)− fl(v)| ≤ 2dG(u, v)(gl(u) + gl(v)) ≤ 4(r + a)(gl(u) + gl(v)) ≤ 16a(gl(u) + gl(v)),

for all u ∈ BG(x, r) and v ∈ BG(y, r + a). This yields that

|( fl)BG(x,r) − ( fl)BG(y,r+a)|

≤ 1
|BG(x, r)|

1
|BG(y, r + a)| ∑

w∈BG(x,r)
∑

v∈BG(y,r+a)
| fl(w)− fl(v)|

≤ 16a((gl)BG(x,r) + (gl)BG(y,r+a)).

(31)

From (D) and r ≤ 3a, one has

|BG(x, r + 2a)|
|BG(y, r + a)| ≤

|BG(y, r + 3a)|
|BG(y, r + a)| ≤

|BG(y, 6a)|
|BG(y, a)| ≤ D(G)3. (32)

Let α = ∑m
j=1 αj with αj ∈ (0, 1). In view of (30)–(32) as well as BG(x, r + 2a) ⊃

BG(y, r + a), we have

Mα,G(~f )(x)−Mα,G(~f )(y)

≤ 16a|BG(x, r)|α
m

∑
l=1

((gl)BG(x,r) + (gl)BG(y,r+a))
( l−1

∏
µ=1

( fµ)BG(y,r+a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 16a|BG(x, r)|α
m

∑
l=1

(
(gl)BG(x,r) +

|BG(x, r + 2a)|
|BG(y, r + a)| (gl)BG(x,r+2a)

)
×
( l−1

∏
µ=1

|BG(x, r + 2a)|
|BG(y, r + a)| ( fµ)BG(x,r+2a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 16a|BG(x, r)|α
m

∑
l=1

(
(gl)BG(x,r) +D(G)3(gl)BG(x,r+2a)

)
×
( l−1

∏
µ=1
D(G)3( fµ)BG(x,r+2a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 32a(1 +D(G)3)m
m

∑
l=1

Mαl ,Ggl(x) ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ(x) + ε.

This proves (28) in this case by letting ε→ 0+.
Case 2: (r > 3a). It was shown in the proof of ([1], [Theorem 4.3]) that

|BG(x, r)|β|( fl)BG(x,r) − ( fl)BG(y,r+a)| ≤
512aD(G)8B3,1

ln 2− lnD(G)
Mβ,Ggl(y), (33)
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for any β > 0 and l ∈ {1, 2, . . . , m}. By (D) and the assumption r > 3a, one has

|BG(y, r + a)|
|BG(x, r)| ≤

|BG(x, r + 2a)|
|BG(x, r)| ≤ |BG(x, 2r)|

|BG(x, r)| ≤ D(G).

This together with BG(y, r + a) ⊃ BG(x, r) implies that

|BG(x, r)|αν( fν)BG(x,r) ≤
|BG(y, r + a)|1−αν

|BG(x, r)|1−αν
|BG(y, r + a)|αν( fν)BG(y,r+a)

≤ D(G)1−αν Mαν ,G fν(y).
(34)

Combining (34) with (33) and (30) implies

Mα,G(~f )(x)−Mα,G(~f )(y)

≤
m

∑
l=1
|BG(x, r)|αl |( fl)BG(x,r) − ( fl)BG(y,r+a)|

×
( l−1

∏
µ=1
|BG(x, r)|αµ( fµ)BG(y,r+a)

)( m

∏
ν=l+1

|BG(x, r)|αν( fν)BG(x,r)

)
+ ε

≤ 512aD(G)8B3,1

ln 2− lnD(G)

m

∑
l=1

Mαl ,Gg(y) ∏
1≤µ≤m,

µ 6=l

(1 +D(G)1−αµ)Mαµ ,G fµ(y) + ε

≤ 512aD(G)8B3,1

ln 2− lnD(G)
(1 +D(G))m−1

m

∑
l=1

Mαl ,Gg(y) ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ(y) + ε.

Then, it gives (28) by letting ε→ 0+.

Theorem 8. Let ~f = ( f1, . . . , fm) with each f j ∈ Lpj(VG) for 1 < pj < ∞. Let Q ≥ 1,
0 ≤ α ≤ ∑m

i=1 Q/pi and 1/q = ∑m
i=1 1/pi − α/Q ≤ 1. If G = (VG, EG) satisfies (D) and

(LB −Q), then

‖M̃α,G(~f )‖M1,q(VG)
≤ Cα,D(G),p1,...,pm ,B3,1,B1,Q

m

∏
l=1
‖ f j‖M1,p(VG)

. (35)

Proof. The proof is similar to that of Theorem 7. Let ~f = ( f1, . . . , fm) with each f j ∈
M1,pj(VG) and let gj ∈ Lpj(G) ∩D( f j). Without loss of generality, we may assume that all
f j ≥ 0. Let α = ∑m

j=1 αj with αj ∈ (0, 1). We want to show that there exists a constant C > 0,
such that

C
m

∑
l=1

Mαl ,Ggl ∏
1≤µ≤m,

µ 6=l

Mαµ ,G fµ ∈ D(Mα,G(~f )). (36)

In fact, once (36) was proved, then (35) follows easily from (36), Theorem 1 (ii) and
Theorem 2 (ii).

We now prove (36). Let us choose two fixed and unequal points x, y ∈ VG, and set
dG(x, y) = a. In order to get (36), we must prove there exists a constant C > 0 satisfying

|M̃α,G(~f )(x)− M̃α,G(~f )(y)|

≤ C
( m

∑
l=1

M̃αl ,Ggl(x) ∏
1≤µ≤m,

µ 6=l

M̃αµ ,G fµ(x) +
m

∑
l=1

M̃αl ,Ggl(y) ∏
1≤µ≤m,

µ 6=l

M̃αµ ,G fµ(y)
)

. (37)
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Without loss of generality, we may assume that M̃α,G(~f )(x) ≥ M̃α,G(~f )(y). Given
ε > 0, there exists r > 0, such that

M̃α,G(~f )(x) ≤ rα

|BG(x, r)|m
m

∏
l=1

∑
w∈BG(x,r)

fl(w) + ε. (38)

In view of (38) and the inclusion relation of BG(x, r) ⊂ BG(y, r + a), we have

M̃α,G(~f )(x)− M̃α,G(~f )(y)

≤ rα

|BG(x, r)|m
m

∏
l=1

∑
w∈BG(x,r)

fl(w)− (r + a)α

|BG(y, r + a)|m
m

∏
l=1

∑
w∈BG(y,r+a)

fl(w) + ε

≤ rα
( m

∏
l=1

( fl)BG(x,r) −
m

∏
l=1

( fl)BG(y,r+a)

)
+ ε

≤ rα
m

∑
l=1
|( fl)BG(x,r) − ( fl)BG(y,r+a)|

( l−1

∏
µ=1

( fµ)BG(y,r+a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε.

(39)

We consider two cases:
Case 1: (r > 3a). It was shown in the proof of ([1], [Theorem 4.4]) that

rβ|( fl)B(x,r) − ( fl)B(y,r+a)| ≤
512aD(G)8B3,1

ln 2− lnD(G)
M̃β,Ggl(y) (40)

for any β > 0 and l ∈ {1, 2, . . . , m}. Notice that |BG(y,r+a)|
|BG(x,r)| ≤ D(G). This together with

BG(y, r + a) ⊃ BG(x, r) implies that

rαν( fν)BG(x,r) ≤ rα |BG(y, r + a)|
|BG(x, r)| ( fν)BG(y,r+a) ≤ D(G)M̃αν ,G fν(y). (41)

It follows from (39)–(41)

M̃α,G(~f )(x)− M̃α,G(~f )(y)

≤
m

∑
l=1

rαl |( fl)BG(x,r) − ( fl)BG(y,r+a)|

×
( l−1

∏
µ=1

rαµ( fµ)BG(y,r+a)

)( m

∏
ν=l+1

rαν( fν)BG(x,r)

)
+ ε

≤ 512aD(G)8B3,1

ln 2− lnD(G)

m

∑
l=1

M̃αl ,Gg(y) ∏
1≤µ≤m,

µ 6=l

(1 +D(G))M̃αµ ,G fµ(y) + ε.

Then, gives (37) in this case by letting ε→ 0+.
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Case 2: (r ≤ 3a). In view of (39), (40), (42) and the inclusion relation of BG(x, r + 2a) ⊃
BG(y, r + a), we have

M̃α,G(~f )(x)− M̃α,G(~f )(y)

≤ 16arα
m

∑
l=1

((gl)BG(x,r) + (gl)BG(y,r+a))
( l−1

∏
µ=1

( fµ)BG(y,r+a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 16arα
m

∑
l=1

(
(gl)BG(x,r) +

|BG(x, r + 2a)|
|BG(y, r + a)| (gl)BG(x,r+2a)

)
×
( l−1

∏
µ=1

|BG(x, r + 2a)|
|BG(y, r + a)| ( fµ)BG(x,r+2a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 16arα
m

∑
l=1

(
(gl)BG(x,r) +D(G)3(gl)BG(x,r+2a)

)
×
( l−1

∏
µ=1
D(G)3( fµ)BG(x,r+2a)

)( m

∏
ν=l+1

( fν)BG(x,r)

)
+ ε

≤ 32a(1 +D(G)3)m
m

∑
l=1

M̃αl ,Ggl(x) ∏
1≤µ≤m,

µ 6=l

M̃αµ ,G fµ(x).

Making ε→ 0+, we prove (37) in this case. Theorem 8 is now proved.
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