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Abstract: Real-time nowcasting is a process to assess current-quarter GDP from timely released
economic and financial series before the figure is disseminated in order to catch the overall macroe-
conomic conditions in real time. In economic data nowcasting, dynamic factor models (DFMs) are
widely used due to their abilities to bridge information with different frequencies and to achieve
dimension reduction. However, most of the research using DFMs assumes a fixed known number of
factors contributing to GDP nowcasting. In this paper, we propose a Bayesian approach with the
horseshoe shrinkage prior to determine the number of factors that have nowcasting power in GDP
and to accurately estimate model parameters and latent factors simultaneously. The horseshoe prior
is a powerful shrinkage prior in that it can shrink unimportant signals to 0 while keeping important
ones remaining large and practically unshrunk. The validity of the method is demonstrated through
simulation studies and an empirical study of nowcasting U.S. quarterly GDP growth rates using
monthly data series in the U.S. market.

Keywords: Bayesian analysis; dynamic factor models; horseshoe shrinkage; nowcasting

1. Introduction

Real-time nowcasting is a process to assess current-quarter GDP from timely released
economic and financial series before the figure is disseminated in order to catch the overall
macroeconomic conditions in real time. This is of interest because most data are released
with a lag and are released subsequently. In theory, any release, no matter at what frequency,
may affect current-quarter estimates and their precision potentially. Both forecasting and
nowcasting are important tasks for central banks for policy decision-making; for example,
monetary policies need to be made in real time and are based on assessments of current
and future economic conditions. Additionally, estimated current-quarter GDP figures are
often used as relevant inputs for model-based longer-term forecasting exercises in banks.

Real-time nowcasting faces some difficulties. The first one is how to bridge monthly
data series with the quarterly GDP. Bafigi et al. [1], Rünstler and Sédillot [2], and Kitchen
and Monaco [3] studied the idea of bridge equations which use small models to “bridge”
the information contained in one or a few key monthly data with the quarterly growth rate
of GDP. However, they involve judgmental nowcasts and only deal with a few monthly
data series. The second difficulty is how to deal with a large number of monthly data
series. For macroeconomic forecasting, factor models (FMs) are widely used at central
banks and other institutions to achieve dimension reduction. Many authors, such as
Boivin and Ng [4], Forni et al. [5], and D’Agostino and Giannone [6], have shown that
these models are successful in this regard. However, they did not use FMs specifically
for the problem of real-time nowcasting. There are other existing approaches to tackle
the high dimensional issue. One example is Eraslan and Schröder [7] who dealt with
this over-parameterized issue in GDP nowcasting by implementing the dynamic model
averaging method (Raftery et al. [8]). However, they did not talk about how to handle the
unbalanced structure of the data caused by different release dates with different lags in
each month. Moreover, they assumed a fixed number of factors, while in our paper the
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focus is to determine the number of factors contributing to GDP nowcasting. The third
challenge is that a large number of monthly data series are released with different lags,
causing unbalanced data at the end of the sample. Some authors, including Croushore and
Stark [9], Koenig et al. [10] and Orphanides [11], discussed about this issue, but they are
not focusing on the statistical estimation.

Giannone et al. [12] provided a frequentist inference framework for the parametric
dynamic factor models (DFMs). In their framework, they took advantage of different
data releases throughout the month and updated the nowcast based on each new data
release. The authors combined the idea of connecting monthly series with the nowcast of
quarterly GDP and the idea of using data with different releases within a single statistical
framework. Their model combines principal component analysis (PCA) with modified
Kalman Filter (KF) to deal with the unbalanced feature of the data. Hereafter, we call the
method proposed in Giannone et al. the GRS approach.

In this paper, we borrow the idea of DFMs from Giannone et al. [12] and propose
a Bayesian Monte Carlo Markov Chain (MCMC) approach to deal with the real-time
nowcasting problem. For DFMs, one important aspect is to determine the number of
factors. In the GRS approach, the number of factors is assumed to be fixed, which is
determined by looking at the cumulative proportions of variances explained by the first
few principle components from PCA, and the same set of factors is assumed to have
prediction power on GDP. Bai and Ng [13] showed that the number of factors could
be estimated consistently in a large panel of data setting. In this paper, we impose a
cap on the number of factors in the DFM structure but allow an unknown number of
factors to contribute to GDP prediction. We propose to apply the horseshoe shrinkage
(Carvalho et al. [14,15]) on the coefficients of factors in the prediction equation. One big
advantage of the horseshoe shrinkage over other traditional shrinkages is that it can shrink
unimportant signals to 0 while keeping important ones large and practically unshrunk
(more details will be discussed in Section 2). After estimation, any coefficient that is shrunk
to 0 indicates its corresponding factor has no prediction power. As a result, the number
of coefficients that remain large after strong shrinkage is a good estimate of an unknown
number of factors with prediction power on GDP. Our Bayesian MCMC approach can also
provide a more natural way to deal with the unbalanced data structure due to real-time
data releasing and estimate all parameters, including the number of contributing factors
and latent dynamic factors in a single framework. We refer to this Bayesian approach
as the BAY approach. Through simulation studies, we evaluate the abilities of our BAY
approach in estimating an unknown number of contributing factors and in producing
reliable nowcasts in real time. The validity of the BAY approach is also examined by
applying it to nowcast U.S. quarterly GDP growth rates.

The rest of this paper is organized as follows. Section 2 sets up the model structure,
introduces the horseshoe shrinkage into our model, and stylizes the data structure. In
Section 3, we introduce the Bayesian MCMC estimation method with nowcasting equations.
In Section 4, we conduct simulation studies. In Section 5, an empirical study of nowcasting
U.S. GDP growth rates is presented. Section 6 concludes the paper. A list of abbreviations
used in this paper is provided in Abbreviations.

2. Model Set-Ups, Horseshoe Shrinkage, and Data Structure

In Section 2.1, the model set-ups used in the BAY approach are illustrated. In Section 2.2,
we introduce the horseshoe shrinkage idea and how to implement it in our BAY approach
to estimate number of contributing factors. In Section 2.3, we formalize the unbalanced
data structure.

2.1. Dynamic Factor Models

In this section, we introduce the Dynamic Factor Model structure and how it can
reduce dimension and bridge our monthly released series with quarterly released GDP.
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Since the number of monthly series is vast, modeling GDP on all available series
can involve too many parameters; hence, the model would perform poorly in forecasting
because of large uncertainty in the parameters’ estimation. The fundamental idea of
Giannone et al. [12] is to use DFMs to exploit the collinearity of the series by summarizing
all the available information into a few common latent factors. Due to collinearity, a linear
combination of the common factors is able to capture the dynamic interaction among the
series and to provide a model that only requires a limited number of parameters and thus
works well in forecasting. In this paper, our DFM is specified in the following ways.

First, assume that the monthly series are linear functions of a few unobserved common
factors Ft,

xt = µ + ΘFt + εt, (1)

where xt = (x1,t, . . . , xn,t)′ is the n× 1 monthly series vector at month t, for t = 1, 2, . . . , T,
Ft = ( f1t, . . . , frt)′ is the r× 1 common factor vector at month t, r is the number of latent
factors (r << n) which is usually assumed to be known and fixed, Θ is the n× r factor
loading, µ is the n× 1 mean vector, and the n× 1 error vector εt ∼ N(0, Ωn×n). Note that
the difference between Equation (1) and regular multiple regression is that the factors Ft
are unobserved latent variables, while the predictors in multiple regression are observed.
The latent factors Ft serve an important role of bridging information from monthly series
to quarterly GDP.

Then, we further specify the dynamic of the common factors as a vector auto-regression:

Ft = AFt−1 + ut, (2)

where A = diag(a1, a2, . . . , ar) and ut ∼ N(0, Σr×r) with Σ = diag(σ2
1 , σ2

2 , . . . , σ2
r ). It is

known that factor dynamic models can suffer from non-identifiable issues. Following Stock

and Watson [16], we construct two sets of restrictions: |aj| < 1 and σ2
i

(1−a2
i )

<
σ2

j

(1−a2
j )

for

1 ≤ i < j ≤ r. These restrictions together with the prior distribution of Θ (specified later)
satisfy the identification assumptions in Stock and Watson [16], and can identify factors up
to a change of sign.

Finally, we assume that the nowcast of the GDP at quarter k is a linear function of the
common factors at each month in the current quarter and the GDP from the previous quarter:

yk = β0 + β′1F3k + β′2F3k−1 + β′3F3k−2 + β4yk−1 + νk, (3)

where β0 and β4 are scalars, βi = (βi1, . . . , βir)
′, i = 1, 2, 3, are r × 1 vectors and

νk ∼ N(0, η2) for k = 1, . . . , K. Here, the number T (the end of monthly series) and
the number K (the end of quarterly GDP series) satisfy 3K + 1 ≤ T ≤ 3K + 3. The DFMs
specified this way can successfully bridge quarterly released GDP with monthly financial
or economic series and achieve dimension reduction.

2.2. Horseshoe Shrinkage

In this section, the horseshoe shrinkage idea is introduced, and we discuss how it can
be implemented in our model framework to estimate the number of contributing factors.

In Carvalho et al. [14], the horseshoe prior was first introduced as a shrinkage prior.
Follett and Yu [17] shown that the horseshoe prior competes favorably with shrinkage
schemes commonly used in Bayesian multivariate regression models. To illustrate the

idea, let us first consider a simple mean model zj
ind∼ N(µj, σ2) for j = 1, . . . , R. We assume

µ = (µ1, . . . , µR) is sparse and some µj might be equal to 0. We can assign the horseshoe

prior to µj for j = 1, . . . , R by letting µj|λj, τ
ind∼ N(0, λ2

j τ2) with λj
iid∼ Hal f Cauchy(0, 1).

Here, τ is referred to as the global shrinkage prior and λj is referred to as the local shrink-
age prior. Figure 1 plots the densities for the horseshoe (setting τ = 1 for simplicity),
Laplacian, and Student-t priors, respectively. As shown in Figure 1, compared to Laplacian
or Student-t priors, the horseshoe has flat tails which allow strong signals that remain
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un-shrunk. It also has an “infinitely” tall spike at the center which can provide severe
shrinkage for elements near zero. This feature makes the horseshoe prior a very useful
shrinkage prior.

Figure 1. Densities of the implied prior on µj based on the horseshoe prior, the t prior, and the
Laplacian prior.

Furthermore, it was showed in Carvalho et al. [14] that, for τ = σ2 = 1,

E(µj|z1, . . . , zR, λj) = (1− κj)zj + κj0 = (1− κj)zj,

where κj =
1

1+λ2
j
. When κj = 0, E(µj|z1, . . . , zR, λj) = zj, it indicates that the signal from

data dominates; when κj = 1, E(µj|z1, . . . , zR, λj) = 0, it means that µj is shrunk to 0. Thus,
κj is referred to as the Shrinkage Profile which measures the shrinkage level:

κj =

{
0 little shrinkage (Important)
1 extreme shrinkage (Not important).

(4)

The Half Cauchy prior on λj implies a Beta(0.5, 0.5) prior on the Shrinkage Profile κj.
Figure 2 shows the implied prior on κj for the horseshoe prior, the student’s t prior, and the
Laplacian prior. As shown in the figure, unlike the Laplacian prior and t prior, the density
of κj implied by the horseshoe prior is unbounded at both 0 and 1 with a small mass in
between (a horseshoe shape). Being unbounded at 0 allows effects to grow large (little
shrinkage) while being unbounded at 1 can shrink effects until they are fully removed from
the equation.

We apply this horseshoe shrinkage idea to the prediction Equation (3) as follows:

yk = β0 + β′1SF3k + β′2SF3k−1 + β′3SF3k−2 + β4yk−1 + νk, (5)

where S = diag(τλ1, . . . , τλR), and R is the largest possible number of latent factors.
The cap R is predetermined, satisfying r < R << n. Now, βi = (βi1, . . . , βiR)

′, i = 1, 2, 3,
are R× 1 vectors, Ft = ( f1t, . . . , fRt)

′ are R× 1 common factors at month t, and dimensions
for A, Σ, and Θ are changed accordingly.
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Figure 2. Densities of the shrinkage profile κj based on the horseshoe prior, the t prior, and the
Laplacian prior. κj = 0 means no shrinkage and κj = 1 means total shrinkage.

In this specification, τ is the global shrinkage prior and λj (j = 1, . . . , R ) are local

shrinkage priors. We set λj ∼ Hal f Cauchy(0, ν
j
λ), where 0 < νλ < 1. In this way, we

assume that the importance of factors decreases when j goes from 1 to R. If we put priors

βij
iid∼ N(0, 1), i = 1, 2, 3, j = 1, . . . , R and define β̃ij := τλjβij, then β̃ij|τ, λj

ind∼ N(0, τ2λ2
j ),

and Equation (5) changes to be

yk = β0 +
R

∑
j=1

β̃1j f3k,j +
R

∑
j=1

β̃2j f3k−1,j +
R

∑
j=1

β̃3j f3k−2,j + β4yk−1 + νk. (6)

It can be seen that β̃.j = (β̃1j, β̃2j, β̃3j)
′ is the coefficient connecting factor j to GDP in

the prediction equation. By such a specification, we successfully impose the horseshoe
shrinkage prior on the coefficients β̃.j’s. The magnitudes of the estimated profiles, κj =

1
1+λj

(for j = 1, . . . , R), give us some information about which β̃.j should be shrunk to 0 and
which should not. If κj is close to 1, indicating extremely strong shrinkage on β̃.j, factor
j then has no prediction power on GDP. As a consequence, the number of remaining
un-shrunk β̃.j determines the number of contributing factors.

2.3. The Unbalanced Structure of the Data

In this section, we provide descriptions of the unbalanced data structure and notations
used to represent the unbalanced structure.

In real time, macroeconomic series are released with diverse lags. At a particular
release date, some series have observations up through the current month, whereas for
others, the most recent observations maybe come from previous months. Dealing with
these kinds of unbalanced data is vital for nowcasting.

Let xT = (x1,T , . . . , xn,T) be the n× 1 vector denoting n monthly data series at month
T (the end of the sample), and yK be quarterly GDP at quarter K. Assume there are Q
different release dates at each month. Each release date is denoted as (q, T), representing
the qth release date in month T, where q = 1, . . . , Q. New series are released on each release
date. Since some series for the current month may be released in the future, let Tq denote
the latest month in which the data are balanced. For t = Tq + 1, . . . , T, the releasing set
vq,t collects indexes of all x′i,ts that have been released at or before the release date (q, T),
and this set of available series is denoted as xi∈vq,t . Without loss of generality, for each
month, we assume the release dates for all series are fixed.

Table 1 gives a simple example of the data set available for nowcasting. In this
example, there are n = 6 monthly series, xt = (x1,t, . . . , x6,t), released at three (i.e., Q = 3)
releasing dates. For month T, cells with gray color represent series that are available before
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T. Suppose (x5,T−2, x6,T−2) are released at the first releasing date(1, T), (x3,T−1, x4,T−1) are
released at the second releasing date (2, T), and (x1,T , x2,T) are released at the third releasing
date (3, T). Thus, for the third releasing date (3, T), Tq = T − 2, v3,T−1 = {1, 2, 3, 4},
xi∈v3,T−1 = (x1,T−1, x2,T−1, x3,T−1, x4,T−1), and v3,T = {1, 2}, xi∈v3,T = (x1,T , x2,T). If we
want to nowcast GDP in the current quarter yK+1 at the first release date in the second
month of the quarter, so here T = 3K + 2. The series available to use at the release date
(1, T) are highlighted in gray and orange color, i.e., {x1, . . . , xT−2, xi∈v1,T−1}. The series
available to use at the release date (2, T) are highlighted in gray, orange, and green,
i.e., {x1, . . . , xT−2, xi∈v2,T−1}.

Table 1. An example of the overall releasing pattern. Gray colored cells represent available series
before T. Orange, green, and blue represent the 1st, 2nd, and 3rd release within T, respectively.

k 1 . . . K K + 1

t 1 2 3 . . . T − 4 T − 3 T − 2 T − 1 T T + 1

xi,t

x1,1 x1,2 x1,3 . . . x1,T−4 x1,T−3 x1,T−2 x1,T−1 x1,T NA
x2,1 x2,2 x2,3 . . . x2,T−4 x2,T−3 x2,T−2 x2,T−1 x2,T NA
x3,1 x3,2 x3,3 . . . x3,T−4 x3,T−3 x3,T−2 x3,T−1 NA NA
x4,1 x4,2 x4,3 . . . x4,T−4 x4,T−3 x4,T−2 x4,T−1 NA NA
x5,1 x5,2 x5,3 . . . x5,T−4 x5,T−3 x5,T−2 NA NA NA
x6,1 x6,2 x6,3 . . . x6,T−4 x6,T−3 x6,T−2 NA NA NA

yk y1 . . . yK yK+1

The goal is to nowcast yK+1 with all available information including xt series and yk
series at each releasing date (q, T) in month T. Here, T = 3K + 1, 3K + 2, 3K + 3, indicating
the first month, second month, and third month nowcast. At every new release date (q, T),
model parameters are updated with new information added from the new released series,
and nowcast of yK+1 is re-produced. How to deal with this unbalanced data in our BAY
approach will be discussed in details in Section 3.

3. Estimation Method and Nowcasting

In Section 3.1, we introduce the Bayesian MCMC algorithm to estimate model param-
eters and latent factors and to determine the number of contributing factors. In Section 3.2,
nowcasting formulas are provided.

3.1. Estimating Dynamic Factor Models Using Bayesian MCMC

In this section, we first introduce our method of implementing the unbalanced data
into our model framework naturally. Then, we finish our model specification by assigning
priors in Bayesian Framework. Finally, the MCMC procedure is discussed in detail.

As discussed in Section 2, macroeconomic series are released with diverse lags in
real time. Thus, a difficulty in real-time nowcasting is to deal with unbalanced data.
In this section, we develop a computational Bayesian MCMC approach that can tackle this
issue naturally.

To deal with the missing data in xi∈vq,t at the end of the sample, we introduce the
nq × n indicator matrix 1vq,t by deleting the ith row from the identity matrix 1n×n if i /∈ vq,t.
For the example discussed in Section 2, at the third releasing date (3, T) in month T,
v3,T−1 = {1, 2, 3, 4}. Therefore, removing the fifth and sixth row of 16×6 gives us

1v3,T−1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

.
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Similarly, for the index set v3,T = {1, 2}, deleting the last four rows of 16×6 leads to

1v3,T =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
.

Then, we can simply rewrite xi∈vq,t as xi∈vq,t = 1vq,t xt.
To better derive the posterior distributions, we express the dynamic of xt in Equation (1) as:

xt = µ + [In×n ⊗ F′t] ∗ θ+ εt,

where θ = vec(Θ) = (θ1, . . . , θn)′, θi is a 1 × R vector representing the ith row of Θ,
i = 1, 2, . . . , n, and the symbol⊗ denotes the Kronecker product. Thus, for the qth releasing
date in month T, the conditional density for xt is{

xt|Ft, Θ, Ω ∼ N(µ + [In×n ⊗ F′t] ∗ θ, Ω) for t = 1, . . . , Tq

1vq,t xt|Ft, Θ, Ω ∼ N(1vq,t(µ + [In×n ⊗ F′t] ∗ θ), 1vq,t Ω1′vq,t) for t = Tq + 1, . . . , T,
(7)

the conditional density of Ft is

Ft|Ft−1, A, Σ ∼ N(AFt−1, Σ), f or t = 2, . . . , T, (8)

and the conditional density of yk is

yk|F3k, F3k−1, F3k−2, yk−1, S, η2 ∼ N(β0 + β′1SF3k + β′2SF3k−1 + β′3SF3k−2 + β4yk−1, η2), (9)

for k = 2, . . . , K. In this way, the unbalanced structure of the data is built into our model
framework through this indicator matrix 1vq,t .

Let Φ = (µ, Θ, Ω, A, Σ, β, τ, S, η2) denote all parameters to be estimated. Suppose
we are at releasing date q in month T of quarter K + 1, our task is to use observations
Y = {y1, . . . , yK} and Xq,T = {x1, . . . , xTq , xi∈vq,Tq+1 , . . . , xi∈vq,T} to estimate parameters Φ

and latent factors {F1, . . . , FT}, then conduct the nowcast for yK+1.
The joint posterior distribution p(Φ, F|Y, Xq,T) can be written as a product of individ-

ual conditionals,

p(Φ, F|Y, Xq,T) ∝ p(Y, Xq,T , Φ, F)

∝
Tq

∏
t=1

p(xt|Ft, θ, Ω)
T

∏
t=Tq+1

p(1vq,t xt|Ft, θ, Ω)

×
T

∏
t=2

p(Ft|Ft−1, A, Σ)

×
K

∏
k=2

p(yk|F3k, F3k−1, F3k−2, yk−1, S, η2)× π(Φ),

(10)

where p(xt|Ft, θ, Ω), p(1vq,t xt|Ft, θ, Ω), p(Ft|Ft−1, A, Σ), and p(yk|F3k, F3k−1, F3k−2, yk−1, η2)
can be derived according to Equations (7)–(9), respectively. π(Φ) is the prior distribution
for the parameter set Φ.

We finish the model specification by assigning prior distributions in Bayesian frame-
work. We set prior for µ as µn×1 ∼ N(0, I). The prior for Θ is defined as Θn×R ∼
Matrix Normal(0n×R, In×n, IR×R). This prior on Θ, along with two restrictions we set

in Section 2 (|aj| < 1 and σ2
i

(1−a2
i )

<
σ2

j

(1−a2
j )

for 1 ≤ i < j ≤ R), satisfy the identi-

fication assumptions in Stock and Watson [16]. The prior for Ω is defined as Ω ∼
Inverse Wishart( 1

n In×n, νθ), where νθ is a scalar and pre-specified to be n + 2 so that the
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expectation of Ω is n−1In×n. The prior for A is the standard normal truncated at [−1, 1],
that is: for j = 1, . . . , R

π(aj) =


φ(aj)

Φ(1)−Φ(−1) for −1 < aj ≤ 1

0 otherwise,
(11)

where φ(·) and Φ(·) are PDF and CDF for standard normal distribution. Then, π(A) =

∏R
j=1 π(aj). The priors for the diagonal elements of Σ are defined as σ2

j
iid∼ Inverse Gamma(αs, βs)

for j = 1, . . . , R, where αs and βs are scalars and pre-specified to be 2 and R + 2, accord-
ingly. Then, π(Σ) = ∏R

j=1 π(σj). The prior for β = (β0, β′1, β′2, β′3, β4)
′ is β ∼ N(0(3R+2)×1,

I(3R+2)×(3R+2)). The prior for λj is set to be λj ∼ Hal f Cauchy(0, ν
j
λ) for j = 1, . . . , R (τ is set

to be 1). As discussed in Section 2.2, these prior specifications of β and λj imply a horseshoe
shrinkage on the coefficients β̃.j’s. The prior for η2 is η2 ∼ Inverse Gamma(αh, βh), where αh and
βh are scalars and pre-specified to be 4 and 0.01, accordingly, to provide a reasonable mean and
variance of η2.

All priors are assumed to be independent. Based on the derived complete conditional
posterior distributions for each parameter and latent variable, we obtain posterior samples
using Metropolis–Hastings within Gibbs sampling since some conditional posterior distri-
butions do not have closed forms. In estimation, we use the means of posterior samples as
estimates for parameters and latent factors. Complete conditional posterior distributions
for all model parameters and latent factors are provided in Appendix A.

3.2. Nowcasting Formulas

In this section, nowcasting formulas are provided. Suppose we are at (q, T), the qth
(q = 1, . . . , Q) releasing date in month T. As discussed in Section 3.1, the available
information are {y1, . . . , yK} and {x1, . . . , xTq , xi∈vq,Tq+1 , . . . , xi∈vq,T}, here T can be the first
(T = 3K + 1), second (T = 3K + 2), or third (T = 3K + 3) month of the quarter K + 1.
Our goal is to nowcast GDP yK+1. Let A(g), β

(g)
0 , β

(g)
i (i = 1, 2, 3), β

(g)
4 , A(g), S(g) =

diag(τλ
(g)
1 , . . . , τλ

(g)
R ), and F(g)

t (t = 1, . . . , T) be the gth posterior draws for parameters
and latent factors after the burn-in period, where g = 1, . . . , G. We nowcast yK+1 using the
following formulas.

• When T = 3K + 1, the nowcast of yK+1 using BAY is given by:

ŷK+1 =
1
G

G

∑
g=1

[
β
(g)
0 + (β1

(g))′S(g)(A(g))2F(g)
T + (β2

(g))′S(g)A(g)F(g)
T +

(β3
(g))′S(g)F(g)

T + (β
(g)
4 )yK

]
,

(12)

• When T = 3K + 2, the nowcast of yK+1 using BAY is given by:

ŷK+1 =
1
G

G

∑
g=1

[
β
(g)
0 + (β1

(g))′S(g)A(g)F(g)
T + (β2

(g))′S(g)F(g)
T +

(β3
(g))′S(g)F(g)

T−1 + (β
(g)
4 )yK

]
,

(13)

• When T = 3K + 3, the nowcast of yK+1 using BAY is given by:

ŷK+1 =
1
G

G

∑
g=1

[
β
(g)
0 + (β1

(g))′S(g)F(g)
T + (β2

(g))′S(g)F(g)
T−1+

(β3
(g))′S(g)F(g)

T−2 + (β
(g)
4 )yK

]
.

(14)
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Note that for some releasing dates, if vq,T = ∅, meaning that no monthly series are

available at releasing date (q, T), then posterior samples F(g)
T cannot be generated. As a

solution, we use F̃(g)
T = A(g)F(g)

T−1 to replace F(g)
T in nowcasting equations. All of the

parameter and factor estimations are updated in every single release within a month. Then,
ŷK+1 is re-produced for each release date.

4. Simulation Study

In this section, we will investigate three aspects of the Bayesian approach through
numerical simulations. In Section 4.1, we evaluate whether it can successfully determine
the true number of latent factors that can contribute to GDP nowcasting, i.e., the number of
contributing factors. In Section 4.2, we study the accuracy of estimated latent factors Ft.
In Section 4.3, we examine out-of-sample nowcasting performances of the BAY approach.

In the simulation study, we simulate data following the model in Equations (1), (2) and (4)
with T = 180 (months), K = 60 (quarters), r = 2 (true number of contributing latent factors),
n = 60 (monthly series), and Q = 3 release dates in each month. The releasing pattern
follows Table 2 with 20 new monthly series released in each release date, that is: at (1, T),
release (x41,T−2, . . . , x60,T−2), at (2, T), release (x21,T−1, . . . , x40,T−1) and at (3, T), release
(x1,T , . . . , x20,T).

Table 2. Data releasing structure for simulation study when nowcasting quarter K + 1’s GDP in
month T. “RL” represents release. Orange color represents release 1, green represents release 2, and
blue represents release 3.

Month T-3 T-2 T-1 T
Series 1-20 Known Known Known RL3

Series 21-40 Known Known RL2
Series 41-60 Known RL1

Our method requires a predetermined cap R as the largest possible number of factors.
Theoretically, R can be as large as the number of monthly series n. However, in prac-
tice, we use a smaller number to avoid extreme computational burden. In this simula-
tion study, we choose R = 6 because a preliminary PCA analysis shows that the first
six principle components can explain at least 95% of total variation for all six simula-
tions. For all simulations, some of the parameter settings used in generating data are
common: we set A = diag(0.9,−0.8, 0.75, 0.7,−0.65, 0.6), Σ = diag(5.5, 3, 1, 0.5, 0.25, 0.1);
β0 = 0.5, β′i = (1, 1, 1, 1, 1, 1) (i = 1, 2, 3), β4 = 0.15, and η2 = 1. Ω is simulated from
Inverse Wishart(60−1 I60×60, 60), each element of µ equals to 10, and Θ is simulated from
Matrix Normal(0, I60×60, I6×6).

Specifications of λj (j = 1, . . . , R) for each of the simulation are shown in Table 3.
For all six simulations, we assume only the first two factors majorly contribute to our
nowcasting equations. Simulation 1 and Simulation 2 represent the group with high signals
for the first two factors. Simulation 3 and Simulation 4 represent the group of moderate
signals, while Simulation 5 and Simulation 6 are in the group of weak signals. Within each
group, one of the simulations is configured with true sparsity, that is λj = 0 for j = 3, . . . , 6,
while for another simulation, we assign non-sparsity with small noise (λj ∼ N(0, 0.12) for
j = 3, . . . , 6) as a comparison. In this way, we can investigate how our method performs
when changing magnitudes of the true signals from strong to weak, and when the non-true
signals are contaminated with small noise or not.
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Table 3. Settings for λj. For each simulation, the first 2 factors are contributing factors, and other
4 factors contribute little or 0 to GDP prediction.

Simulation λ1 λ2 λ3, λ4, λ5, λ6

1 N(5, 0.12) N(−5, 0.12) N(0, 0.12)
2 N(5, 0.12) N(−5, 0.12) 0
3 N(1, 0.12) N(−1, 0.12) N(0, 0.12)
4 N(1, 0.12) N(−1, 0.12) 0
5 N(0.1, 0.12) N(−0.1, 0.12) N(0, 0.12)
6 N(0.1, 0.12) N(−0.1, 0.12) 0

For each simulation, we conduct one-step ahead nowcasts for the last 20 quarters using
a moving window with a length of 10 years (40 quarters). For each quarter, nowcasting is
made in each release date within each month. Thus, there are 20(quarters)× 3(months)×
3(release dates) = 180 nowcasts in each simulation. In our MCMC procedure, we discard
the first 10,000 iterations as burn-in and run 1000 more for posterior summaries.

4.1. Estimating the Number of Contributing Factors

In this section, we validate our Bayesian Approach’s ability in determining true
number of contributing factors through six sets of simulation studies. The ability of the
algorithm to determine the true number of contributing factors is investigated as follows.
First, we check whether our approach can perform as expected when true signals of the
first two factors are high, moderate, and low, and the non-true signals are exactly equal to
0. Secondly, we check if its performance will be undermined if we add some noise to the
non-true signals.

For each simulation, every estimate of the shrinkage profiles κ̂j (j = 1, . . . , R) is
calculated using the average of 1000 posterior draws after the burn-in period, that is
κ̂j = ∑G

g=1 κ
(g)
j = ∑G

g=1
1

1+λ
(g)
j

for G = 1000. Figure 3 shows box-plots of estimated

shrinkage profiles κ̂j (j = 1, . . . , R) based on 180 nowcast estimates in each simulation.
In Simulation 1 and Simulation 2, κ̂1 and κ̂2 are near 0 while κ̂3 to κ̂6 are generally close
to 1, indicating that the algorithm can successfully detect high signals for the first two
contributing factors and shrink the other four to zero. In Simulation 3 and Simulation 4,
when we decrease signals of the first two factors from high to moderate, our algorithm can
still detect signals of the first two and shrinkage signals of the last four to 0. However, if we
only apply low signals for the first two factors, as shown in Simulation 5 and Simulation 6,
the algorithm can only detect one contributing factor while shrinking all others to 0. When
comparing results between right column (Simulation 2, 4, and 6 for true sparsity) and left
column (Simulation 1, 3, and 5 for small noise), our algorithm can extremely shrink all
four non-true factors (i.e., having κ̂j ≈ 1) in all three scenarios with different strengths of
true signals, disregarding whether the non-true factors are contaminated with noise or
not. The findings in Figure 3 validate our algorithm’s ability to detect the true number of
contributing factors with moderate to high signals.

Figure 4 shows a scatterplot of posterior means κ̂ij’s (κ̂ij = κ̂j) versus ˆ̃βij’s from
180 nowcast estimates. There are two general patterns observed across all six simulations.
The first is that the estimated profile κ̂ij’s get closer to zero (little shrinkage) when the

values of ˆ̃βij’s increase horizontally to very large numbers, while κ̂ij’s approach to one

(strong shrinkage) when ˆ̃βij’s become very small. The second pattern is that the dots are
separated into two clear segmentations in each picture. The vertical distance between two
groups is the largest for the strong signal cases (Simulation 1 and 2), then becomes smaller
for the moderate signals (Simulation 3 and 4). However, for the last row (the weak signal
cases), the distance almost diminishes. This is consistent with the findings in Figure 3.
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Figure 3. Box-plots of shrinkage profile estimations κ̂j for j = 1, . . . , R from 180 nowcast estimates.
Here, R = 6. Each subplot represents the result for each simulation.

4.2. Estimation of Latent Factors

We then investigate whether the BAY method can accurately estimate the latent
factors Ft. In our approach, latent variables Ft are also estimated with posterior means,
i.e., F̂t =

1
G ∑G

g=1 F(g)
t , t = 1, . . . , T, and G = 1000 is the number of MCMC iterations after

the burn-in period. Figure 5 plots the estimated first two latent factors from BAY approach,
together with the true latent factors, in the first 100 months (in-sample period) of the data
for six simulations. The absolute values are compared since the factors are identified up to
a change of sign (Section 2.1). Figure 5 shows that, generally, the estimation from the BAY
approach is close to the true factors, especially for the first four simulations in which the
true number of contributing latent factors is successfully detected.
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Figure 4. Scatter splots of shrinkage profile estimations κ̂ij (y-axis) versus ˆ̃βij (x-axis) from 180
nowcast estimates. Each subplot represents the result for each simulation.

4.3. Out-of-Sample Nowcasting Performances

In this section, we prove that our Bayesian Apporach can provide exceptional out-of-
sample nowcasting performances compared to the Random Walk.

Out-of-sample nowcasting performances are assessed based on 20 one-step-ahead
nowcasting. For each simulation, whenever there are new series released in a month,
the model parameters and latent factors will be updated. Therefore, there are 180 nowcasts
in total.

Figure 6 presents the nowcasting performances for all six simulations. In each panel
(representing each simulation), the first, second, and third row represent nowcasting trends
over 20 quarters in the first, second, and third month, respectively. In each subplot of each
panel, the black curve represents the true GDP, while colored curves with different symbols
represent nowcasts from different releases. Figure 6 shows that BAY approach can capture
trends and changes in simulated GDP really well. For all six simulations, within the same
month, there is no obvious difference in nowcasting performance between release 1 and
release 2. However, nowcasting curves for release 3 are slightly closer to true curves than
that of the other two releases. Moreover, we can see obvious improvements from nowcasts
in the first month to nowcasts in the third month.
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Figure 5. In-sample fit of the latent factors for 6 simulations. Absolute value is used for both true
factors and in-sample fits. Yellow lines represent in-sample fitted value and gray lines represent true
value. In each subplot, the upper panel represents the comparison for the first factor, and the lower
panel shows the comparison for the second factor.

In order to better understand nowcasting results, we use mean absolute nowcasting
error (MANE) to measure nowcasting accuracy. Let ŷq,T

K+1 be the nowcast at qth release
date of month T, where q = 1, 2, 3 and T = 3K + 1, 3K + 2, 3K + 3. Then, MANE(q, T) =
1

20 ∑60
k+1=41 |ŷ

q,T
k+1− yk+1|. We compare the nowcasting performances of BAY with that of the

random walk (RW) approach, which uses the previous quarter GDP to predict the current
quarter GDP, by calculating MANE reduction relative to RW (i.e., MANE(q,T)−MANErw

MANErw ).
Table 4 provides MANE reductions (in percentage) for BAY approach compared with that
of the RW. For instance, −30% indicates that BAY can reduce 30% of MANE of the RW.
Table 4 shows that, moving from the first month to the third month, there are significant
reductions in terms of MANE ratios. Within each month, there is no obvious difference in
MANE ratios between release 1 and release 2, while release 3 can provide larger MANE
reduction than the other two. The possible reason is that, in the releasing pattern of this
simulation study, series of the current month are only released in the third release of
each month.
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Figure 6. Nowcasting performance for six simulations. Three rows in each subplot represent the first,
second, and third month’s nowcasts for the last 20 quarters, respectively. Black curve represents true
simulated GDP, and colored curves with different shapes represent nowcasts from different releases.

Table 4. This table reports percentages of reduction in MANE relative to RW, which are calculated as
(MANEBay −MANERW)/MANERW × 100%, for six simulation studies.

Simulation 1 2

Release 1st Month 2nd Month 3rd Month 1st Month 2nd Month 3rd Month

1st −15.4% −35.9% −55.5% −35.2% −50.6% −81.4%
2nd −16.4% −34.6% −56.5% −34.6% −51.1% −80.4%
3rd −32.8% −54.6% −96.6% −53.3% −82.3% −97.3%

Average −21.5% −41.7% −69.5% −41.0% −61.3% −86.4%
Simulation 3 4

Release 1st Month 2nd Month 3rd Month 1st Month 2nd Month 3rd Month

1st −24.6% −52.5% −68.7% −43.5% −53.5% −73.1%
2nd −24.5% −54.7% −69.3% −44.5% −55.1% −73.3%
3rd −51.5% −68.2% −89.0% −57.9% −75.1% −90.7%

Average −33.5% −58.5% −75.7% −48.6% −61.2% −79.0%
Simulation 5 6

Release 1st Month 2nd Month 3rd Month 1st Month 2nd Month 3rd Month

1st −33.5% −29.4% −50.5% −25.5% −43.9% −66.0%
2nd −34.9% −28.3% −49.4% −25.3% −43.1% −66.2%
3rd −27.7% −52.3% −62.7% −44.5% −66.0% −69.9%

Average −32.0% −36.7% −54.2% −31.8% −51.0% −67.4%
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In summary, this simulation study suggests that our BAY approach can successfully de-
tect true number of contributing factors with moderate to high signals. It also has the ability
to estimate latent dynamic factors accurately and produce reliable nowcasting results.

5. Empirical Study

In this section, we examine empirical performance of the BAY method using U.S.
quarterly GDP growth rates. The Federal Reserve Bank of New York built a platform that
has been nowcasting U.S. GDP growth rates since April 2016. The methodology behind the
platform is based on the GRS method, and details can be found in Bok et al. [18]. We borrow
their data from Github (https://github.com/FRBNY-TimeSeriesAnalysis/Nowcasting)
in 20 April 2021. This data set contains 26 monthly series released by both government
agencies and private institutions. Based on economic insights, those monthly series are
assigned to nine different categories, such as labor, international trade, manufacturing,
surveys, and others. All series are updated in real time; thus, the release dates for each one
vary from month to month. Based on the approximate release dates for each individual
series, we roughly group these series into three release dates: before 10th, from 10th to
20th, and after the 20th of a month. Table 5 provides the release pattern of the real data.
The same transformations as in Bok et al. [18] are applied to monthly series to achieve
stationarity. Detailed information of transformations and release patterns are available in
Tables 6 and 7.

Table 5. Data releasing structure in the empirical study when nowcasting quarter K + 1’s GDP
in month T. RL stands for release, with release 1 colored in orange, released 2 colored in green,
and release 3 colored in blue. The number in parentheses represents number of series for that
particular release.

Month T-3 T-2 T-1 T
Set 1 (2) Known Known Known RL2 (2)
Set 2 (2) Known Known RL1 (2)

Set 3 (10) Known Known RL2 (10)
Set 4 (7) Known Known RL3 (7)
Set 5 (5) Known RL1 (5)
Set 6 (3) Known RL2 (3)

Table 6. Data transformation types: x∗it represents raw data, and xit represents the transformed data.

Type Transformation Description

1 xit = x∗it No transformation
2 xit = x∗it − x∗i,t−1 Level change

3 xit =
x∗it−x∗i,t−1

x∗i,t−1
Month-to-month change

We choose the data span from 1993Q1 to 2016Q4, which gives us data series with
288 months (96 quarters). In-sample data is chosen to be in the period from 1993Q1 to
2002Q4, while the nowcasting horizon covers 2003Q1 to 2016Q4. The GDP growth rate
used in this empirical study is the annualized quarter over quarter percentage change,
which is defined as:

Yk = {(1 +
GDPk − GDPk−1

GDPk−1
)4 − 1} × 100,

where GDPk is the real GDP of quarter k. Figure 7 plots the GDP growth rate with
nowcasting horizon on the right side of the dashed blue line. In Figure 7, we see a severe
drop at around 2009Q1 which is due to the financial crisis around 2007–2008.

https://github.com/FRBNY-TimeSeriesAnalysis/Nowcasting


Mathematics 2021, 9, 2865 16 of 23

Table 7. Release groups, transformation types, and lag information for monthly series used in the
empirical study.

Release Block Name Transformation Lag

1st

Housing and construction TTLCONS 3 2

International trade BOPTEXP 3 2
BOPTIMP 3 2

Manufacturing BUSINV 3 2

Labor
PAYEMS 2 1
JTSJOL 2 2

UNRATE 2 1

2nd

International trade IR 3 1
IQ 3 1

Retail and consumption RSAFS 3 1

Survey GACDISA066MSFRBNY 1 0
GACDFSA066MSFRBNY 1 0

Manufacturing INDPRO 3 1
TCU 2 1

Other
CPIAUCSL 3 1
CPILFESL 3 1

PPIFIS 3 1

Housing and construction HOUST 3 1
PERMIT 2 1

3rd

Manufacturing DGORDER 3 1
WHLSLRIMSA 3 1

Housing and construction HSNIF 3 1

Income DSPIC96 3 1

Retail and consumption PCEC96 3 1

Other PCEPI 3 1
PCEPILIFE 3 1

Figure 7. Real U.S. GDP growth rate from 1993Q1 to 2016Q4. Period after 2003Q1 (after blue dashed
line) is the nowcasting horizon.

We apply our BAY approach to this real U.S. GDP data. In this empirical study,
we assign the same prior settings as in the simulation study; the largest possible num-
ber of latent factors R is also assumed to be six as the first six principle components
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from PCA explain 99.9% of the variation observed in monthly series, and we still use
G = 1000 iterations after 10,000 burn-in period in the MCMC sampling. Estimations of
shrinkage profiles κ̂j are used to determine the number of contributing factors. Out of
all 56(quarters)× 3(months)× 3(releases) = 504 estimates of shrinkage profiles, we find
there are two main scenarios occurring. Figure 8 plots two examples for each of them,
respectively. The left panel is the boxplot for posterior draws of shrinkage profile κ̂j’s when
nowcasting 2000Q4 in the first release of the first month. This plot shows that the first
factor is clearly detected to be different from the other five factors, although its κ̂ value
is not small. The right panel is the boxplot for κ̂j’s when nowcasting 2000Q2 in the first
release of the first month. This plot, however, shows that no factor contributes to the
GDP nowcasting.

Figure 8. Two examples of boxplots for posterior draws of κj. Left panel represents the one for
nowcasting GDP of 2000Q4 in the first release of the first month. Right panel represents the one for
nowcasting GDP of 2000Q2 in the first release of the first month.

Table 8 shows proportions of all nowcasts in which one factor is detected. Generally
speaking, more than 50% of cases have one factor detected to have contribution for GDP
nowcasting. This is consistent with Bok et al. [18], where they assume one single common
factor in their DFMs setting.

Table 8. This table reports percentages of nowcasts in which one factor is detected.

Method BAY

Release 1st Month 2nd Month 3rd Month

1st 50% 46.4% 62.5%
2nd 58.9% 50% 58.9%
3rd 46.4% 62.5% 55.3%

Average 51.7% 52.9% 58.9%

Figure 9 plots out-of-sample GDP nowcasts over last 56 quarters for each release in
each month. Three rows represents three nowcasting months. In this plot, we compare
our BAY approach with the autoregressive model of order 1 (AR(1)) yk = β0 + β4yk−1 + νk.
The AR(1) is equivalent to the case where no factor is detected. Figure 9 shows that our
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BAY approach can successfully capture the economic downfall due to the financial crisis at
2009Q1 with one lag delay. However, the AR(1) failed to capture it.

Figure 9. Nowcasting over 2003Q1 to 2016Q4. Three rows represent three nowcasting months,
respectively. Black curve represents the real GDP, while curves of different colors and shapes
represent nowcasting results from 3 different release dates and AR(1).

For the empirical study, we calculate MANE to measure nowcasting errors. Here,
apart from AR(1), we also compare our BAY approach with another Bayesian model with no
shrinkage priors, and we refer this model as NS. The NS model is proposed as the following:
keep all other settings the same and remove S from Equation (5). More specifically, in
the NS model, we impose Normal priors on the β̃.j’s instead of horseshoe priors. Table 9
provides MANE reductions of BAY approach, relative to RW, AR(1), and NS. The first sub-
table reports the percentage of reduction in MANEs relative to RW accross three nowcasting
months, while the middle sub-table reports the percentage of reduction in MANEs relative
to AR(1), and the last sub-table reports the percentage of reduction in MANEs relative to
NS. Table 9 shows that our BAY approach can produce smaller nowcasting errors than
the RW approach. On average, the percentages of reduction relative to RW do not have
an obvious difference from first month to third month. This indicates that, for real data,
having more monthly series does not necessarily lead to better nowcasting performances.
One potential reason is that the quality of the data might not be perfect. Adding more
series means adding more noise and thus may not guarantee more accurate nowcasts of
GDP. The MANE reduction relative to AR(1) are lower than those relative to RW. However,
our BAY approach can still have approximately 11% reduction in nowcasting errors when
being compared with the AR(1). This indicates that even if no factor is detected in nearly
50% of the cases, the ones with one factor detected indeed contribute and enhance our
nowcasting performance. The MANE reduction relative to NS for the first two nowcasting
months are comparable and are lower than those relative to AR(1), the MANE reduction
for the third month is higher than those relative to AR(1). This result indicates that using
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the horseshoe shrinkage idea to shrink unimportant factors to 0 can further increase our
model’s nowcasting performance.

Table 9. This table reports percentages of reduction in MANE’s relative to RW, AR(1), and NS, i.e.,
(MANEBay −MANE∗)/MANE∗ × 100%, here ∗ can be RW, AR(1), or NS.

Compare with RW

Release 1st Month 2nd Month 3rd Month

1st −20.6% −27.5% −32.0%
2nd −28.4% −21.9% −19.2%
3rd −25.0% −23.9% −24.7%

Average −24.7% −24.4% −25.3%
Compare with AR(1)

Release 1st Month 2nd Month 3rd Month

1st −14.0% −14.2% −19.5%
2nd −15.3% −7.65% −4.38%
3rd −11.2% −8.97% −10.9%

Average −13.5% −10.3% −11.6%
Compare with NS

Release 1st Month 2nd Month 3rd Month

1st −1.90% 0.70% −19.8%
2nd −8.51% −7.32% −10.1%
3rd −9.21% −12.4% −9.79%

Average −6.54% −6.34% −13.23%

In summary, this empirical analysis demonstrates the empirical relevance of the BAY
approach in nowcasting U.S. GDP. It suggests that at most one factor is sufficient for our
BAY approach to provide a good performance.

6. Conclusions

Real-time nowcasting has become important in making policy decisions and long-term
forecasting. In this paper, we adopt the DFM model framework and introduce a Bayesian
MCMC approach for real-time nowcasting. Unlike other nowcasting methods based on
DFMs, our Bayesian approach allows an unknown number of contributing factors and
utilizes the horseshoe shrinkage to determine the number of contributing factors. Through
the simulation study, we have shown that our Bayesian approach can identify the number
of contributing factors correctly with high to moderate signals and estimate latent factors
accurately. Both simulation study and empirical study validate our Bayesian approach’s
ability to provide reliable real-time nowcasting results.

In this paper, we are not able to add the horseshoe shrinkage to Equation (1) due to
the non-identifiable issue in DFMs. If we add S as ΘSFt in Equation (1), there will be two
layers of non-identifiable issues, which is difficult to solve. Furthermore, in this paper, the
horseshoe shrinkage is only used in detecting the number of contributing factors. In our
DFMs framework, we assume the GDP of quarter k depends on factors with up to two
lags, i.e., factors of 3k, 3k− 1, and 3k− 2 (see Equation (3)). We might argue that this lag
should not be fixed and can also be determined using the horseshoe shrinkage. These are
two possible research directions that we want to explore in future investigation.
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Appendix A. Posterior Distributions

In this Appendix, complete conditional distributions for each parameter and latent
factor are provided. An MCMC algorithm is applied to draw posterior samples. For most
parameters, conditional posterior distributions have closed forms, which allows for Gibbs
sampling method. However, Ω and λj (j = 1, . . . , R) do not have closed-form posterior
distributions, for which we use an independent Metropolis–Hastings within Gibbs sampler
to generate posterior samples.

Appendix A.1. Posterior Samples for Mean of Monthly Series µ

The conditional posterior for the mean of monthly series, µ, is a multivariate
normal distribution:

µ|X, F, Θ, Ω ∼ N(Uµ, Σµ), (A1)

where

Σ−1
µ = TqΩ−1 +

T

∑
t=Tq+1

(1′vq,t(1vq,t Ω1′vq,t)
−11vq,t) + In×n,

Uµ = Σµ

[ Tq

∑
t=1

Ω−1(xt −ΘFt) +
T

∑
t=Tq+1

(1′vq,t(1vq,t Ω1′vq,t)
−11vq,t)(xt −ΘFt)

]
.

Appendix A.2. Posterior Samples for Factor Loading Matrix Θ

Let θ = vec(Θ) = (θ1, . . . , θn)′. The conditional posterior for the θ is a multivariate
normal distribution:

θ|X, F, µ, Ω ∼ N(Uθ , Σθ), (A2)

let Ct = In×n ⊗ Ft, then

Σ−1
θ =

Tq

∑
t=1

C′tΩ
−1Ct +

T

∑
t=Tq+1

C′t1
′
vq,t(1vq,t Ω1′vq,t)

−11vq,t Ct + InR×nR,

Uθ = Σθ

[ Tq

∑
t=1

C′tΩ
−1(xt − µ) +

T

∑
t=Tq+1

C′t1
′
vq,t(1vq,t Ω1′vq,t)

−11vq,t(xt − µ)
]
.
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Appendix A.3. Posterior Samples for Covariance in Monthly Series Ω

The conditional posterior for Ω is

p(Ω|·) ∝
Tq

∏
t=1

p(xt|µ, Ft, θ, Ω)×
T

∏
t=Tq+1

p(1vq,t xt|µ, Ft, θ, Ω)× P(Ω)

∝ |Ω|−(Tq−1)/2e−
1
2 tr
[
∑

Tq
t=1(xt−µ−Ctθ)(xt−µ−Ctθ)

′Ω−1
]

× |Ω|−(νθ+n+1)/2e−
1
2 tr[ 1

n Ω−1 In×n]

×
T

∏
t=Tq+1

|1vq,t Ω1′vq,t |
− 1

2 e
− 1

2 tr
[
1vq,t (xt−µ−Ctθ)1′vq,t (xt−µ−Ctθ)

′(1vq,t Ω1′vq,t )
−1
]
,

(A3)

which is not in a closed form. We need to use Metropolis–Hastings within Gibbs sampling
method to draw Ω. The first two parts combined together yield an inverse Wishart
distribution W−1(ΦΩ, νΩ), with ΦΩ = 1

n In×n + ∑
Tq
t=1(xt − µ− Ctθ)(xt − µ− Ctθ)′ and

νΩ = Tq + νθ . Therefore, we purpose Ω∗ from W−1(ΦΩ, νΩ) and use the last piece in the
posterior distribution, denoted as q(Ω), to construct the acceptance–rejection rate. That is,
the proposal Ω∗ is accepted with probability

P(Ω∗|Ω0) = min
{

1,
q(Ω∗)
q(Ω0)

}
,

where Ω0 denotes the current state of Ω.

Appendix A.4. Posterior Samples for AR(1) Coefficients aj

For j = 1, . . . , R, the conditional posterior of each AR(1) coefficient aj is:

aj|F, Σ ∼ N(µaj , σa2
j
)I(|aj| < 1), (A4)

where µaj =
∑T

t=2 f j,t f j,t−1

σ2
j +∑T

t=2 f 2
j,t−1

and σa2
j
=

σ2
j

σ2
j +∑T

t=2 f 2
j,t−1

.

Appendix A.5. Posterior Samples for Covariance Matrix in the Factor Equation Σ

For j = 1, . . . , R, the conditional posterior of each diagonal element of Σ, σ2
j , is an

inverse gamma distribution:
σ2

j |F, A ∼ iG(αj, β j), (A5)

where αj = αs + (T − 1)/2 and β j = βs + ∑T
t=2( f j,t − aj f j,t−1)

2/2.

Appendix A.6. Posterior Samples for Coefficients in GDP Equation β

The conditional posterior of coefficients connecting factors with GDP, β, is a multivari-
ate normal distribution:

β|F, y2, . . . , yK, η2 ∼ N(Uβ, Σβ), (A6)

where F̃3k = [1, (SF3k)
′, (SF3k−1)

′, (SF3k−2)
′, yk−1]

′, and

Σ−1
β =

K

∑
k=2

F̃3k F̃ ′3k/η2 + I(3R+2)×(3R+2),

Uβ = Σβ

K

∑
k=2

F̃3kyk/η2,

where S = diag(λ1, . . . , λR).
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Appendix A.7. Posterior Samples for Variance in GDP Equation η2

The conditional posterior of the variance in GDP equation, η2, is an inverse
gamma distribution:

η2|F, y2, . . . , yK, β, S ∼ iG(αη , βη), (A7)

where αη = αh + (K + 1)/2, and βη = βh + ∑K
k=2(yk − β′ F̃3k)

2/2.
Here, F̃3k = [1, (SF3k)

′, (SF3k−1)
′, (SF3k−2)

′, yk−1]
′, and S = diag(λ1, . . . , λR).

Appendix A.8. Posterior Samples for Each Element in S Matrix, λj

For simplicity, we assume τ = 1. The posterior for λj is

p(λj|·) ∝
3

∏
l=1

p(βl |·)× P(λj)

∝
1

λ3
j

exp{−1
2

3

∑
l=1

β2
l jλ
−2
j } ×

1

1 +
λ2

j

ν
2j
λ

,
(A8)

where βl j is the jth element in βl for l = 1, 2, 3. This posterior does not have a closed
form, and the Metropolis–Hastings within Gibbs sampling method is required to draw λj.
If we define λ̃j := λ−2

j , the first part of the posterior yields a gamma distribution for λ̃j,

i.e., λ̃j ∼ Gamma(2.5, 2
∑3

l=1 β2
l j
). Therefore, we purpose λ̃∗j from Gamma(2.5, 2

∑3
l=1 β2

l j
), obtain

λ∗j = λ̃
∗− 1

2
j , and use the last piece in the conditional posterior distribution q(λj) =

1

1+
λ2

j

ν
2j
λ

to

construct the acceptance–rejection rate. That is, the proposal λ∗j is accepted with probability

P(λ∗j |λ0
j ) = min

{
1,

q(λ∗j )

q(λ0
j )

}
,

where λ0
j denotes the current state of λj.

Appendix A.9. Sampling the Latent Factors Ft

The posterior distribution for Ft has different forms depending on t. Suppose K∗ is
the largest integer such that 3K∗ ≤ Tq, Tq, as defined in Section 2. For 3 < t < 3K∗, we
have the most general form defined as follows:

First, we write t as t = 3(k− 1) + i for k = 2, . . . , K∗, where i = 1, 2, 3 represents that
we are in the first, second, and third month of quarter k. Then, at t = 3(k− 1) + i, Ft enters
the joint likelihood through xt, Ft+1,Ft−1 and yk by

xt
Ft+1
Ft+1
fyk (i)

 =


Θ

A
A−1

β′iS

Ft +


εt

ut+1
−A−1ut

νk

 ≡ Ỹ = X̃ + ε̃,

where fyk (i) is a function of i defined as

fyk (i) =


yk − β0 − β′2SFt−1 − β′3SFt−2 − β4yk−1 if i = 1
yk − β0 − β′1SFt+1 − β′3SFt−1 − β4yk−1 if i = 2
yk − β0 − β′1SFt+2 − β′2SFt+1 − β4yk−1 if i = 3.

Therefore,
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Ỹ =


xt

Ft+1
Ft+1
fyk (i)

, X̃ =


Θ

A
A−1

β′iS

, ε̃ =


εt

ut+1
−A−1ut

νk

,

and

var(ε̃) = Σ̃ =


Ω 0 0 0
0 Σ 0 0
0 0 (AΣ−1 A)−1 0
0 0 0 η2

.

By weighted regression, for 0 < t < 3K∗, k = 2, . . . , K∗ and t = 3(k− 1) + i, draw

Ft|Ỹ , X̃, Σ̃ ∼ MVN((X̃ ′Σ̃−1X̃)−1X̃ ′Σ̃−1Ỹ , (X̃ ′Σ̃−1X̃)−1). (A9)

For other t, the posterior distribution for Ft is of the same form with some modifica-
tions on Ỹ , X̃, and Σ̃ due to different availability. For example, if t = 1, since F0 and y0
are not available, corresponding entries to Ft−1 and fyk (i) are deleted. For Tq < t ≤ T,
monthly series are unbalanced, change entries corresponding to 1vq,t xt in Ỹ , X̃, and Σ̃.
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