. mathematics

Article

Adaptation of Residual-Error Series Algorithm to Handle
Fractional System of Partial Differential Equations

Hussam Aljarrah 1}, Mohammad Alaroud 2, Anuar Ishak ** and Maslina Darus ?

Citation: Aljarrah, H.; Alaroud, M.;
Ishak, A.; Darus, M. Adaptation

of Residual-Error Series Algorithm
to Handle Fractional System

of Partial Differential Equations.
Mathematics 2021, 9, 2868. https://
doi.org/10.3390/math9222868

Academic Editor: Snezhana Hristova

Received: 12 October 2021
Accepted: 9 November 2021
Published: 11 November 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
(UKM), Bangi 43600, Malaysia; p109939@siswa.ukm.edu.my (H.A.); maslina@ukm.edu.my (M.D.)

2 Department of Mathematics, Faculty of Arts and Science, Amman Arab University, Amman 11953, Jordan;

m.alaroud@aau.edu jo

Correspondence: anuar_mi@ukm.edu.my; Tel.: +60-389215785

Abstract: In this article, an attractive numeric-analytic algorithm, called the fractional residual
power series algorithm, is implemented for predicting the approximate solutions for a certain class
of fractional systems of partial differential equations in terms of Caputo fractional differentiability.
The solution methodology combines the residual function and the fractional Taylor’s formula. In
this context, the proposed algorithm provides the unknown coefficients of the expansion series for
the governed system by a straightforward pattern as well as it presents the solutions in a systematic
manner without including any restrictive conditions. To enhance the theoretical framework, some
numerical examples are tested and discussed to detect the simplicity, performance, and applicability
of the proposed algorithm. Numerical simulations and graphical plots are provided to check the
impact of the fractional order on the geometric behavior of the fractional residual power series so-
lutions. Moreover, the efficiency of this algorithm is discussed by comparing the obtained results
with other existing methods such as Laplace Adomian decomposition and Iterative methods. Sim-
ulation of the results shows that the fractional residual power series technique is an accurate and
very attractive tool to obtain the solutions for nonlinear fractional partial differential equations that
occur in applied mathematics, physics, and engineering.

Keywords: residual function; approximate solution; Caputo fractional derivative; multiple frac-
tional power series

1. Introduction

Fractional partial differential equations (FPDEs) play a substantial role in converting
several physical systems into mathematical models. It is normally advised to utilize this
formula to keep historical cases of the original systems, in addition to its behavior. Indeed,
this will aid in attaining a superior comprehension of those physical systems, decrease
computational complexity, and moderate the controller designing without losing any he-
reditary behaviors. In the last few decades, FPDEs have gained considerable attention be-
cause they are popularly utilized to explain many complex phenomena in different appli-
cations such as signal processing, information theory, control theory, finance, fluid flow,
and systems identification [1-4]. The fractional derivatives are superb tools for the depic-
tion of hereditary and memory properties of different engineering, mathematical, and
physical problems.

Obtaining explicit and approximate solutions for FPDEs is a difficult task. So, various
numerical and analytical techniques have been developed to investigate the solutions for
the systems of FPDEs, such as the Adomian decomposition technique, homotopy pertur-
bation technique, variational iteration technique, reproducing kernel technique, and ho-
motopy perturbation transform technique [5-9]. For more information regarding the
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methods and numerical techniques for solving fractional differential equations, see [10-
14].

The main purpose of this work is to construct the solutions for a certain class of linear
and non-linear systems of FPDEs under the name Caputo derivative by using a promising
numeric-analytic technique, called a fractional residual power series (FRPS) method, see
[15,16] and the references therein. The present method is based mainly on the generalized
Taylor’s series and the residual error concept where the solution of the original equation
is provided as an expanded fractional power series via finding the unknown coefficients
of the proposed series formula by recurrent Caputo fractional derivative of the truncated
residual functions. Recent years have witnessed extended applications of the fractional
RPS technique, including the fractional Newell-Whitehead-Segel equation [15], fractional
stiff system [16], fractional Sawada—Kotera-Ito, Lax, and Kaup-Kupershmidt equations
[17], time-fractional Fokker-Planck equations [18], the fractional Kundu-Eckhaus and
massive Thirring models [19], coupled fractional resonant Schrodinger equation [20], and
fractional Sharma-Tasso-Olever equation [21]. The fractional RPS algorithm is a straight-
forward, applicable, and powerful approach to create fractional power series (FPS) solu-
tions for strongly linear and non-linear equations without terms of perturbation, discreti-
zation, and linearization [22-29]. Series expansions are very useful tools in numerical sim-
ulations, especially for quick estimates made in manual arithmetic, and in evaluating
functions, integrals, and derivatives. Since the advent of modern computational technol-
ogy, it has become common practice to deal directly with PDEs numerically, using various
simulations rather than series expansions. However, in terms of developing analytic
methods for multidimensional mathematical formula and finding exact and approximate
solutions, one should expect a renewed interest in series expansions. In view of the resid-
ual error functions, the main advantage of this RPS algorithm enables the simplicity of
computing coefficients within imposed conditions using only differential operators by us-
ing the Mathematica software package, unlike other analytical methods that require inte-
gral operators which are difficult in the fractional sense. It is not affected by round arith-
metic errors and can also be implemented without any restrictions on the nature of the
system and the type of classification.

Great attention has been paid to fractional partial differential equations due to their
vital role of the exact description of both linear and nonlinear mathematical problems.
When analyzing a mathematical model that represents some physical phenomena, such
as the current model, especially the nonlinear system of PDEs, the motivation of mathe-
maticians is to find a solution to such a system and to study the stability and singularities
for long periods of time: the dynamics and physical properties, and the transfer of energy
between waves propagating within a phase plan, and the constraints that have to be im-
posed on the system parameters to obtain waves of different frequencies. Motivated by
the above discussion, we intend in this work to design a rigorous algorithm capable of
building a straightforward and effective method for finding analytical solutions for these
systems. Accordingly, the main contribution is the creation of a new algorithm and the
finding of accurate and efficient approximate solutions to a system of fractional order par-
tial differential equations within the framework of the Caputo concept in the field of in-
terest.

The structure of this work is arranged as follows: in the next section, some substantial
definitions and their properties related to fractional calculus are revisited and primary
remarks of generalized Taylor’s series are provided. In Section 3, the fractional RPS algo-
rithm is introduced to create the approximate solutions for a non-linear system of FPDEs.
In Section 4, two linear and non-linear systems of FPDEs are tested to illustrate the sim-
plicity and potentiality of the fractional RPS approach for determining the approximate
solutions. In Section 5, the obtained results are discussed graphically and numerically.
Finally, a short conclusion is made in the last section.



Mathematics 2021, 9, 2868

3 of 20

2. Basic Concepts and Notations

Various definitions for integrals and derivatives of fractional order have been pro-
posed and developed in the literature. The most popular of these definitions are Riemann-
Liouville’s definition, Riesz’s definition, Caputo’s definition, and Grunwald-Letnikov’s
definition. Many researchers [3-6] prefer employing the Caputo operator, due to the ini-
tial data for the FPDEs which can be achieved with a similar utilization of the ordinal case.
This section is devoted to review the essential definitions and primary results concerned
with the integrals and derivatives of fractional order. As well, we revise the notable results
of the generalized Taylor’s series, which will be used in the next sections.

Definition 1. For a € R*, the Riemann—Liouville fractional integral operator for a real-valued
function w(x,t) is denoted by J¢ and defined as [3]:

t
1 w(x,n)
Jew(t) = {T(@ ) t=miadl 0<n<ta>0
0
W(xl t) a = 0

Thus, for ay, az >0, and S > —1, the operator Jf satisfy the following properties:
. _a\a
i Jfic F(a+1) (t—m% ceR.
ii. JtalJ Zwi(x, t) = “1+ Y (x, t) = szdflw(x, t).

F(B+1)
il JEe—mF = g - mP.

Definition 2. The time fmctional derivative of order a > 0, for the function w(x,t) in the Ca-

an
¢ 6) = ?_“<ath(xt)) 0<n—1<a<n,
— WI(X, =
ata n
atnw(x t) a=nne€N.

Lemmal.Forn—-1<a<np>n-1n€eN,p €R, the opemtor satzsfzes the following

properties [12]:
1) ::; =0, ceR.
_ I'(p+1) —a
) W( —U)p—m( —n)P ‘
j —ny
3) J¢ ﬁw(x t) = wix,t) — X7 0165j( )(t - for w(x,t) € C'[a, b].
4) Jt Py —w(x, t) = w(x,t), for w(x,t) € Cla, b]

Definition 3. A fractional expansion representation at t = n has the following form:

D Wi = 1) = W) + wi (e =)+ WG (E =) +
k=0

where 0 <n—1<a<n x€l and t =0 is called multiple fractional power series (MFPS)
about n [15].
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Theorem 1. Suppose that w(x,t) has the following MEPS representation at t = n:

W(x,t)=Zwk(x)(t—n)“k,0gn—1<a§n,x€1,te [n,n+R).
k=0

a(k Da

where wi(x,t) € C(I X [7,n +RY%)) and —— >70Da

am-Da (a(k Da

w(x,t) € C(I X [n,n+RY%)), k=12,.

and ——=5z\ 5 rava

wi(x, t)) is well defined on (n,n+ RY%) for m =2,. —1, and k =

1 akCw(x,m)
uch
r(ka+1) otka 7 §

1,2, ..., then the unknown functions wy (x) will be in the form wy(x) =

h aka 9@ FLs k
that acka _W m . W' times [15]

Proof. Assuming that w(x,t) = wo(x) + wy ()t — )% + w, () ([t —n)*T + -, tE <t <
n + RY%, then directly w,(x) = w(x,1). By applying :—a to w(x,t) and evaluating the

ataw(x 77)
r(a+1) *

result at 7, it yields that —w(x 17) = F(a + Dw;(x) and hence wy(x) = ro-

ceeding inductively and applying to w(x,t) k —times and evaluating the result at

ak,a

7, one can note that W(x n) = I'(ka + 1)wy(x) and hence the proof is completed. o

3. FRPS Technique

Fractional RPS technique provides solutions for some related physical phenomena in
the form of fractional power series. In the present section, the basic principle of the FRPS
technique for solving a system of linear and non-linear FPDEs is introduced. Our strategy
to use the proposed scheme depends on employing the fractional Taylor’s series based on
the meaning of the Caputo fractional derivative and the concept of residual function. More
specifically, we consider the following initial value problems for a system of FPDEs:

d%w
ata + “Rl(w’ (p) + ]Vi(W, (P) = f(xl t)'
@
a
%
3ca + R,(w, @) + Ny (w, @) = g(x, t),

subject to initial conditions
w(x,0) = w(x) and ¢(x,0) = ¢(x). 2)

where t >0, x ER, — refers to a-th Caputo fractional derivative for a € (0,1], w(x,t),
@(x,t) are two unknown functions to be determined, and R;, R,, V;, and WV, are linear
and non-linear operators, respectively, and f, g are two continuous functions. In this
analysis, we assume that w(x,t), and ¢(x,t) satisfy the requirements for the existence
of a unique solution and satisfies all conditions to have a MFPS representation at t = 0.

Now, the methodology of the proposed scheme consists of assuming that the solu-
tions of the system (1) and (2) have a MFPS as follows:

wi(x, t) = z w, (x)te", 0<t<Rx€eRac (01],
3)

@(x,t) = Z @ ()t 0<t<RxeRace(01]
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Evidently, the assumed solutions (3) satisfy the initial conditions (2), so from (3), one
can get w(x,0) = wy(x) = w(x), and @(x,0) = @o(x) = ¢(x). Hence, the expansions in
(3) can be reformulated into the following shape:

w(x, t) = w(x) + Z w,, (x)t*m, 0<t<Rx€eR,ace(01]

o, t) = p(x) + Z @, ()t 0<t<Rx€eRace(01].

Next, one can approximate the series solutions by the following j-th truncation se-
ries:

w;(x, t) = w(x) + Z wy, ()%, 0<t<RxeRace(01],
(4)
pi(x,t) = @(x) + Z @ ()t 0<t<RxeRac (01].
As stated in [16-19], we can obtain the unknown functions w;,(x), and ¢, (x), for

n = 1,2,...,j, throughout by solving the following fractional algebraic equations for j =
1,2,..and 0 < a < 1:

gU-De ;
at(j——l)aReSW(x’ 0) =0, 5
gu-va ©)
WRes(p(x, 0) =0.
where Res‘{, and Res({, are called the j-th residual functions that are defined as:
j 0w;(x, 1)
Res),(x, 1) = ==L+ Ry (w; (6, 0,00, 0)) + N (w (6,0, 006, 0)) = f . 0),
(6)
; %p;(x,t)
Resy(x,8) = —— =+ Ry (w; (6, 0,0 (6, 0)) + M (w; (0. ), 9,0, 1) = 9 (5, ),

whereas Res,, and Res, are given as:

Res, (x,t) = 1im Res\{,(x, t)

aa
$+Rl(w(x £, 0(x, ) + N (wix, ), 0 (x, 1) — £(x, 8),
Res,(x,t) = ]11_)1’?O Resé (x, 1)
%p(x,
= % + iRz(w(x, t), (x, t)) + Nz(w(x, t), p(x, t)) —g(x,t).

There are some useful results of the residual functions which are basic to our scheme
and can be listed as:
*  Res,(x,t) =0,and Res,(x,t) = 0.
. 1im Res! () = Resw(x t) and 1im Resé(x t) = Res,(x,t), foreach 0 <t,x €R.
a(k Da

* ke 1)wReSW(x 0) = at(k 1)(1 ReS (x 0)=0,for k=12,..,j.
a(k-Da
* S enaRes,(x,0) = (k e Res (x,0) =0, for k=12, ...,j.
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(Jr©

In light of previous discussion, obtaining the approximate solutions for the system
(1) and (2) using our proposed scheme can be achieved throughout by applying the rou-
tine; writing the j-th MFPS of (4) into the j-th residual equations of (6), then applying the
a-th Caputo fractional derivative, (k — 1)-times to both sides of the resulting equations

with help %tq =0, for q > a. Thereafter, compute the obtained equations at t =0, and
ak
ctk—Da 2 e Res! (x 0) =0, and 2 FcDa Res (x,0) =

0, to find out w;(x), and ¢;(x). Finally, collect the obtained coefficients w; (x), and
@j(x), for j =0,1,2,..., in the fractional expansion (4).

solve the algebraic fractional equations:

ka
a—kaw(x, t) € C(m,n + RY®), and

1
Lemma 2. Suppose that w(x,t) € C [n,n + RE),R >0, —

a € (n— 1,n). Then, for any k € N, we have:

aka
“ ernya 0TD? anka w(x,m) e
((771 a ka W)(X, l’) (J a(k—+1)aw)(x' t) m (t — 77) .

Proof. Using property (ii) of the operator J%, we can write

gk+

(T o W), 6) — (g an(kﬂ)aw)(x £) = (05 yra W), £) — (eI anma W) t) =

(T Zow) 0, 0) = (T T ) Zow) (6,) = T (e W) (6, 8) — (T8 ) (e W) G ).

ka

(m+1)a d

Applying property (4) of Lemma 1, for (Jx* o7 ka) (— w)(x, t), we get

k+1)a ka ka ka

+1a a( d
o7 W) (x, t) — (J(k ) WW)(XJ):J#“[G "“W)(x't)_(WW)(x't))+(ar]WW)(x'n)

aka
gka on kaW(x n)
—Jr'f“[a W] = m( t —mn)k

. . ak
by using property (iii) of the operator J¢, with ¢ = pweT

Theorem 2. Let a € (n—1,n] and suppose that w(x,t) € C[n,n + RY%),

(k Da

C(n,m + RY9), ”ndatma (at(k 5a W(x, t)) is well defined on (to, to + RY%) for m=1,2...
1, and k =0,1,2, .... Then,

gm+a (t —mn) ** a**w(x,n)
(m+1)a ’
Je at(m+Da geamma W D = wlx ) - Z I(ka+1) Otke

Proof. We notice that

(m+a

S — N (k+1) gk (k+1) gkt
a a
de JrmiDa wi(x, t) = w(x, t) — Z h ke —w(x,t) — J; PP wi(x, t)

k=0

(k+1)a 0% (k+1)a adk+Da

Using Lemma 2, for J; W t) = J, orra WX, t) we get
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a( +1)a (t _ 77) ak akaw(x 77)
(m+1)a ,
e growme Wn D = wx ) - Z Fka+1) otk

It is worth mentioning here that the MFPS representation of t =  can be rewritten
as

w(x, t) = wp(x, t) + R (x, t)

where wy,(x,t) and R,,(x,t) represent the m-th approximate series of w(x,t) and

Rm(x,t) the tail of MFPS (the reminder term of the series) which are given, respectively,
(m+1)a

by Wm0 =Xhowi(E—m %, and Ry t) = IV LI w(x, ),  with

gt(m+)a
_ 1 dkw(xm) .
w(x) = Tt atka j=01,..,n. Thus, the MFPS is convergent whenever

lim R,,(x,t) = 0.
m-oco

Theorem 3. If C € (0,1), |[wiy1(x, )|l < Cllw;(x, t)|l gives Vi € N and 0 <t <T < 1, then
the series of numerical solutions converges to an exact solution [30].

Proof. We noticethat VO <t <T < 1,

i W (x,t)

m=i+1

[oe]

lw(x, t) —w;(x, Ol =

D Iwntl) < llg@ll

m=i+1

m=i+1
i+1

“1-c

lgIl > 0asi— oo

The next Algorithm 1 shows how to determine the required coefficients w;,(x) and
¢, (x), in expansion (3), as well predict and obtain the MEPS solution of (1) and (2).

Algorithm 1. To find out the coefficients w;, (x) and ¢, (x), in expansion (4), we per-
formed the following steps:

Step 1: Consider the initial condition w(x, 0) = wy(x) = w(x), and ¢@(x,0) = @,(x) =
@(x), the 0-th -MFPS approximate solution of w(x,t) and ¢(x,t).

Step2 Substitute w;(x,t) = w(x) + Z‘ 1Wn(x)t““ and @;(x,t) = @(x) +

Zn 1 9n(x)t", into the j-th-residual function Resy,(x,t) and Res(p(x t) of (6) respec-
tively.

Step 3: Compute Resw(x t) and 2 Res (x t), j=12,.

otU-Da atG-Da
Step 4: Solve the resulting fractional equation : = 1)D{R S (x 0) =0 and
gU-Da
S.0-Da Res(p(x 0) =0.

Step 5: Substitute the obtained coefficients for j = 1,2, ..., m, into expansion (4).

4. Numerical Examples

In this section, two linear and non-linear systems of FPDEs with appropriate initial
conditions are considered to illustrate the performance and applicability of the fractional
RPS approach in constructing the approximate solutions as rapidly convergent MFPS
forms. All numerical and symbolic calculations are performed using Mathematica 12 soft-
ware packages.
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Example 1. Consider the following linear system of FPDEs [31]:

*w(x,t) 0
@ afﬂ(% t) —wix,t) + o(x,t) = =2,
“p(x,t) 0 @
BEICE aw(x, ) —wx, ) + o) = -2,
subject to initial conditions
w(x,0) =1+ e* and ¢(x,0) = —1+¢”%, (8)

where t 2 0,x €R, and 0 < a < 1. The exact solutions for classical case a = 1, are w(x,t) =
1+ e**t and @(x,t) = —1+e*7t [31].

In view of the last discussion of our proposed approach, we can define the j-th re-
sidual functions for the system (7) as follows:

j 0“w;j(x,t) 0
Res, (x,t) = TR a(pj(x, t) —w;i(x,t) +j(x,t) + 2,
okt 9 9
: 90] X, t
Res,(x,t) = —5 + awj(x, ) —w;i(x,t) +@;(x,t) +2,
where w;(x,t) and @;(x,t) are given by
j
wilx,t) =1+e*+ z wy, ()t
et (10)

j
pj(x,t) =—-1+e*+ Z @n ()t

n=1

For j = 1, the first MFPS approximate solutions for the system (7) and (8) can be de-
termined throughout by substituting w; (x,t), and ¢,(x,t) of (10) into the first residual
functions Resy,(x,t), and Res,(x,t), such that

a

i} i}
Resl(x,t) = W(l +e* +w(x)t*) — a(—l +eX+ ot - A +e*+w,)t*) + (—1+e* + @, ()t*) + 2,

=wi (Ol (a@+1) —e* —@1(0t* —wy ()t + @1 (x)t4,

(11)
0* 0
Resy(x,t) = ﬁ(_l +e* + @, ()t + a(l +eX+w ()t —A+e*+w ()t + (—14+e*+ o, ()t*) +2
=@ ()M (a+ 1) + wi(x)t* —w,()t* + e* + o, ()7,
Then, by solving the obtained equations of (11) at t =0, yields w,(x) = - (Zim’
X
p(x) =— " (z+1)' So, the first MFPS approximate solutions for the system (7) and (8) can
be expressed as wy(x,t) =1+e* + exr(;+1)' and ¢@,(x,t) = —-1+e* — e"r(;l).

For j = 2, the second residual functions Res2(x,t), and ResfJ (x, t), will be given as:

0%w,(x,t) 0
Res2(x,t) = 627 - atpz(x, t) —w,(x,t) + @y (x,t) + 2,
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%, (x,t) 0
ResZ(x,t) = GZT + aWZ(X’ t) —wy(x, t) + @, (x, t) + 2.
But w,(x,t) =1+e* +w,(0)t% +w,(x)t?%, and ¢@,(x,t) = -1+ e* + @, (x)t* +
@,(x)t%** Thus,

re 1
%t“ + (‘Pl(x) —wy(x) — (Pi(X))ta + (‘Pz(x) —w,(x) — Qaé(x))tza

—e, (12)
@, () 2a +1)
I'a+1)

Res2(x,t) = wy () (@ + 1) +

ResZ(x,t) = @, ()(a + 1) + t% + (Wi(x) — w(x) + @1 ()t + (Wh(x) — Wy (x) + 9, (x))t2% + e*.

Next, applying the a-th Caputo fractional derivative to both sides of (12) gives the
following:

0%ResZ(x,t) 0%
e gee (Resuxn D)

L(Or 2a +1
MDD e (g, — w0 — g0

a

= %(wl(x)l"(a + 1)+

+ (02(0) — wy () — @4 (0)e2 e")

(92 = w2 () @I @a 1),

=w,(X)rQRa+1)+ (¢1(x) —wy(x) — <Pi(x))r(0»’ +1D+ Fa+1) ’

0%ResZ (x,t) _ 0

Fre = W((pl(x)l"(a +1)+

+ e")

= <<p2(x)1"(2a +1)+ (W’l(x) —wy(x) + <p1(x))F(a + 1)+

@, ()ra+1)

XCESY %+ (W () — wy (X)) + @1 ()t + (Wh(x) — wy(x) + @, (x))t2*

(W5 = wo(0) + () @+ ),
I'a+1) '

By the fact (5), for j = 2, and based on the values of w,(x) and ¢,(x), the second

unknown functions in expansion of (10) are: w,(x) = (W1(X)+<p;r(?2);f11)(x))r(a+1) _ F(ze:ﬂ),
and ¢,(x) = (Wl(x)—WQIEZfZ);fll)(x))F(a+1) — r(z(i:+1)' Thus, second MFPS approximate solutions
for the system (7) and (8) can be expressed as w,(x,t) =1+ e* + e* r(«iu tex I"(Zt::- -
nd a0 0) =1k et m e F(Zj—l) et r(thn'

Similarly, for constructing the third approximated MFPS solutions for the system (7)
and (8), one can follow the subroutine; write the third truncation series of the expansions

92a .
to both sides

(10), into the third residual equations of (9) and then apply the operator Py

of the obtained equations, that is:
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aZaR 3 t 0% 9«

arz ace \ are
a* [ 0% re 1 rea 1
= — <6t‘1 <w1(x)r(a +1) + % « 4 %tm + (02(6) — wy () — @ ()t
+ (p2(x) = wa(x) — 3(0))t** + (93 (x) — w3 (x) — @5 ()3 — ex))
L w3 (X)rBa + 1)

~ e e AR R SR AC)CEED

((Pz(x) w, (x) — 5 (X))I (2a + 1) (<03(x) w3 (x) — 95(x))F Ba + 1) (2a
I'a+1) r'a+1)

<W2(x)1"(20( +1)+

= w3 (T Ga + 1) + (02 () — wa(x) — 94(0) (2 + 1) + (92(0) —wa@) — @@ B+ 1) ,

r'a+1) K
0**Res, (x,t) 9% [ 0%
T gtz gt <6t“ Resj (x, t)>
N @, () 2a +1) a @3(xX)rBa+1) 2 , a
= 5ta (at“ ((pl(x)F(a +1)+ F@+ D) r2a+ D te* 4+ (wl(x) —wy(x) + <p1(x))t

+ (Wh(x) = wo (%) + 9o ()2 + (Wi (x) — w3 (x) + 93 ()3 + e"))

- <w2<x>F<2a #1)+ LT D 4 (40— w00 + 9, )+ 1)

(Wz(x) wo () + ()T (2 + 1) (Wg(x) w3(0) + 93(0))I Ba + 1) p2a

'a+1) r'a+1)
x) —ws(x) + @3(x))'Ba+ 1
=<p3(x)F(3a+1)+(w’z(x)—wz(x)+<p2(x))1"(2a+1)( w3 () = w3 () + s )) ( )
r'a+1)
Then, by solving the resulting algebraic equations at t = 0, the third unknown func-
. _ (w2020 +ep(0))raty)  ex _
tions become (x) = TGasD) = TGt , and p,(x) =
—wh(x)— r x
(wal)wit)- 02 )rzat = ———— Therefore, the third MFPS approximate solutions for
r(3a+1) r(3a+1)

2a
x t

r'(a+1) te r2a+1) +

the system (7) and (8) can be expressed as wi(x,t) =1+ e* +e*

e* e nd @3(x,t) =—-1+e*—e* i +e* e _ e* e
rGarl) & P3x )= r(a+1) ra+1) r(a+1)"

w(x,0) =

0, Res (x,0) = 0, the fourth MFPS approximated solutions for the system (7) and (8)

atza

2a 3a 1a
x_ ¢ x_ ¢ x_ ¢

r(a+1) te ra+1) te r3a+1) te r(4a+1)’
t3(l t4(l

can be reformulated as: w,(x,t) =1+ e* + e*

tZ(Z

—— X __ t X _ X X
and @,(x,t) =-1+e e’ r(a+1) te ra+1) € r(3a+1) te r(da+1)"

Continue with this procedure and based upon the fact (5), for j = 5,6, ... 10, the tenth
MEPS approximate solutions for the system (7) and (8) are given by

ta t2a t3a tha
) =1+e"+e* +e* +e* toetet s,
Wio(%,1) T T+ T TCa+D) ¢ TBa+ D ¢ Toa+ 1
ta tZa t3a tha

P10 D) = =1+ e* — e*

X — pX P S —
ra+D)  Ta+D ¢ TGa+D T " T¢ roa+1)
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Consequently, the MFPS approximated solutions for the system (7) and (8) can be
expressed as:

ta t2a tha 10 tna
) =1+e* + b | =1+ XE—,
Wio(%,8) ¢ (F(a ¥ " TQa+1) I'Ga + 1)) ¢ ,T(na+1)
=

ta tZa t3a tha 10 (_1)ntna

- + - + 4 =—1+e* ) ————.

I'a+1) TI'Ra+1) Ir'Ba+1) r'10a + 1) 0I*(noc+1)
n=

Q10(x,t) = -1+ ex<

which are harmonious with the exact solutions for the standard case a = 1. Further, the
results obtained are similar to the solutions obtained in [31].

Example 2. Consider the following non-linear system of FPDEs [32]:

O“V(;r—t(ic,t) - aa—xzzw(x, t) + w(x,t) aa—xw(x, t) —w(x, t)elxt) =0,
, (13)
W(gfgc,t) - %(p(x, t) + o(x, t)aa—x<p(x, t) +w(x, t)e(x,t) =0,
subject to the initial conditions
wi(x,0) = sinx and ¢(x,0) = cosx, (14)

where t 2 0,x €ER, and 0 < a < 1. The exact solutions for the standard case a =1, are
wi(x, t) =sinxe™t, and o(x,t) = cosxe™* [32].

According to expansion (4), starting with the initial data w,(x) = sinx, and ¢,(x) =
cos x, the j-th MFPS solutions of (13) can be written as:

Jj
w;(x,t) = sinx + Z w,, ()t
n=1

(15)

J
@j(x,t) = cosx + Z @n ()t

n=1
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Next according to (6), the j-th residual functions of (13) will be reformulated as:

j j
. A 62
Res] (x,t) = FIT] sinx + Z wy, ()t | — F™) sinx + Z w,, ()t
n=1 n=1
j 5 j
+ | sinx + Z w,, ()t EP sinx + Z wy, ()t
n=1 x n=1

j j
— | sinx + Z w, (X)t*™ || cosx + Z @ ()t |,
n=1 n=1

- . (16)
‘ 9e j 52 j
Resé,(x, t) = FIT] cosx + Z @ ()t | — 2 cosx + Z @n ()t
n=1 x n=1
j P j
+ | cosx + Z @ ()t F cosx + Z @n ()t
n=1 x n=1
j j
+ | sinx + Z w, ()t*™ || cosx + Z @ ()t ).
n=1 n=1
Consider j = 1, the first residual functions from (16) have the forms:
aa
Resl(x,t) = FTT (sinx + w; (x)t*) — (—sinx + wi (x)t%) + (sinx + w; (x)t*)(cos x + wi(x)t*)
— (sinx + wy (X)t*)(cos x + @, (x)t%)
= sinx + w; () (a + 1) —sinx @, (X)t* — wy ()@, ()t2* + sinx wj (x)t% + wy (x)w] (x) 24
—wi (0)te,
(17)

aa
Res(},(x, t) = W(cosx + @, ()t*) + cosx — @7 (xX)t* + (cosx + @, (x)t*)(—sinx + @1 (x)t*)
+ (sinx + wy (x)t*)(cos x + @, (x)t%)
=cosx + @;(X) (@ + 1) + cosx wy (x)t% + @1 (xX)w; (x)t% + cos x @1 (X)t% + @, (x) @] (x)t2*
— o1 (0t”.

Now, by solving (17) at t = 0, and then equating, Resy,(x,0), ReséJ (x,0) to zero, one
sinx cosx

T and ¢, (x) = — T Thus, the first MFPS approximate so-

lutions for IVPs (13) and (14) are: wy(x,t) = sinx — sinxr(;—:), and ¢, (x,t) = cosx —

can obtain w;(x) = —

a

t
COSX ——.
r(a+1)
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Again, put j = 2, the second residual functions from (16) have the forms:

aa 2 2 2 2
Res?(x,t) = — (sinx + wn(x)t“"> + (sinx - wﬁ(x)t“") + (sinx + wn(x)t“"> (cosx + w%(x)t“")
g (s ), 2. 2, 2,
(smx + Z w (x)t“”) (cosx + Z On (x)t“”)

wo () 2a + 1)

@ +1) “+smx—2w (x)t“"+smxz wr, ()t

=w,)lrNa+1)+————

* Z Wa (W, (D)E = sin x Z pali)e - Z Wa(O)0n (T,

(18)

a

Jj
d
Resj(x,t) = e | cosx + Z @n ()t | + <— cosx + Z Oy (x)t"‘")

+ (cosx + Z On (x)t“n> (—smx + Z <pn(x)t“n> (smx + Z w (x)t"‘") (cosx + Z On (x)t“n>

n=1
@, () 2a +1)

=)+ 1)+————— Fa+t 1)

t* + cosx — Z @) ()t + cosxz @ ()t

+ Z PP + cos x Z W (LT + Z Pu W ()

Next, operating % to both sides of (18) yields
2
0%Res2(x,t) wi () (an + Dt*@-D wh ()M (an + 1)t*®@-D
gra — Wal@a+1)= Z Fan-D+D LT Ta@-D+ D
n= n=

5wl (Ow, (O (an + D220 G, () (an + 1)te@D
2 rle(n-1+1) —sinx ). CCEES)

22 0, (O)w, ()T (an + 1)¢2an=1)
Z ran—-1+1) ’

0“Resg(x,t) = ! () (an + 1)@= 2\ 0! (0T (an + 1)te®=D
gra - Pr@a+ )= nZl ram-D+1) 2 @D 1D
S 0h ()@, GOT (an + 1)¢2eD 5w, (0T (@n + 1)t
Z Tam—1)+1) + Cosxnzl Tatm—1)+1)

L @n ()W, (0T (an + 124D
Z rlen—-1)+1)

Letting j = 2, in (5) and by solving the obtained equations and based on the previous

sinx cosx
ra+1)’ and @ (x) = T Qa1

Therefore, the second
a

results, it gives that w,(x) = —

MFPS approximate solutions for IVPs (13) and (14) are w,(x,t) = sinx — sinxr @D
t(l tza
r(a+1) —cosx ra+1)’

i tZlZ
sinx ——, and Xx,t) = cosx —cosx
I"(2a+1)' ‘Pz( i )
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In the same manner, the fractional RPS approach can be used to determine w3(x),
and @3 (x), via substituting the 3rd-MFPS solutions of (15) into the 3rd-residual functions
of (16), i.e.,

Res3.(x,t) = (smx + Z wn(x)t“"> +— (smx + Z wn(x)t“">
3
+ (sinx + Z wn(x)t“”>aa—x< sinx + Z w (x)t“”)
n;l
— | sinx + wn(x)t“”> cosx + (pn(x)t"‘">
(02 )

Jj 2 3
Resj(x,t) = :—( cosx + Z @n ()t | + %(cosx + Z <pn(x)t“n>
n=1
(cos x + Z <pn(x)t“n> (cosx + Z On (x)t“”)
+ <smx + Z wn(x)t“”> (cosx + Z gon(x)t“">.

After that, by applying 2a-th Caputo fractional derivative on both sides of 3rd-re-
sidual equations of (19), as well depending on the results in (5) for j = 3, it yields that,

w (x) — smx CcosXx
3 T TrGa+1 r(3a+1)

for IVPs (13) and (14) can be written as:

(19)

and @;(x) = — . Hence, the third MFPS approximate solutions

ta t2a t3a )

’t = i - i )
w(x,t) = sinx Smx(l"(a+1)+F(2a+1)+F(3a+ D

£ t2a t3a
@s(x,t) = cosx—cosx<r(a+ D +F(2a D +F(3a n 1)>-

Continue with this procedure and based upon the results in (5), the other functions
sinx and (Pj(x) _

r(ja+1)

Moreover, the j-th MFPS approximate solutions for IVPs (13) and (14) are con-

w; (x) and ¢@;(x), for j = 4, can be evaluated such that w;(x) = —
co

F(]a+1)

structed as follows:

ta tZa t3a t]C( )

0 = sinx—si : ,
w;(x,t) = sinx Smx<r(a+1)+r(2a+1)+r(3a+1)+ WECTES)

tC( tZoc t311 tj(l )

¢;(x,t) = cosx — COsx(r(oz+ D T@a+D TGa+D T+ D)



Mathematics 2021, 9, 2868

15 of 20

w(x,t) =sinx (1 —

@(x,t) =cosx (1 -

Another aspectis when j — oo the MFPS approximate solutions w(x, t), and ¢(x,t),
for IVPs (13) and (14) have the following infinite series forms:

ta t2a t3a tja had (_1)ntan
Fa+D) ' TearD) ' TGarD  "Yr@g+n ™ ) - smx T(an+1)’
n=
ta tZa t3a tja had (_1)nt0m
Ta+D) ' TearD) ' TGarD " Yr@g+n ™ ) - cosx Tlan+ 1)
n=

which agrees with the results found in [32]. Further, when a = 1, the classical series solu-
tions w(x,t) =sinxe™", and ¢(x,t) = cosx e~t, which are fully in agreement with exact
solutions.

5. Graphical and Numerical Results

This section aims to demonstrate the efficiency, accuracy, and reliability of our pro-
posed method. For this purpose, some of the numerical and graphical results are pre-
sented in this section. The efficiency and accuracy of the fractional RPS scheme are vali-
dated by obtaining the absolute errors E;o(w) = |w(x,t) —wyo(x,t)|, and E;z(@) =
lo(x,t) — @10(x, t)|, when a = 1, and at some chosen grid pointsof ¢:0 <t < 1 and fixed
values of x, as shown in Tables 1 and 2. Moreover, some numerical solutions are com-
puted for the tenth MFPS approximate solutions as discussed in Examples 1 and 2 for
various values of parameter a and are summarized in Tables 3 and 4. From these tables,
one can see that our present approach provides accurate approximate solutions which are
in a good agreement with the exact solutions, although only ten terms of MFPS approxi-
mate solutions are utilized to achieve this accuracy. The accuracy can be increased by add-
ing extra terms which makes the overall error smaller. Moreover, Table 5 presents the
absolute errors of the tenth FPS approximate solutions of the linear system of FPDEs (7)
and (8) which are computed by LRPSM and compared with the computed absolute errors
by the Laplace-Adomian decomposition method (LADM) [31] at the standard-case a =
1. The simulation of Table 5 confirms that the proposed method is more accurate and
faster than LADM to determine the exact solutions of system (7) and (8). Graphically, the
tenth MFPS approximate solutions versus the exact solutions for the above-solved sys-
tems of FPDEs are plotted in three-dimensional space for t € [0,1], and x € [—2,2], when
a =1, as shown in Figures 1 and 2. It is clear that the pattern of the exact solutions is
consistent and in good agreement with the pattern of the approximate solutions in their
domains, and this confirms the effectiveness and performance of fractional RPS scheme.
However, Figures 3 and 4 show the impact of the parameter on curves of the MFPS ap-
proximate solutions for a € {0.65,0.75,0.85,0.95,1}, t € [0,1], and fixed values of x
against the exact solutions. Here, one can notice that the curves of the solutions are com-
patible with each other and in a homogeneous fashion. When the parameter a is increas-
ing in its domain, the curves of the solutions converge to the standard sense a = 1.
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Table 1. Numerical results for Example 1 at « =1 and n = 10.

Numerical Results of w(x,t)

b Exact Solution Tenth MFPS Solution Eip(w)
0.15 2.1618342427282830 2.161834242728283 0.0
0.30 2.3498588075760030 2.349858807575957 4.574118861455645 x 1014
0.45 2.5683121854901687 2.568312185486181 3.987921104453562 x 10712
0.60 2.8221188003905090 2.822118800294857 9.565193082039514 x 10711
0.75 3.1170000166126750 3.117000015484435 1.1282392797795630 x 107°
0.90 3.4596031111569494 3.459603102662100 8.4948492684588930 x 10~°

¢ Numerical Results of ¢(x,t)

' Exact Solution Tenth MFPS Solution Eo(9)

0.15 1.8607079764250578 1.8607079764250578 1.110223024625156 x 10716
0.30 1.7408182206817178 1.7408182206817613 4.32986979603811 x 10714
0.45 1.6376281516217732 1.6376281516254730 3.699485162655946 x 1012
0.60 1.5488116360940265 1.5488116361805715 8.654510441630237 x 10~ !
0.75 1.4723665527410148 1.4723665537365846 9.955698487829068 x 10~1°
0.90 1.4065696597405992 1.4065696670509398 7.310340555122252 x 10~°

Table 2. Numerical results for Example 2 at « = 1, and n = 10.

Numerical Results of w(x,t)

ti Exact Solution Tenth MFPS Solution Eo(w)
0.16 —0.8419450117729307 —0.84194501177293070 0.0
0.32 —0.71745821243338660 —0.71745821243347340 8.68194405256872 x 10~14
0.48 —0.61137755956791100 —0.61137755957532720 7.416289804496046 x 1012
0.64 —0.52098159009911530 —0.52098159027247250 1.733572174700270 x 1010
0.8 —0.44395122616870164 —0.44395122816140875 1.992707110431979 x 10~°
0.96 —0.37831027998359285 —0.37831029460495413 1.462136128838054 x 108

¢ Numerical Results of ¢(x,t)

! Exact Solution Tenth MFPS Solution Eo(9)

0.16 0.13144441496073755 0.13144441496073755 0.0
0.32 0.11200954180308985 0.11200954180310340 1.35447209004269 x 10714
0.48 0.09544823535245422 0.09544823535361205 1.15782383680596 x 10712
0.64 0.08133562092337902 0.08133562095044355 2.70645311717388 x 10711
0.8 0.06930964419156765 0.0693096445026690  3.11101339134368 x 1071°
0.96 0.05906178281330243 0.05906178509598864 2.282686213661566 x 10~°

Table 3. Numerical results of approximated solutions, at n = 10, with different values of a, for

Example 1.
t; Wie(X, t)
a=1 a=0.90 a=0.80 a=0.60
0.2 2.2214027581601690 2.2805331573375804 2.3574062080626383 2.5992370899310580
0.4 2.4918246976401830 2.5937448915963692 2.7226080973587683 3.1141975607216192
0.6 2.8221188002948576 2.9688456557530300 3.1525814312710714 3.7044906449490766
0.8 3.2255409261876826 3.4229421259078268 3.6691633475212875 4.4052769051540555
1.00 3.7182818011463845 3.9749386808012870 4.2945640956260980 5.2480111300443130
t. @10(x, 1)
' a=1 a=0.90 a=0.80 a=0.60
0.2 —0.18126924692201762 —0.2142375812825914 —0.2493747318757895 —0.32154982625236140
0.4 —0.32967995396334393 —0.3589009729302870 —0.3856516643965252 —0.42947454232435334
0.6 —0.45118836381942860 —0.4688859797736396 —0.4824316301790333 —0.49835879852667764
0.8 —0.55067103386593300 —0.5551187066686112 —0.5556567450518857 —0.5481336616645864
1.00 —0.63212053571428560 —0.6239336668417425 —0.6130477144305024 —0.5863356183976949
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Table 4. Numerical results of approximate solutions, at n = 10, with different values of a, for

Example 2.
t; wie(x, t)
a=1 a=0.90 a=0.80 a=0.60
0.25 —0.7694798025428385 —0.73647409969579200 —0.7027615522135062 —0.6377598728012623
0.50 —0.5992714727895893 —0.57564053036593310 —0.5555897076872737 —0.5265590627538489
0.75 —0.4667130932555057 —0.45904510752654604 —0.4554206561883250 —0.4574845903163597
1.00 —0.3634765445686263 —0.37156542991700050 —0.3823210951576755 —0.4087134907838949
t; P10(x, 1)
a=1 a=0.90 a=0.80 a=0.60
0.25 0.12013114996235093 0.11497830121280808 0.10971509991262596 0.09956704083235894
0.50 0.09355823366375775 0.08986897206304160 0.08673863858564738 0.08220637568741900
0.75 0.07286322579226955 0.07166610022708808 0.07110025105755274 0.07142247235488633
1.00 0.05674594074993913 0.05800877714356845 0.05968795108640946 0.06380833062900641

Table 5. Numerical comparisons between the absolute errors for Example 1.

t  x LRPSM LADM
' | w(x, ) — wyo(x, D] l@(x,t) — @10(x, D] | w(x, ) — wyo(x, O] lo(x,t) — @10(x, D]
—4 0.0 0.0 3.6792791036 x 10712 3.5893510386 x 10713
-3 0.0 0.0 1.0003109452 x 10713 9.7566399405 x 10713
-2 0.0 1.1102230246 x 10716 2.7191582319 x 10712 2.6521007612 x 10712
01 —1 2.2204460493 x 10716 1.1102230246 x 10716 7.3914208087 x 10712 7.2091221881 x 10712
' 0 0.0 1.1102230246 x 10716 2.0091928121 x 10712 1.9596102518 x 10~11
1 1.7763568394 x 10715 0.0 5.4615867384 x 10711 5.3267168454 x 10711
2 0.0 1.77635683940 x 10715 1.4846079921 x 10~11 1.4479706322 x 10710
—4  5.0024873133 x 10710 4.2335268624 x 10710 4.1443327905 x 10710 3.2256474624 x 107°
-3 1.3598173698 x 10~° 1.1507917952 x 10~° 1.1265464516 x 107° 8.7682188824 x 107°
-2 3.6963667682 x 10~° 3.1281764956 x 10~° 3.0622707483 x 107° 2.3834490061 x 1075
1 -1 1.0047766175 x 1078 8.5032654252 x 10~° 8.3241149288 x 107> 6.4788861210 x 1075
0 2.7312660578 x 1078 2.3114271941 x 1078 2.2627290349 x 1074 1.7611438411 x 107*
1 7.4243510895 x 1078 6.2831105429 x 1078 6.1507352183 x 10~* 4.7872853007 x 10~*
2 2.0181478178 x 1077 1.7079265247 x 10~7 1.6719431776 x 1073 1.3013190640 x 1073

(@) B9 w(x, t) == p(x,t)

(b) 5w (3, £) TS o, 8)

Figure 1. (a) 3D-surfaces plot of exact solutions w(x,t) and ¢(x,t) at a = 1; (b) 3D-surfaces plot
of tenth MFPS approximate solutions wyo(x,t) and ¢4o(x,t) at a = 1, for Example 1.
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Figure 2. (a) 3D-surfaces plot of exact solutions w(x,t) and ¢(x,t) at a = 1; (b) 3D-surfaces plot
of tenth MFPS approximate solutions wy,(x,t) and @q4(x,t) at @ = 1, for Example 2.
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Figure 3. (a) Plot of exact solutions w(x,t) and wy,(x,t) at various values of a; (b) plot of exact solutions ¢(x,t) and
@10(x,t) at various values of a, for Example 1.
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Figure 4. (a) Plot of exact solutions w(x,t) and wyo(x,t) at various values of «; (b) plot of exact solutions ¢(x,t) and
@10(x,t) at various values of a, for Example 2.
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6. Conclusions

In this work, the exact and approximate solutions for certain systems of FPDEs were
created successfully using a recent attractive method based on the fractional RPS. The
proposed technique is used to determine expansion coefficients in an easy systematic
manner that depends basically on the Caputo fractional derivative for each phase. The
efficiency and applicability of our technique in producing the solutions for the systems of
FPDEs have been tested via two illustrative examples. The analysis of the obtained results
of fractional RPS were shown to be fully compatible between the exact and approximate
solutions, and also with the results obtained by other methods. The accuracy of the pro-
posed technique is tested by comparing the numerical simulations of the FRPS-absolute
errors with those computed using LADM [31]. It was shown that the FRPS technique pro-
vides high accuracy and yields accurate approximations more than LADM. This confirms
that our proposed algorithm is a promising method. Consequently, the application of the
fractional RPS method can be extended to handle a wide class of fractional physical mod-
els. In future study, the application of the current algorithm can be extended to deal with
different types of dynamical evolution models, stochastic models, inverse uncertain sys-
tems, and quantum physics imposed by nonclassical conditions.
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