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Abstract: A gradient-based optimization (GBO) method is presented for acoustic lens design and
sound localization. GBO uses a semi-analytical optimization combined with the principle of acoustic
reciprocity. The idea differs from earlier inverse designs that use topology optimization tools and
generic algorithms. We first derive a formula for the gradients of the pressure at the focal point with
respect to positions of a set of cylindrical scatterers. The analytic form of the gradients enhances
modeling capability when combined with optimization algorithms and parallel computing. The GBO
algorithm maximizes the sound amplification at the focal point and enhances the sound localization
by evaluating pressure derivatives with respect to the cylinder positions and then perturbatively
optimizing the position of each cylinder in the lens while incorporating multiple scattering between
the cylindrical scatterers. The results of the GBO of the uni- and multi-directional broadband acoustic
lens designs are presented including several performance measures for the frequency dependence
and the incidence angle. A multi-directional broadband acoustic lens is designed to localize the
sound and to focus acoustic incident waves received from multiple directions onto a predetermined
localization region or focal point. The method is illustrated for configurations of sound hard and
sound soft cylinders as well as clusters of elastic thin shells in water.

Keywords: multiple scattering; gradient-based optimization; acoustic reciprocity; broadband metamate-
rials; acoustic lens; sound localization; inverse design; Helmholtz equations; multipole expansions

1. Introduction

Metamaterials are engineered materials that can control and guide the energy flow
with capabilities exceeding those possible in conventional materials, enabling the control
of acoustic, electromagnetic, and mechanical waves. Despite the exciting results obtained
by the physics-inspired metamaterial designs, the forward design methodology relies on
tuning parameters by trial and error where the low efficiency and limited exploration
of the design variations lean to miss out the optimal solution. Using the inverse design
approaches, one can start from the opposite end and optimize certain objective functions
describing the desired functionality. The progress in inverse design has led to the discovery
of metastructures with exceptional performances. Among various methods, large-scale
gradient-based optimization (GBO) [1,2] has been a popular approach to design structures
containing a vast number of degrees of freedom. The adjoint method [3] was employed in
optimization of elastic and acoustic metamaterials [4,5], and of nanophotonic devices [6,7].
Topology optimization was utilized to design metasurfaces [8–10] and acoustic cloak com-
posed of bimode on a honeycomb lattice [11], to improve the vibro-acoustic response of 3D
sandwich panels [12] and predict structural parameters of 3D lattice structures [13,14], bi-
mode materials [15], and mechanical metamaterials [16]. Popa and Cummer [17] proposed
an optimization approach which produced simplified, broadband omnidirectional designs
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of transformation optics devices. A level set-based topology optimization using the FEM
was employed in inverse design of optical hyperlens by Otomori et al. [18].

Placement optimization is commonly used to arrange scatterers or sources in acous-
tic/elastodynamic/thermal fields using genetic algorithms [19]. Håkansson et al. used mul-
tiple scattering theory and genetic algorithms in the inverse design of photonic crystals [20]
and flat acoustic lenses [21,22]. Lu et al. [23] proposed an acoustic cloak design based on
Bézier scatterers using genetic algorithms (GA) and simulated annealing. These GA used
for optimization are gradient-free. The number of iterations needed before the solution
converges tend to be large as the complexity of the model grows and as the number of
design parameters increases. Stochastic algorithms do not require the evaluation of the
objective function, but, if available, the analytical form of the gradients can enhance the
quality and precision of the global optimal solution [24,25]. The function evaluations
required in non-gradient optimization algorithms are orders of magnitude more than that
is required for GBO methods [26]. In comparison to gradient-free based algorithms, GBO
utilizes additional derivative information with respect to the design parameters that can
result in a reduced number of iterations. The accuracy of solutions obtained with GBO
algorithms [27] exceeds those obtained with stochastic algorithms. Erikson [19] performed
a thermal design optimization with design parameters based on geometric properties
such as length, width, angle, or position of the heat sources by solving PDE constrained
optimization problem using fmincon solver and sequential quadratic programming (SQP)
algorithms. In this model, Erikson [19] showed that the final optimal solution depended
on the boundary conditions and the profile of the ingoing velocity field applied, and con-
sidered a loop over several random initial positions to find the best optimal solution which
varied as the convective field and the ambient temperature changed. The gradient-based
approach was developed by Amirkulova and Norris to design an acoustic cloak [28–30]
and lens [31,32]. Andersen et al. [27] designed a multi-directional acoustic cloak by means
of the boundary element method and shape optimization using the gradient-based SQP
algorithm with the fmincon solver [33]. Chen et al. [34] discussed level set and eigenfunc-
tion optimization methods to represent the topography of a dielectric media and discussed
gradient-based methods to solve different material design problems. McCormick and
Shepherd [35] provided a comparison of performance gradient-based, fmincon [33], and
evolutionary, Borg, algorithms to minimize the vibration response within a certain region
of the beam at discrete frequencies, with constraints on total mass and static compliance.
However, in their simulations [35] with fmincon, the analytical formulas for the gradients
were not provided and the fmincon solver computed the gradients numerically using finite
differences which requires additional runtime to compute the gradients. As these numeri-
cal gradients are not exact, fmincon produces poorer results as opposed to the case when
gradients are evaluated analytically and supplied to fmincon.

In this paper, we explore the directionality and frequency band efficiency associated
with focusing and localization effects based on discrete scatterers and show some ways to
overcome limitations. We obtain a semi-analytical formula for the gradient of the pressure
at the focal point with respect to positions of a set of cylindrical scatterers using two
approaches namely forward and reciprocal formulations. We combine these formulae
with GBO algorithms and apply them to design a uni- and multi-incidence-directional
broadband lens by means of multiple scattering theory and applying the principle of
reciprocity. A broad review of the literature on single and multiple scattering and of the
concepts of multiple scattering is given in [36]; a survey of more recent findings on multiple
scattering from obstacles in acoustic and elastic media is provided in [37]. In our model,
an acoustic lens consists of a meta-cluster of rigid cylinders, cylindrical voids, or a set of
elastic shells submerged in water. We design metastructures made of conventional simple
isotropic materials that are available in nature and obtain useful and interesting effects.
The idea differs from earlier inverse designs that use topology optimization tools and
generic algorithms. The GBO algorithm maximizes the sound amplification at the focal
point by evaluating pressure derivative with respect to the cylinder positions and then
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perturbatively optimizing the position of each cylinder in the lens while taking into account
acoustic the multiple scattering between the cylinders. Computations are performed on
MATLAB using advanced parallel optimization algorithms and a MultiStart optimization
solver, and supplying the gradient of absolute pressure amplitude at the focal point.

The paper is organized as follows. Section 2 starts with a definition of multiple
scattering problem, the position-dependent absolute acoustic pressure at the focal point,
and the principle of acoustic reciprocity for this problem. Gradients of the absolute acoustic
pressure at the focal point with respect to cylinder positions are then obtained by means of
multiple scattering theory for forward and reciprocal formulations. Some properties of the
gradient vectors are illustrated through numerical examples in Section 2.6. Application
of the closed form for the gradient of absolute acoustic pressure at the focal point to
acoustic lens designs are given in Section 3. Single and broadband as well as uni- and
multi-directional focusing effects are illustrated using multiple reconfigurable cylinders as
the lensing and localization mechanisms.

2. Problem Definition

We consider multiple acoustic scattering in two dimensions. Starting from the linear
wave equation for an acoustic medium with sound speed c, and assuming time harmonic
dependence e− i ωt of frequency ω results in the the Helmholtz equation for the acoustic
pressure p(x),

∇2 p(x) + k2 p(x) = 0, (1)

where k = ω/c is the wavenumber, c is the acoustic speed, and x is the position vector of
point P with respect to origin O (see Figure 1). The factor e− i ωt is omitted in the following.
The total field p is the sum of incident pinc and scattered psc pressure fields:

p(x) = pinc(x) + psc(x). (2)

The incident field is the plane wave of unit amplitude in direction ψ

pinc(x) = ei keψ ·x. (3)

Figure 1. An arbitrary planar configuration of M cylinders Sm with outer radius am and inner radius
bm, and position vector rm, m = 1, M. The incident field in this case is a plane wave with wavevector
k in the direction of angle ψ.

Our objective is to maximize the acoustic pressure at the predefined focal point x f by
rearranging the positions of M scatterers denoted by the set of vectors {rm} as shown in
Figure 1. For simplicity, we take these to be circularly cylindrical scatterers, which may
be either rigid cylinders or thin elastic shells illustrated in Figure 1. We define p f or
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equivalently p f ({rm}) to be the total acoustic pressure at the focal point for a given set
{rm}, i.e.,

p f ({rm}) = p(x f ). (4)

As a measure of the scattering we use the sound amplification, SA f , at the focal point
defined as

SA f (dB) = 20 lg10

( |p f ({rm})|
|pinc(x f )|

)
, (5)

where the absolute value is |p| = (pp∗)1/2, and ∗ denotes the complex conjugate. The
objective is to maximize SA f by rearranging the cylinders to find an optimal set {rm}. The
critical quantity that we use in the process is the gradient of the acoustic pressure at the
focal point, defined next.

2.1. Position-Dependent Acoustic Pressure Field at the Focal Point

We employ multiple scattering theory to solve for the pressure at the focal point. Each
scatterer, denoted by index m, radiates as a localized source, with multipole strengths B(m)

n
where n denotes the dependence on angle, ei nθ . Thus, according to (A8), the scattered field
in the neighborhood of cylinder Sm is given by

psc(x) =
M

∑
m=1

∞

∑
n=−∞

B(m)
n V +

n (xm), (6)

where B(m)
n are the unknown coefficients, and xm is the position vector of point P with

respect to the cylinder center at Om:

xm = x− rm. (7)

The functions V ±n (x), defined in Equation (A9), are

V ±n (x) = H(1)
n (k|x|)e± i n arg x (8)

where H(1)
n is the Hankel function of the first kind of order n, arg x denotes the argu-

ment of vector x, i.e., the angle that the vector x makes with the positive x-axis, and it
is measured as arg x ∈ [0, 2π) and arg(−x) = (arg(x) ± π) mod 2π [38]. Introducing
Equations (3) and (6) into Equation (2), and evaluating it at the focal point Pf , defines the
total pressure at the fixed focal point:

p f = ei keψ ·x f +
M

∑
m=1

∞

∑
n=−∞

B(m)
n V +

n (x f − rm). (9)

In order to apply the solution Equation (9) in practice, the infinite sum must be
truncate. Let N be the truncation value of the infinite sum in Equation (9) chosen so that the
sum converges. In practice, the value of N depends upon frequency and typically taking
the truncation number N ≈ 2.5 ka is adequate [29]. Let us introduce the vectors b, v ∈
CM×(2N+1). The components of the scattering coefficient vector b = {B(j)

n }, j ∈ (1, M),
n ∈ (−N, N), are B(j)

n = {Bn(rj)} found from Equations (A21) and (A22), and written in
column vector form:

b =


b(1)

b(2)

...
b(M)

, b(j) =


B(j)
−N

B(j)
−N+1

...
B(j)

N

. (10)
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The elements of the dual vector v = {V(j)
n } = {Vn(rj)} are of the form

V(m)
n = V +

n (r f m), (11)

where
r f m = x f − rm, (12)

is the position of focal point with respect to local coordinate at Om and rm is the position of
scatterer with respect to origin at O. Then, the total pressure field at the focal point can be
written in vector form as

p f = ei keψ ·x f + vTb. (13)

The Scattering Strengths

The scattering problem is solved once we have the scattering strengths, represented
by the column vector b which solves the linear system of equations

Xb = a, (14)

where

a =


a(1)

a(2)
...

a(M)

, a(j) =


A(j)
−N

A(j)
−N+1

...
A(j)

N

. (15)

The elements of the column vector a ∈ CM×(2N+1) are defined such that a = {A(j)
n } =

{An(rj)}, where

A(m)
n = An(rm) =

{
in ei kxm , for a normal incidence ψ = 0, where xm = e1 · rm,
in eik(xm cos ψ+ym sin ψ)e− i nψ, for a general incident angle ψ,

(16)

for n ∈ [−N, N] and N ∈ Z. Here, the matrix X is the interaction matrix that defines the
coupling between each scatterer of the configuration (see Appendix A.1 for details)

X =


T(1)−1 −P1,2 −P1,3 · · · −P1,M

−P2,1 T(2)−1 −P2,3 · · · −P2,M

...
...

...
. . .

...

−PM,1 −PM,2 −PM,3 · · · T(M)−1

. (17)

The matrix T(j) is the transition or T-matrix for scatterer j, and Pj,m =
[
Pj,m

ql
]

is a
Toeplitz matrix that depends on the position vector rjm depicted in Figure 1. The matrix
Pj,m takes into account the interaction between the scatterers, whereas the transition matrix
T(j) depends on the shape and the physical properties of the material of cylinder, as well
as the boundary conditions on the interfaces. The T-matrix is diagonal for scatterers with
rotational symmetry. In general, for an obstacle with no rotational symmetry, e.g., an
elastic thin cylindrical shell with internal spring-mass attachments [39], the T-matrix is
nondiagonal. The off-diagonal terms couple different azimuthal orders of the incident and
scattered field. At low frequency, the T-matrix may be truncated as a 3 × 3 matrix, in which
case off-diagonal elements can be interpreted in terms of Willis coupling [40]. In this work,
we consider 2-dimensional configurations of circularly cylindrical scatterers, for which the
T-matrices become diagonal, see in [37] for specific details. In particular, Pj,m =

[
Pj,m

ql
]

for
j, m ∈ (1, M), j 6= m, l, q ∈ (−N, N),

Pj,m
ql = Pql(rjm) = H(1)

l−q(krjm)e
i(l−q) arg rjm (18)
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where rjm = rj − rm, arg x ∈ [0, 2π). Alternatively, the acoustic pressure field at fixed focal
point can be determined in a simpler form using the principle of acoustic reciprocity which
is described next.

2.2. Acoustic Reciprocity

Here, we will illustrate the use of acoustic reciprocity [41] to define the pressure at
the focal point Pf due to a source located in a far-field. The key result is that the acoustic
pressure at position xi due to a monopole source at position x f is identical to the pressure at
x f resulting from a monopole of the same strength located at xi. This reciprocity enables us
to relate the response for an incident plane wave in terms of the far-field Green’s function.

We apply the reciprocity result to this problem by first considering two points x f and
xi illustrated in Figure 2. In the forward problem, FP, the source is at xi and the pressure is
computed at x f :

p f ;i = p(x f ; xi) (19)

where p(x; y) is the total acoustic pressure at x for a point source at y, which corresponds
to a non-zero delta term on the right hand side of Equation (1). In the reciprocal problem, RP,
the source is at x f and the pressure is computed at xi:

pi; f = p(xi; x f ). (20)

By reciprocity we have
pi; f = p f ;i. (21)

We take xi in the far-field (see Figure 2), i.e., such that k|xi| � 1, and choose the
monopole amplitude such that the source at xi yields a plane wave of unit amplitude in the
vicinity of x = 0, which is the incident wave for FP. Therefore, the source, or incident wave,
for RP is

pinc(x) = D0H(1)
0 (k|x− x f |), where D0 =

(
i

π

2
k|xi|

)1/2
e− i k|xi |. (22)

Note that in this case in the local coordinates of multipole centered at Om:

x− x f = xm − r f m, (23)

where xm and r f m are correspondingly the position vectors of an arbitrary point P and
a source S with respect to Om. Thus, using the Graf’s addition theorem (A10) in the
neighborhood of cylinder Sm (see Figure 1), we have

pinc = D0H(1)
0 (k|x− x f |) = D0

∞

∑
n=−∞

{
V +

n (xm)U−n (r f m), |xm| > |r f m|,
U +

n (xm)V −n (r f m), |xm| < |r f m|,
(24)

for m = 1, M, n ∈ Z, where U±n and V ±n are defined by (A11). Ultimately we consider
|xm| < |r f m| to compute pressure and apply boundary conditions at the interface |xm| = am.
Thus, for |xm| < |r f m|, near cylinder Sm we have

pinc = D0

∞

∑
n=−∞

U +
n (xm)V −n (r f m) ⇒ p(m)

inc =
∞

∑
n=−∞

D(m)
n U +

n (xm), (25)

where
D(m)

n = Dn(rm) = D0V −n (r f m) (26)
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We now consider the reciprocal problem by examining a monopole source located at
position x f at the focal point Pf = (r = r f , θ = 0). Then, according to Equation (A23), the
far-field radiated by source at Pf is

psc(xi; x f ) = psc(Ri, θ = π) = f (π)

√
k

i 2π|xi|
ei k|xi |

[
1 + O

( 1
k|xi|

)]
, (27)

where the far-field amplitude function in the direction of xi is

f (π) =
2
k

∞

∑
n=−∞

M

∑
m=1

in ei kxm B̂(m)
n . (28)

The scattering coefficients B̂(j)
n = {B̂(j)

n } = {B̂n(rj)}, j ∈ (1, M), n ∈ (−N, N) are
components of the dual vector b̂ that satisfies the multiple scattering condition

X b̂ = d, (29)

where X is the interaction matrix defined by Equation (17). The elements of the dual vector
d = {D(j)

n } = {Dn(xm f )} are defined by Equation (26). The vectors b̂, d ∈ CM×(2N+1) are
defined such that

d =


d(1)

d(2)

...
d(M)

, b̂ =


b̂(1)

b̂(2)

...
b̂(M)

, d(j) =


D(j)
−N

D(j)
−N+1

...
D(j)

N

, b̂(j) =


B̂(j)
−N

B̂(j)
−N+1

...
B̂(j)

N

. (30)

The far-field amplitude function (28) can then be expressed as

f (π) =
2
k

aT b̂ (31)

and
psc(xi; x f ) = γ aTb̂ (32)

where γ =
√

2
i kπ|xi |

ei k|xi |. By reciprocity principle, Equation (21), the resultant total pres-
sure at the fixed focal point Pf at θ = 0 by a plane wave incidence from θ = π can be
written as

p f = p(x f ; xi) = ei k e1·x f + γ aTb̂. (33)

This is to be compared with the solution (13) obtained by solving the direct multiple
scattering problem. Of course, by reciprocity both are equal.

Figure 2. Near-field and far-field.
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2.3. The Gradient Vectors qj and pj

The real valued vector qj is defined as gradient of the absolute value of total pressure
field |p f ({rm})| with respect to positions rj. It can can be evaluated as

qj =
∂|p f |
∂rj

=
1

2|p f |
∂|p f |2

∂rj
=

1
2|p f |

(
∂p f

∂rj
p∗f + p f

∂p∗f
∂rj

)
=

1
2|p f |

(
p∗f pj + p f p∗j

)
(34)

where the associated complex valued gradient vectors are

pj =
∂p f

∂rj
. (35)

2.4. The Pressure Gradient by Solving the Forward Problem

We now determine the explicit form of the gradient vector using the direct and
reciprocal formulations, from Equations (13) and (33), respectively.

The pressure at the focal point follows from Equations (13) and (14) as

p f = ei keψ ·x f + vTX−1a. (36)

The complex valued gradient vectors pj of Equation (35) can be evaluated by noting

that ∂X−1

∂x = −X−1 ∂X
∂x X

−1:

pj =
∂vT

∂rj
b− vTX−1

(∂X
∂rj

b− ∂a
∂rj

)
. (37)

In component form, the last Equation (37) can be written as

[pj] =
M

∑
m=1

∞

∑
l=−∞

{∂V +
l (x f − rm)

∂rj
B(m)

l + V +
l (x f − rm)

×
M

∑
i=1

∞

∑
n=−∞

(X−1)lmin

(∂An(ri)

∂rj
−

M

∑
p=1

∞

∑
q=−∞

∂Xinpq

∂rj
B(p)

q

)}
, j = 1, M, (38)

where
M

∑
i=1

∞

∑
n=−∞

X−1
pqinXinml =

M

∑
i=1

∞

∑
n=−∞

XpqinX−1
inml = δpmδql . (39)

Define the derivative function V ±
′

n (x) as

U±
′

n (x) = Jn
′(k|x|)e± i n arg x, V ±

′
n (x) = H(1)

n
′(k|x|)e± i n arg x. (40)

Then based on the fact that the T-matrices are independent of position, the gradient of
the components of the matrix X are [29]

∂Xinml
∂rj

=

{
Onl , i = m,
−δij

∂Pnl
∂rj

(rjm)− δmj
∂Pnl
∂rj

(rij), i 6= m,
(41)

where Onl are components of the zero matrix. The gradients in Equation (41) have the
form [29]

∂Pnl
∂rj

(rjm) =
k

rjm
V + ′

l−n(rjm) rjm +
i (l − n)

r2
jm

V +
l−n(rjm) e3 × rjm,

∂Pnl
∂rj

(rij) = −
k
rij

V + ′
l−n(rij) rij −

i (l − n)
r2

ij
V +

l−n(rij) e3 × rij.
(42)
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The gradients of the components of v with respect to the positions rj of the j-th
scatterer are

∂V±n (x f − rm)

∂rj
= −

( k
r f m

V±n
′
(r f m)r f m ±

i n
r2

f m
V ±n (r f m)e3 × r f m

)
δmj, (43)

where r f m = x f − rm, r f m = |x f − rm|, rj = |rj|.
The gradient of the components of a with respect to the position rj of the j-th scatterer is

∂a(i)

∂rj
=

∞

∑
q=−∞

∂A(i)
q

∂rj
, (44)

where for a plane wave incidence in e1 direction:

∂A(i)
q

∂rj
= i k e1 A(j)

q δij, (45)

and, hence,
∂a(i)

∂rj
= i k e1 ⊗ a(j) δij. (46)

The plane wave incidence in eψ direction is given by Equation (A4):

∂A(i)
q

∂rj
= i k A(j)

q δij
(

cos ψe1 + sin ψe2
)
. (47)

2.5. The Pressure Gradient by Solving the Reciprocal Problem

We now determine the explicit form of the gradient vector by solving the reciprocal
problem. The pressure gradient at the focal point follows from Equations (29) and (33) as

p̂j =
∂p f

∂rj
=

∂

∂rj

(
ei k e1·x f + c aT X−1d

)
= c
[∂ aT

∂rj
b̂− aT X−1

(∂X
∂rj

b̂− ∂d
∂rj

)]
(48)

where the ˆ indicates the use of the principle of reciprocity. Of course, p̂j of (48) should
equal pj, and their equivalence is verified numerically below.

In component form, (48) can be written as

[p̂j] =c
M

∑
m=1

∞

∑
l=−∞

{
∂Al(rm)

∂rj
B̂(m)

l

+Al(rm)
M

∑
i=1

∞

∑
n=−∞

(X−1)lmin

[∂Dn(ri)

∂rj
−

M

∑
p=1

∞

∑
q=−∞

∂Xinpq

∂rj
B̂(p)

q

]}
, j = 1, M, (49)

∂D(m)
n

∂rj
=

∂Dn(r f m)

∂rj
= D0

∂V−n (x f − rm)

∂rj
, (50)

where
∂V −n (x f−rm)

∂rj
is defined by Equation (43), and b̂ = {B̂(m)

l } satisfies Equation (29).
Other gradient components and variables are defined the same as in Section 2.4.
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2.6. Numerical Examples

Before considering a sound localization problem, numerical examples will be pre-
sented for the gradient vector qj which has some interesting characteristics. Computations
are performed on MATLAB for configurations of uniform rigid cylinders of radius a. We
consider two problem formulations: forward, FR, and reciprocal, RP, and make comparison
of simulation times for both formulations. The reciprocal formulation of inverse design
of acoustic lens takes lesser time to compute the absolute pressure and it gradients at the
focal point.

2.6.1. Illustration of Principle of Reciprocity

In order to illustrate the application of reciprocity in acoustic lens design, we present
numerical examples using two configurations. Figure 3a (top) shows the first configuration
of a vertical setup of three cylinders of radius a and of distance 2.2a between each two
adjacent cylinders. Figure 3 illustrates the variation of absolute pressure p f and phase
angle θ f at a focal point, and the gradient vector components qxj q̂xj, qyj and q̂yj as functions
of normalized wavenumber ka for FR and RP formulations. The absolute pressure at a
focal point that is at the point (10a, 0) was computed at values of normalized wavenumber
ka ∈ (0, 15] using both the FP and RP methods and they coincide perfectly as shown in
Figure 3a. Figure 3b presents θ f , the phase angle of the total pressure at the focal point
versus the non-dimensional wavenumber ka. The gradients in the x direction are shown
in Figure 3c and were computed using the FP method. The corresponding gradients that
were computed using the RP method are exactly the same and they are not shown just for
the clarity of the figure. The gradients in the y direction are shown in Figure 3d. They were
computed using both the FR and the RP methods and they perfectly overlap. Due to the
symmetry of the given configuration with respect to the x-axis, the gradients of cylinders
1 and 3 in the x direction coincide while in the y direction they have an opposite sign.
Figure 4 shows the non-symmetric configuration of two rigid cylinders each of radius a,
where the first is centered at the origin and the second is centered at the point (1.5a, 3a). The
figure illustrates the dependency of absolute pressure p f and phase angle θ f at a focal point
(10a, 0) and the gradient vector components qxj q̂xj, qyj and q̂yj as functions of normalized
wavenumber ka for FR and RP formulations for a non-symmetric set of two rigid cylinders.
This is given to emphasize that both FP and RP methods give the same results for the non-
symmetric configurations. The results of computing the absolute pressure p f , the phase
angle θ f , and the absolute pressure gradients in the x and y directions are the same for
both the FR and the RP methods. The same symmetric and non-symmetric configurations
were used to illustrate the non-linearity of the problem in hand. The absolute pressure
was computed for the values of non-dimensional wavenumber ka ∈ (0, 15] and for the
incident angle ψ ∈ [−π/4, π/4]. Figure 5c,f show the absolute pressure versus both
the non-dimensional wavenumber and the incident angle. The 3D mesh plots illustrate
the existence of a lot of local maxima and minima, so a small deviation in the starting
optimization point and/or the incident angle and the non-dimensional wavenumber will
lead to a different optimized configuration. Figure 5a,d shows the absolute pressure versus
the non-dimensional wavenumber and they can be seen as the cross sectional views of the
3D plots at normal incidence: ψ = 0. Figure 5b,e shows the absolute pressure versus the
incident angle and can be seen as the cross-sectional views at ka = 7.5.
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Figure 3. Absolute pressure p f and phase angle θ f at a focal point, and the gradient vector compo-
nents qxj, qyj and q̂yj as functions of normalized wavenumber ka for FR and RP formulations. The
absolute pressure and phase angle at a focal point, i.e., (10a, 0), and the gradients are computed for a
3 × 1 vertical configuration of 3 cylinders as depicted on the top of panel (a). Results for q̂xj vector
components in panel (c) coincide with qxj curves and are dropped here just for clarity.
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Figure 4. Variation of absolute pressure p f and phase angle θ f at a focal point, and the gradient
vector components qxj q̂xj, qyj and q̂yj versus a non–dimensional wavenumber ka for FR and RP
formulations. The absolute pressure p f and phase angle θ f at a focal point, i.e., (10a, 0), and the
gradients are computed for a non–symmetric configuration of two cylinders as depicted in top right
corner of panel (a).
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Figure 5. Absolute pressure at a focal point, i.e., (10a, 0), with respect to normalized wavenumber ka and angle of incidence
ψ for configurations that are symmetric (a–c) and non–symmetric (d–f) with respect to the x and y axes.

2.6.2. CPU Timing

In order to compare between the CPU time of the two computing methods, two
configurations were used as depicted in Figure 6a,b. Figure 6 shows the measured time.
The elapsed times were used in computing the absolute pressure only, and the absolute
pressure and the gradients sequentially varying the wavenumber ka and using both the
FP and the RP methods were measured. This was done at different discrete values of
ka ∈ (0, 15]. It can be seen from Figure 6 that the computation time generally increases
for all computations as the non-dimensional frequency increases. Furthermore, generally
the computation time in the configuration with higher number of cylinders is higher. This
is due to the increase in the rank of the matrices to be evaluated during the computation
process. In addition, the computation time increases for both FP and RP formulations
when gradients are evaluated. However, providing gradients improves the performance
of GBO algorithms allowing the faster convergence and more accurate and more reliable
computations [33]. For 1× 3 configuration, FP with gradients takes the most compute
time and FP without gradients is the least computation time; the compute times of RP
with gradients and FP without gradients are of similar order. For 2× 3 configuration, the
computation times of different methods can be put in a descending order as follows: FP
with gradients, RP with gradients, FP without gradients, and RP without gradients. This
depicts that using the RP method is computationally less expensive than the FP method.
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Figure 6. Compute time comparison of FP and RP methods vs. the non–dimensional wavenumber ka.

3. Sound Localization by Maximizing the Absolute Pressure at the Focal Point

The sound localization was implemented by maximizing the absolute pressure at the
focal point and by employing a gradient based optimization. Computations are performed
on MATLAB using advanced parallel optimization algorithms, the MultiStart optimization
solver combined with fmincon solver and SQP algorithms, and supplying the gradients
of absolute pressure amplitude at the focal point |p f |. Figure 7 illustrates initial random
configurations of cylinders used in simulation where the locations of the control cylinder
positions are denoted by pink dots. For given scatterer location points, the gradients qj are
in the direction of greatest increase of absolute pressure amplitude at the focal point |p f |.
As seen in the example of Figures 3 and 4, this provides the optimal directions to increase
|p f | by incremental displacement. Thus, in order to maximize the |p f | produced by acoustic
lens, we will move the cylinders inside the circular region in the direction of the gradient
vectors, i.e., qj using gradients evaluated by FP and RP formulations. This is achieved in
MATLAB with the use of Global Optimization and Parallel Computing Toolboxes, and by
supplying the derived analytic form of the gradients vectors from Equation (34).
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Figure 7. Initial random configurations of M = 13, 31, and 50 cylinders in a circular region considered in numerical
simulations. Positions of each scatterer are included as components of feasible initial design vector xM

0 in GBO. The focal
point is located at x f = (0.0865, 0). The radius of each cylinder denoted by blue color is a = 0.0075 m. The radius of artificial
red circle is R = Rout + a = 0.0715 m, where Rout = 0.0695 m is defined by constraint Equation (52). This circular region
defines the location of acoustic lens comprised of a uniform planar configuration of cylinders constrained to stay within
this region.

3.1. Acoustic Lens Design

In order to study the focusing and localization efficiency, we consider three cases: In
the first case, we maximize the absolute pressure at a fixed value of frequency and normal
incidence while supplying the gradients qj. In the second case, we maximize the root mean
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square of a set of the absolute pressure over a range of frequencies. In the third case, we
maximize the root mean square of a set of the absolute pressure over a range of frequencies
and a set of the incident angles of the impinging plane wave. In each case, we supply the
analytical formulas for the gradients of objective functions. The cost functions are non-
convex with many local maxima. The global maximum is unbounded in each considered
cases; we solve the non-convex optimization problems with nonlinear constraints. For
simplicity and demonstration of implementation of the proposed approach, we consider a
configuration of uniform cylinders/shells of radius a.

3.1.1. Constrained Optimization Problem

The idea is to maximize the absolute pressure at the focal point, |p f |, by rearranging
the position of each cylinders and starting with random configuration of scatterers as
depicted in Figure 7. The design vector, xM, consist of all scatterer position and can be
represented in a column vector form as

xM = [r1, r2, ..., rM]T = [x1, y1, x2, y2, ..., xM, yM]T , (51)

where M is the total number of scatterers used in lens design. The nonlinear constraints for
the design vector components are as follows:

1. The cylindrical scatterers are constrained to move inside a fixed circular region with
the radius r = Rout, see Figure 7:

|rj| < Rout (52)

where rj = (xj, yj) and j = 1, 2, ..., M.
2. In order to avoid overlapping the distance between the centers of cylinders/shells

are constrained by [29]:

|ri − rj| > 2a + δ, with a = 0.0075 m, δ = 0.0005 m. (53)

As was shown in our earlier work [29] on acoustic cloak design, the closest prox-
imity according to the constraint (53) should be far greater than the viscous skin depth
δv = (2ν/ω)1/2 [42]. In water, at temperature T = 5 ◦C with kinematic viscosity
ν = 1.5182 mm2/s [43], this is δv = 0.000695m/

√
s√

f
for frequency f (Hz); therefore, the un-

damped acoustic model is accurate for frequencies in kHz and above, which is the range of
practical interest.

We use direct optimization methods such as SQP algorithms to get the best perfor-
mance by taking advantage of the analytical form for the gradients of objective functions
combined with parallel computing. It is suggested in [33] to include a gradient evaluation
in the objective function for faster or more reliable computations. In our computations, we
used MATLAB built fmincon solver which is a nonlinear programming solver that finds a
local minimum of constrained nonlinear multivariable function. Therefore, to maximize
the absolute pressure, we changed the sign of objective function and its gradients.

3.1.2. Broadband Multi-Directional Lens Design

The procedure for a broadband multi-directional GBO is as follows. First, we define
the cost function as the root mean square (RMS) of a set of absolute pressure at the focal
point |p f | s over some range of normalized wavenumbers kia (i = 1, 2, ..., Nk) and over a
range of incident angles ψl (l = 1, 2, ..., Nl):

|p f ({rm})|RMS =
( 1

Nk

1
Nψ

Nk

∑
i=1

Nψ

∑
l=1
|p f (kia, ψl , {rm})|2

)1/2
. (54)
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Then, we define the broadband gradient vectors with respect to positions rj:

qRMS
j =

∂|p f ({rm})|RMS

∂rj
, j = 1, 2, . . . M, (55)

which can be found in terms of the individual single frequency gradients as

qRMS
j =

1
|p f |RMS

1
Nk

1
Nψ

Nk

∑
i=1

Nψ

∑
l=1
|p f (kia, ψl , {rm})|qj(kia, ψl), (56)

where |p f |RMS is defined by (54) and qj(kia) are defined by (34) and evaluated at normal-
ized wavenumbers kia (i = 1, 2, ..., Nk) and angles of incidence ψl (l = 1, 2, ..., Nl).

For a single angle of incidence ψ1, Equations (54) and (56) reduce to the form

|p f ({rm})|RMS =
( 1

Nk

[
|p f (k1a, {rm})|2 + |p f (k2a, {rm})|2 + ... + |p f (kNk a, {rm})|2

])1/2
. (57)

and

qRMS
j =

1
|p f |RMS

1
Nk

(
|p f (k1a)|qj(k1a) + |p f (k2a)|qj(k2a) + ... + |p f (kNk a)|qj(kNk a)

)
. (58)

Both FP and RP formulations allow designing broadband unidirectional lens. Note
that a formulation of RP reciprocal problem is given at normal incidence. Therefore, a
reciprocal formulation can only be used to design broadband unidirectional lens, whereas
a forward formulation can be used in all the cases: a single frequency at single incidence,
i.e., unidirectional lens optimized at single frequency; broadband at single incidence, i.e.,
broadband unidirectional lens; and broadband multi-directional lens designs.

3.2. Numerical Examples of Sound Localization

In this section, the results of the gradient-based optimization of the uni- and multi-
directional acoustic lens designs are presented including several performance measures
for the frequency and the incidence angle dependencies. The optimized model is an
improvement over the initial random configuration of cylinders. Numerical results are
demonstrated for configurations of rigid cylinders, cylindrical voids, and empty thin elastic
nickel cylindrical shells of thickness h = 0.1a. We consider cylinders and shells submerged
in a medium with the acoustic properties of water: ρ0 = 1000 kg/m3, c0 = 1480 m/s. All
computations are performed for an incident plane wave propagating from left to right. We
illustrate the effect of acoustic lens device on plane wave incidence localized at focal point
which resembles the focusing effect of acoustic Luneburg lens.

Various values are taken for the non-dimensional wavenumber, ka; the total number
of scatterers in the focusing lens, M; the number of discrete frequency points, Nk; and the
number of discrete incidence angle points Nl for a broadband localization and focusing as
defined in Equation (54). Greater accuracy is observed, as expected, with increased number
of scatterers M. However, large values of ka and M require longer computation times, and
some numerical experimentation is necessary to find the smallest values for which the
pressure field can be localized to the desired degree in the acoustic lens.

Numerical computations are performed on MATLAB using parallel optimization
algorithms with a MultiStart optimization solver, and supplying the gradients of absolute
pressure |p f | with respect to position vectors. We start with an initial random planar
configuration of cylinders or thin shells of uniform size and radius a = 0.0075 m, e.g.,
as shown in Figure 7a–e, and consider a focal point located at x f = (0.0865, 0) m. We
use MATLAB built function fmincon combined with SQP algorithm and As mentioned in
fmincon documentation [33]: “a solver can reach a point x such that x is feasible, but finite
differences around x always lead to an infeasible point. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed.” Therefore, supplying the
gradients accelerates the optimization process by searching a wide variety of start points



Mathematics 2021, 9, 2862 16 of 33

in parallel and allows the solver to reach the optimum values which may otherwise be
impossible [29]. Here, we present results for a ring configuration of M cylinders running
200 different scenarios (initial random configurations) for a single frequency optimiza-
tion and running 100 scenarios for broadband and multi-incidence-angle optimizations
concurrently on 48 CPUs of Dell workstation, described next.

We evaluated the absolute pressure |p f |rel relative to the incident background pressure
at the focal point and the magnification factor (MF) defined as

|p f |rel =
|p f |

|pinc(x f )|
= |p f | and MF =

|p f |
|p f |initial

, (59)

where |pinc(x f )| is the incident plane wave of unit amplitude at the focal point, |p f | and
|p f |initial are correspondingly the absolute pressure at the focal point for the optimized
final and initial configurations.

3.2.1. Lens Design at Single Frequency and Normal Incidence

First, we present the localization effect for a plane wave incident on configuration of
rigid cylinders depicted in Figures 8 and 9 where various discrete values of normalized
wavenumber, ka, and the total number of scatterers in acoustic lens, M, were considered.
The optimized lens device in each example is a configuration of identical rigid cylinders
located inside of circular region of radius Rout = 0.0715 m. Figure 8 shows the real part
of total acoustic pressure field p at normal plane wave incidence for a configuration of
M = 50 rigid (or sound hard) cylinder at discrete values of wavenumbers ka = 1, 1.5, and 2.
Figure 9 illustrates the absolute total acoustic pressure |p| for the optimized configurations
of M = 13, 31, and 50 cylinders ka = 1, 1.5, and 2. The value of |p f | and magnification
factor, MF, are depicted in Figure 9 for considered values of M and ka under each subfigure.
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Figure 8. The real part of the total acoustic pressure field p for the optimized configurations of 50 rigid cylinders (a) at

ka = 0.75 : |p f |rel =
|p f |

pi(x f )
= 6.43, (b) ka = 1.5 : prel = 4.13, and (c) ka = 2 : prel = 4.62. For drawing purposes values

higher than 2 are denoted by yellow color and values below −2 are denoted by dark gray color.

Next, we investigate the sound localization effect for a plane wave incident on con-
figuration of void cylinders considering discrete values of normalized wavenumber, ka,
and the total number of scatterers in acoustic lens, M. Figure 10 illustrates the absolute
total acoustic pressure |p| computed at normal plane wave incidence for configuration of
M = 13, 31, and 50 cylindrical voids (or sound soft cylinders) at normalized wavenumbers
ka = 1, 1.5, and 2. The absolute total acoustic pressure |p| is computed for the optimized
configurations of M = 13, 31, and 50 cylinders ka = 1, 1.5, and 2. The value of |p f | and
magnification factor, MF, are depicted in Figure 10 for considered values of M and ka
under each subfigure. For ka = 0.75, M = 13 : |p f | = 22.43, MF = 275.35, the highest
amplitude |p f | = 22.43 is achieved, and for ka = 2, M = 50 : |p f | = 2.52, MF = 307.27,
the highest values MF = 307.27 is obtained. The total field results for void cylinders differ
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both qualitatively and quantitatively from the total field depicted in Figure 9 for rigid
cylinders.

a |p f | = 2.11, MF = 2.85 b |p f | = 3.87, MF = 10.48 c |p f | = 2.77, MF = 4.62

d |p f | = 5.32, MF = 11.30 e |p f | = 3.88, MF = 10.49 f |p f | = 4.33, MF = 9.97

g |p f | = 6.43, MF = 6.19 h |p f | = 4.13, MF = 17.04 i |p f | = 4.62, MF = 9.80

Figure 9. The absolute value of the total acoustic pressure field |p| at normal plane wave incidence on the optimized
configurations of M rigid cylinders at various discrete values of normalized wavenumber, ka. The top, middle, and lower
rows are for M = 13, 31, 50, respectively, and the left, center, and right columns are for ka = 0.75, 1.5, and 2, respectively.

Finally, we present the sound localization and focusing mechanism for empty elastic
thin cylindrical shells submerged in water. We consider empty thin elastic nickel cylindrical
shells of thickness h = 0.1a with mechanical properties: ρ = 8850 kg/m3, cp = 5480 m/s
where a is the outer radius of scatterer. Figures 11 and 12 illustrate the localization effect
for a normal plane wave incident on configurations of elastic thin cylindrical shells at
various discrete values of normalized wavenumber, ka, and the total number of scatterers
M. Figure 11 displays the distribution of absolute total pressure filed |p| for the optimized
configurations of 50 nickel thin cylindrical shells (a) at ka = 0.75, (b) ka = 1.5, and (c)
ka = 2. The elastic thin cylindrical shells can display large scattering at low frequency due
to internal resonances of longitudinal and flexural waves. This is confirmed by results in
Figure 11 (a) at ka = 0.75, (b) ka = 1.5, and (c) ka = 2, showing the highest amplitude for
ka = 0.75, M = 50 : |p f | = 3.5805, MF = 219.663 depicted in Figure 11a. Figure 11 also
shows that sound focusing becomes more noticeable with increase of frequencies. Figure 12
exhibits the distribution of absolute pressure field |p| for the optimized configurations
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of M = 13, 25, 31, and 39 nickel thin cylindrical shells at ka = 1.5 (top row figures) and
ka = 2 (bottom row figures).

a |p f | = 22.43, MF = 275.35 b |p f | = 2.83, MF = 34.38 c |p f | = 3.08, MF = 24.67

d |p f | = 5.01, MF = 142.13 e |p f | = 3.74, MF = 195.25 f |p f | = 3.51, MF = 252.68

g |p f | = 1.74, MF = 104.57 h |p f | = 2.33, MF = 230.65 i 5|p f | = 2.52, MF = 307.27

Figure 10. The absolute value of the total acoustic pressure field |p| for the optimized configurations of M cylindrical voids
at normal plane wave incidence from left to right for different fixed values wavenumber ka. The top, middle and lower rows
are for M = 13, 31, 50 voids, respectively, and the left, center, and right columns are for ka = 0.75, 1.5, and 2, respectively.

It is noticed that, in general, the sound focusing and localization effects are enhanced
with the increase of frequency and number of scatterers. The total field distributions for
void cylinders and elastic thin shells differ both qualitatively and quantitatively from
the total field produced configuration of rigid cylinders. Both void cylinders and elastic
thin shells produced high amplification of sound at focal point, i.e., MF values are high,
compared to initial configuration. The design can be further improved by considering the
cylinder radii as an additional design parameter which will require deriving analytical
formulas for the gradients of absolute pressure with respect to cylinder radii and will be
studied elsewhere.
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a |p f | = 3.58, MF = 219.67 b |p f | = 2.826, MF = 278.82 c |p f | = 2.98, MF = 363.49

Figure 11. The absolute value of the total acoustic pressure field |p| for the optimized configurations of M = 50 nickel thin
cylindrical shells at (a) ka = 0.75, (b) ka = 1.5, and (c) ka = 2.

a |p f | = 2.8, MF =

29.7
b |p f | = 3.9, MF =

142.2
c |p f | = 3.7, MF =

202.1
d |p f | = 3.5, MF =

244.6

e |p f | = 3.0, MF =

20.7
f |p f | = 3.6, MF =

36.8
g |p f | = 3.6, MF =

250.0
h |p f | = 3.5, MF =

339.0

Figure 12. The absolute total acoustic pressure field |p| for the optimized configurations of M = 13, 25, 31, and 39 nickel
thin cylindrical shells depicted from the left to the right columns respectively at normalized wavenumbers ka = 1.5 (the top
row figures) and ka = 2 (the bottom row figures).

3.2.2. Performance of Different Solvers for Lens Design at Single Frequency and
Normal Incidence

In this section, we investigate the performance of GBO and GA, compare the best final
optimal results produced, and measure the time taken by the optimization functions in all
cases. We consider configurations of M = 13 rigid and elastic scatterers at discreet values
of wavenumbers ka = 0.75, 1.5, and 2 for convenience. For GBO, we first run the fmincon
solver with SQP algorithms and then we implement MultiStart optimization combined
with fmincon and SQP algorithms. In GBO, we start each time with the feasible design
vector xM

0 , i.e., the initial random configuration depicted in Figure 7c, and use the central
difference for finite differences.
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For GA, we solve the optimization problem by running ga solver from Global Opti-
mization Toolbox on MATLAB. The ga solver starts with its own initial random population
and we use “rng default” option for reproducibility, analysis and testing of numerical
results. We analyze the results for running the ga solver by evaluating fitness functions in
parallel using 48 workers (CPUs) concurrently. We keep the maximum number of iterations
before the algorithm halts at default option [44], i.e., MaxGenerations = 100 ∗ 2M = 2600
and vary MaxStallGenerations option to obtain finer solutions. The MathWorks documen-
tation [44] indicates that the MaxGenerations option determines the maximum number of
generations that the ga takes and MaxStallGenerations option controls the number of steps
the ga looks over to see if it is making progress and can enable the solver to obtain a better
solution by allowing more function evaluations. We observed that running the ga solver
with above mentioned options, the nonlinear constraints (53) were not always satisfied, the
(52) constraints were slightly violated in each of considered cases.

Numerical simulations presented in Table 1 through Table 6 are performed on MAT-
LAB using Dell Workstation with 48 CPUs. In each case, the first column represents the
best values of absolute pressure |p f | obtained by a solver and the second column shows
the corresponding elapsed time to compute the optimal values. The elapsed compute time
is given in seconds. Table 1 through Table 3 compares the results of fmincon, MultiStart,
and ga solver runs for configurations of M = 13 rigid cylinders. Table 1 depicts the results
produced by fmincon with three different options, namely, running fmincon without (w/o)
gradients sequentially and in parallel using concurrently 48 workers (CPUs), and running
fmincon with gradients sequentially. The results presented show that running fmincon
without (w/o) gradients sequentially take 5 to 16 times longer time compared to running
fmincon with gradients sequentially. Parallel computing allows to reduce compute time
approximately to 3.5 to 7 times. Produced optimal values vary with change of wavenumber.
For ka = 0.75 fmincon with gradients produced better results and for ka = 1.5 and 2 fmincon
without gradients yield higher optimal values.

Table 1. The comparison of results for configuration of M = 13 rigid cylinders at ka = 0.75, 1.5, and 2 using fmincon solver
with three different options: running fmincon without (w/o) gradients sequentially and in parallel using concurrently
48 workers, and running fmincon with gradients sequentially. The total elapsed compute time is given in seconds.

Fmincon w/o
Gradients, Sequential

Fmincon w/o
Gradients, Parallel

Fmincon with
Gradients, Sequential

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 1.8378 192.342 1.8378 27.6712 1.8422 31.3297
ka = 1.5 2.5533 964.727 2.5533 263.194 2.0074 41.734
ka = 2 2.3017 869.472 2.3017 108.144 2.1219 126.185

When analytically evaluated gradients are supplied to fmincon, we can run MultiStart
in parallel considering different scenarios concurrently. Table 2 illustrates results for GBO
using MultiStart combined with fmincon and SQP algorithms. We run 20, 48, and 200 paral-
lel scenarios with MultiStart using 48 workers concurrently, and providing gradients to
fmincon which runs sequentially for each scenario. Considering 20 scenarios, MultiStart
already outperforms single fmincon run results shown in Table 1 producing higher optimal
values in similar compute times. Increasing the number of scenarios improves the optimal
value produced by MultiStart.
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Table 2. The comparison of GBO results using MultiStart combined with fmincon and SQP algorithms for the configu-
ration of M = 13 rigid cylinders at ka = 0.75, 1.5, 2. The MultiStart solver results are presented running 20, 48, and
200 parallel scenarios using concurrently 48 workers, and providing gradients to fmincon which run sequentially for each
scenario/configuration.

20 Starting
Initial Configurations

48 Starting
Initial Configurations

200 Starting
Initial Configurations

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 2.1362 55.9269 s 2.171 239.262 s 2.379 1389.29 s
ka = 1.5 2.8136 940.251 s 2.9287 399.456 s 3.0146 2059.43 s
ka = 2 2.7468 132.335 s −2.7962 324.068 s 2.82 2960.97 s

Table 3 shows the results for running ga solver in parallel using concurrently 48 work-
ers with three different options: MaxStallGenerations = 50, 500, and 1300. The ga pro-
duced poorer results and took longer to find the best results. The ga solver violated nonlin-
ear constraints (52), although it is still acceptable as predicted optimal scatterer positions
are not more one cylinder radii away from constrained circular region Rout. However, for
ka = 0.75, running ga solver with MaxStallGenerations = 50 resulted in infeasible solution
violating both (52) and (53) constraints and allowing cylinders to overlap. Figure 13 depicts
the final scatterer configurations obtained by ga solver for ka = 0.75 with three different op-
tions: MaxStallGenerations = 50 (a), 500 (b), and 1300 (c). For MaxStallGenerations = 500,
both constraints (52) and (53) are violated, and for MaxStallGenerations = 50 and 1300 the
constraints (52) are slightly violated. The results show that ga struggles to solve the non-
convex optimization problem with nonlinear constraints.

Table 3. The comparison of results for configuration of M = 13 rigid cylinders at ka = 0.75, 1.5, 2 running ga solver in
parallel using concurrently 48 workers with three different options: MaxStallGenerations = 50, 500, and 1300. In each case,
the constraints (52) are slightly violated and in some cases predicted final cylinder positions are up to one cylinder radii
away from a circular region of radius Rout. At ka = 0.75, ga with option MaxStallGenerations = 500 produces an infeasible
solution violating both (52) and (53) constraints.

MaxStallGenerations = 50 MaxStallGenerations = 500 MaxStallGenerations = 1300

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 0.74158 140.505 Equations (52) and
(53) violated 0.33408 730.226

ka = 1.5 0.29781 290.763 0.30743 0.30743 0.69264 1599.15
ka = 2 0.67394 419.28 0.74616 1520.26 0.27124 1826

Tables 4–6 analyze the results of fmincon, MultiStart, and ga solver runs for configu-
rations of M = 13 thin elastic shells with the same options used for the configurations of
rigid scatterers presented above in Table 1 through Table 3. Analyzing parallel runs of fmin-
con w/o gradients and MultiStart runs starting with 20 scenarios indicate that MultiStart
produced much more enhanced results within a comparable compute time. In addition,
the MultiStart solver starting from 200 various random configurations yields the best re-
sults and outperforms fmincon solver with and without providing gradients as well as the
ga solver. The ga solver running with parallel option performs much poorer producing
much lower values of |p f | and violating constraints (52). Increasing MaxStallGenerations
option values with ga solver overall has tendency to obtain more improved results but also
required longer compute times from 3 to 6 times.
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Figure 13. Final configurations of M = 13 rigid cylinders obtained by ga solver for ka = 0.75 with three different options:
MaxStallGenerations = 50 (a) producing |p f |opt = 0.74158 , MaxStallGenerations = 500 (b) producing infeasible solution,
and MaxStallGenerations = 1300 (c) yielding |p f |opt = 0.33408. The focal point is located at x f = (0.0865, 0). The radius of
each cylinder denoted by blue color is a = 0.0075 m. The radius of artificial red circle is R = Rout + a = 0.0715 m where
Rout = 0.0695 m is defined by constraint Equation (52). For MaxStallGenerations = 500, both constraints (52) and (53) are
violated. For MaxStallGenerations = 50 and 1300, the constraints (52) are slightly refused to confirm but most of cylinders
are located inside of predefined circular region and we may consider the configurations in subfigures (a,c) as acceptable.

The GBO results illustrated in this section show the advantages of using MultiStart
with fmincon which produced the highest values of absolute pressure |p f | when combined
with parallel computing. The difference becomes more noticeable with the increase of num-
ber of scatterers and wavenumber. We observed that MultiStart integrated with fmincon
supplying gradients was able to converge and obtain optimal solutions for configurations
with larger number of scatterers and high frequencies for which single fmincon runs with-
out supplying gradients were not able to converge and/or to obtain optimal values in
reasonable time.

Table 4. The comparison of results for configuration of M = 13 thin elastic shells at ka = 0.75, 1.5, 2 using fmincon solver
with three different options: running fmincon without (w/o) gradients sequentially and in parallel using concurrently
48 workers, and running fmincon with gradients sequentially.

Fmincon w/o
Gradients, Sequential

Fmincon w/o
Gradients, Parallel

Fmincon with
Gradients, Sequential

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 4.2174 1127.56 4.217 144.86 1.5457 9.17429
ka = 1.5 2.0025 2030.35 2.0025 319.993 2.4193 43.9729
ka = 2 2.5211 567.85 2.521 87.4303 2.553 69.972

Table 5. The comparison of GBO results using MultiStart combined with fmincon and SQP algorithms for the configuration
of M = 13 thin elastic shells cylinders at ka = 0.75, 1.5, 2. The MultiStart solver results are presented running 20, 48, and
200 parallel scenarios using concurrently 48 workers, and providing gradients to fmincon which run sequentially for each
scenario/configuration.

20 Starting
Initial Configurations

48 Starting
Initial Configurations

200 Starting
Initial Configurations

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 6.145 230.028 6.1941 479.538 6.5252 625.877
ka = 1.5 2.7405 246.051 2.8432 391.008 2.884 3084.25
ka = 2 2.9388 410.131 2.869 2539.28 2.9718 1880.6
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Table 6. The comparison of results for a configuration of M = 13 elastic thin cylindrical shells at ka = 0.75, 1.5, 2 running ga
solver in parallel using concurrently 48 workers with three different options: MaxStallGenerations = 50, 500, and 1300.

MaxStallGenerations = 50 MaxStallGenerations = 500 MaxStallGenerations = 1300

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

Optimal
Value

Compute
Time (s)

ka = 0.75 0.052956 114.204 0.32069 530.695 0.51462 762.944
ka = 1.5 0.19884 543.15 1.2581 627.457 0.13304 1316.46
ka = 2 0.19951 208.066 0.074332 881.275 0.52169 1784.5

3.2.3. Broadband Design of Uni- and Multi-Directional Acoustic Lens

Figure 14 through Figure 18 illustrate the broadband focusing performance of unidi-
rectional and multi-directional lens. We optimize the RMS of absolute pressure amplitude
at the focal point, |p f |RMS, defined by Equation (54) for given sets of normalized wavenum-
bers (Nk = 1, 9) and incident angles (Nl = 1, 5) while supplying the analytical form of
gradients qRMS

j given by Equation (56). Figure 14 exhibits the dependency of the objec-

tive function |pRMS
f | on the normalized wavenumber ka and on the angle of the incident

plane wave ψ for the optimized and initial unoptimized configurations of M = 50 rigid
cylinders. The RMS of absolute pressure at focal point |p f |RMS is maximized at 1, 3, 5,
7, and 9 equidistant values of wavenumber ka ∈ [0.35, 0.55] at normal incidence ψ = 0.
Figure 14a displays the variation of |p f |RMS with wavenumber ka for unoptimized initial
random and optimized configurations with Nk = 1, 3, 5, 7, 9 equidistant values of ka in
the interval 0.35 ≤ ka ≤ 0.55 which corresponds to frequencies from 11 kHz to 17,274
Hz. Figure 14b–d illustrates the dependency of the objective function |pRMS

f | on ka and ψ

simultaneously via 3D parametric surface plots. Here, the lower blue mesh denoted by “1”
represents the results for a non-optimized configuration and the higher mesh indicated by
“2” exhibits the results for the configuration optimized. The results in Figure 14b–d for the
non-optimized configurations “1” show overall low values of |p f |RMS in comparison to
the mesh surface plots for optimized configurations “2” as illustrated; the results for “2”
show clearly the amplification of |pRMS

f |. For the fixed value ka = 0.45, the surface plots
in Figure 14d show that the optimized configuration “2” produces the peak performance
ka = 0.45 and near the incidence angles −π/4 and π/4; the surface plot “2” produced
lower values of |pRMS

f | at wavenumbers near ka = 0.55 for all ψ values considered which
also coincides with results in Figure 14a, denoted by the red curve “1”. The trade-off
between the increase of the frequency band and focusing efficiency leads to shift of peak
performance for broadband focusing achieving the maximum performance at ka = 0.55
which is not intuitive.

Figure 15 illustrates the performance of broadband unidirectional lens at different
values wavenumbers ka and displays the distribution of absolute total acoustic pressure
field |p| for the optimized unidirectional lens, the configuration of M = 50 rigid cylindrical
scatterers. The top row of Figure 15 shows results for the absolute pressure |p| for values
of wavenumber ka at which the lens was optimized, i.e., (a) ka = 0.35, (b) ka = 0.45,
and (c) ka = 0.55. The bottom row of Figure 15 displays the absolute total field for
values of ka at which the lens was not optimized, i.e., (d) ka = 0.225, (e) ka = 0.4, and
(f) ka = 0.585. Figure 15a–c clearly shows the focusing effect. Figure 15d,f illustrates
that focusing amplitudes reduces, and beyond these values, i.e., 0 < ka ≤ 0.225 and
ka > 0.585, the focusing effect diminishes. Importantly, Figure 15e exhibits clearly the
sound localization at the desired focal region at wavenumber ka = 0.4 at which the
configuration was not optimized.
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Figure 14. The RMS of pressure at focal point, |p f |RMS, optimized at 1, 3, 5, 7, and 9 equidistant values of wavenumber
ka ∈ [0.35, 0.55] for the optimized configurations of M = 50 rigid cylinders at ψ = 0 and ψ ∈ [−π/4, π/4]. In subfigures
(b–d), “1” denotes results for non–optimized configuration and “2” represents results for optimized configuration.

Figure 16 displays the distribution of absolute total acoustic pressure field |p| for the
optimized unidirectional lens, the configuration of M = 50 rigid cylindrical scatterers at
ka = 0.55 varying values of incident angle ψ. The unidirectional lens is optimized for
ka = 0.35, 0.45, and 0.55 at normal incidence, i.e., ψ, and the performance is shown at
angles of incidence ψ = π/18, π/8, π/4, π/18, −π/8, −π/4. The unidirectional lens is
able to localize the sound well at normal incidence and at small incident angles ψ = ±π/18
and with increase of ψ angle values focusing effect deteriorates.

Figure 17 presents |p f |RMS, as a function of incidence angle and the normalized
wavenumber ka considering a simultaneous multi-frequency and multi-angle optimization
of |p f |RMS at a broad range of the incidence angle ψ ∈ [−π/4, π/4] and 3 values of
wavenumber ka for configurations of M = 50 rigid cylinders. Figure 17a–c displays the
variation of |p f |RMS with the angle of incidence at three fixed values of wavenumber
ka = 0.35 (a), ka = 0.45 (b), and ka = 0.55 (c) for the optimized and initial unoptimized
configurations cylinders. Figure 17d illustrates the 3D surface plot of |pRMS

f | versus ka and
ψ simultaneously. Here, the lower blue mesh denoted by “1” represents the results for a
non-optimized configuration and the higher mesh indicated by “2” exhibits the results for
the configuration optimized at three values of wavenumbers and five incident angles.
Figure 17d shows that the non-optimized surface mesh “1” depicts the low values of
|pRMS

f | in all considered values of ka and ψ, and the surface mesh “2” is slightly lifted up
with its highest amplification around ψ = −π/4 and ψ = π/4 at the largest values of
ka considered, i.e., ka = 0.55. As can be seen from these figures, optimizing |p f |RMS for
angle of incidence ψ ∈ [−π/4, π/4] using five equidistant values of ψ, the overall |pRMS

f |
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show low values in the incidence range considered which suggests that this range is too
ambitious for the small number of discrete incident angles and frequencies considered.
Therefore, we narrow it down to ψ ∈ [−π/8, π/8].

a ka = 0.35 b ka = 0.45 c ka = 0.55

d ka = 0.225 e ka = 0.4 f ka = 0.585

Figure 15. The absolute value of the total acoustic pressure field |p| for the optimized unidirectional lens, the configuration
of M = 50 rigid cylindrical scatterers at different values of wavenumber ka. The unidirectional lens is optimized for
ka = 0.35, 0.45, and 0.55, and x f = (0.0865, 0) and the performance is shown at these values of ka (the top row figures) and
beyond this range (the bottom row figures).

Figure 18 exhibits the distribution of RMS of the absolute pressure amplitude at
focal point, |p f |RMS, optimized at three values of ka = 0.35, 0.45, 0.55 and at three and
five equidistant values of ψ ∈ [−π/8, π/8] for the optimized configurations of M = 50
rigid cylinders. The results for an unoptimized initial random configuration depicted in
Figure 7a are included as a reference. Figure 18a through Figure 18c present correspond-
ingly the variation of RMS of the absolute pressure amplitude at focal point, |p f |RMS with
respect to the angle of incidence at 3 fixed values of wavenumber ka = 0.35 (a), ka = 0.45
(b), and ka = 0.55 (c). Here, the red-dashed curve corresponds to configuration optimized
at single value of ψ = 0 corresponding to normal incidence and the solid blue curve mean
results for an unoptimized initial configuration at normal incidence. Figure 18a–c shows
that adding more angles of incidence as a parameter in optimization broadens the range of
application of multi-directional acoustic lens and improves its performance. Although opti-
mizing at three values of ψ = −π/8, 0, π/8] shifted up |p f |RMS at edge values ψ = −π/8
and ψ = π/8], it reduced the peak at ψ = 0. The peak performance at ψ = 0 was further
enhanced by optimizing |p f |RMS at five equidistant values of ψ ∈ [−π/8, π/8] across all
three values of ka as can be seen from these figures. Figure 18d illustrates the dependency
of the objective function |pRMS

f | on ka and ψ simultaneously via 3D parametric surface
plots. Here, the lower blue mesh denoted by “1” represents the results for a non-optimized
configuration and the higher mesh indicated by “2” exhibits the results for the configura-
tion optimized at three values of wavenumber ka and at five equidistant values of incident
angles ψ ∈ [−π/8, π/8]. In comparison to Figure 17d, the results in Figure 18 show better
performance of GBO algorithm to produce a broadband multi-incident sound localization
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effect. The optimized design illustrates broadband performance as compared to initial
configuration response although it is not included as an optimization criterion.

a ψ = π/18 b ψ = π/8 c ψ = π/4

d ψ = −π/18 e ψ = −π/8 f ψ = −π/4

Figure 16. The absolute value of the total acoustic pressure field |p| for the unidirectional lens optimized at normal
incidence, i.e., the configuration of M = 50 rigid cylinders at wavenumber ka = 0.55 and different angles of incidence ψ.
The performance of optimized unidirectional lens at normal incidence, i.e., ψ = 0, is depicted in Figure 15c.
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Figure 17. The RMS of pressure at focal point, |p f |RMS, optimized at 3 values of ka = 0.35, 0.45, 0.55 and 5 equidistant
values of ψ ∈ [−π/4, π/4] for the optimized configurations of M = 50 rigid cylinders. In (d), “1” denotes the results for a
non–optimized configuration and “2” represents the results for the optimized configuration.

We notice that the trade-off between the increase of range of incidence and focusing
efficiency leads to reduced peak performance for simultaneous broad-range incidence
and broadband focusing. Results in Figure 17 for broader incidence angle range ψ ∈
[−π/4, π/4] are poorer compared to range ψ ∈ [−π/8, π/8] given in Figure 18. The
results for a broader range of ψ, i.e., ψ ∈ [−π/4, π/4], can be improved increasing the
number of incidence angles in RMS computation, considering non-equidistant values of ψ,
and choosing more points (angles) around region where |p f |RMS values are the lowest.
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Figure 18. The RMS of the pressure at focal point, |p f |RMS, optimized at 3 values of ka = 0.35, 0.45, 0.55 and at 5 equidistant
values of ψ ∈ [−π/8, π/8] for the optimized configurations of M = 50 rigid cylinders. In panel (d), “1” denotes the results
for a non–optimized configuration and “2” represents the results for the optimized configuration.
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4. Conclusions

We have demonstrated that the GBO technique combined with the principle of acoustic
reciprocity leads to an effective method to optimally arrange scatterers so as to produce
acoustic focusing. The approach uses semi-analytic expressions for the gradient of the
focal pressure with respect to the scatterer positions. Two problem formulations have
been considered for the inverse design of the acoustic lens: forward and reciprocal. A
comparison of simulation times for both formulations shows that the reciprocal formulation
takes less time to compute the absolute pressure and its gradients at the focal point.
The specific type of acoustic lens considered consists of a meta-cluster of rigid cylinders
or cylindrical voids or thin elastic shells submerged in water. The computations were
performed using advanced parallel optimization algorithms on MATLAB, a MultiStart
optimization solver, and semi-analytic expressions for the gradient of pressure at the focal
point. Numerical results for the uni- and multi-directional broadband acoustic lens designs
indicate that significant sound pressure amplification can be achieved by optimal scatterer
rearrangement using this analytical-numerical technique. The greatest magnification in
amplitude is realized using void-like scatterers.

The presented gradient assisted inverse design model provides a means to establish
realistic strategies for an acoustic lens device and for its practical underwater applications.
The proposed method can be extended to design 3D lenses including air-born sound and
underwater acoustic, elastodynamic, or electromagnetic wave localization and focusing
effects. The gradient assisted inverse design of acoustic lens can be further enhanced and
implemented by integrating the gradient information, i.e., Equation (37) with deep rein-
forcement learning algorithms [45] and generative networks [46] which have potential to
search for the globally optimized devices over a broad range of parameters and can provide
better solutions than ones produced by the-state-of-the-art optimization algorithms.
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Appendix A

Appendix A.1. Multiple Scattering Theory

Consider acoustic multiple scattering by M obstacles. For simplicity, the obstacles
are assumed to be cylinders Sm, (m = 1, M) centered at rm. A schematic configuration of
cylindrical elastic shells is given in Figure A1. The incident field in the neighborhood of
cylinder Sm is

p(m)
inc (x) =

∞

∑
n=−∞

A(m)
n U +

n (xm), (A1)

where xm is a position vector of point P with respect to the centers of multipoles at Om (see
Figure A1):

xm = x− rm, (A2)

the functions U±n (x) are
U±n (x) = Jn(k|x|)e± i n arg x. (A3)
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Here, arg x ∈ [0, 2π) and arg (− x) =
(

arg x±π
)

mod 2π, and Jn(x) is the Bessel function
of the first kind of order n.

Figure A1. A point source impinging on an isotropic multilaminate cylinder submerged in a fluid
medium. Note that here x− x′ = xm − x′m.

In Equation (A1), the unknown coefficients A(m)
n are for an incident wave of unit

amplitude in direction, e1 = (1, 0):

pinc(x) = ei ke1·x ⇒ A(m)
n = ei ke1·rm ei n π

2 = ei kxm ei n π
2 . (A4)

In Equation (A1), the unknown coefficients A(m)
n for a plane wave incidence are

derived assuming no source term: pS = 0, and that the incident wave is the plane wave of
unit amplitude in direction ψ:

pinc = eikeψ ·x ⇒ A(m)
n = eikê(ψ)·rrrm ein( π

2 −ψ) = eik(xm cos ψ+ym sin ψ)ein( π
2 −ψ). (A5)

A point source normalized by its amplitude at the origin is defined by

pinc = A0H(1)
0 (k⊥r′)eikzz where A0 = 1/H(1)

0 (k⊥|x′|), (A6)

and r′ = |x− x′|. For a source at point S depicted in Figure A1, the coefficients A(m)
n follow

from Equation (A6), noting that in the local coordinates of multipole centered at Om:

r′ = |x− x′| = |xm − x′m|,

where x′ is the position vector of source at point S with respect to origin O, xm and x′m are
correspondingly the position vectors of an arbitrary point P and a source S with respect to
Om. Thus, in the neighborhood of cylinders Sm, A(m)

n can be derived as

pinc = A0

∞

∑
n=−∞

U +
n (kxm)V −n (kx′m) ⇒ A(m)

n = A0V −n (kx′m), (A7)

for m = 1, M, n ∈ Z, where the Graf’s addition theorem (A10) is used for |xm| < |x′m| (see
Figure 1).
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The total scattered field psc, considered as a superposition of the scattered fields by all
cylinders, may be expanded as a sum of multipoles:

psc(x) =
M

∑
m=1

p(m)
sc (x), p(m)

sc (x) =
∞

∑
n=−∞

B(m)
n V +

n (xm), (A8)

where p(m)
sc is the wave scattered by cylinder Sm, B(m)

n are unknown coefficients, and

V ±n (x) = H(1)
n (k|x|)e± i n arg x. (A9)

In order to use boundary conditions on the surface of each cylinder Sm, we will express
the total field using Graf’s theorem ([47] Equation (9.1.79)):

V +
l (x− y) =

∞

∑
n=−∞

{
V +

n (x)U−n−l(y), |x| > |y|,
U +

n (x)V −n−l(y), |x| < |y|.
(A10)

The functions U±n (x) and V ±n (x) possess the properties

U±n (−x) = (−1)nU±n (x), V ±n (−x) = (−1)nV ±n (x) = V ±−n(x) = (−1)nV ±n (x). (A11)

Let rmj = rm − rj (= −rjm) be a position vector of multipole Om with respect to
multipole Oj. As x = rm + xm = rj + xj → xm = xj + (rj − rm), the total field p in the
neighborhood of cylinder Sj can be written as

p =
∞

∑
n=−∞

{
A(j)

n U +
n (xj) + B(j)

n V +
n (xj) +

M

∑
m=1
m 6=j

B(m)
n V +

n (xj + rjm)

}
. (A12)

Then, noting the properties of V +
n (x), Equation (A11), and using Graf’s theorem, we

obtain for |xj| < lj, where lj = min |rjm|:

p =
∞

∑
n=−∞

{
A(j)

n U +
n (kxj) + B(j)

n V +
n (kxj) +

M

∑
m=1
m 6=j

B(m)
n

∞

∑
l=−∞

U +
l (kxj)V −l−n(krmj)

}

=
∞

∑
n=−∞

{
B(j)

n V +
n (xj) + A(j)

n U +
n (xj) + U +

n (xj)
M

∑
m=1
m 6=j

∞

∑
l=−∞

Pnl(rjm)B(m)
l

}
, (A13)

where
Pnl(x) ≡ V +

l−n(x). (A14)

Here, the matrix P = [Pnl ] is equal to the transpose of Martin’s S = [Snl ] matrix [36],
P = ST . The total incident field impinging on the cylinder Sj is a sum of the last two terms
on the right hand side of Equation (A13), i.e.,

p(j)
inc +

M

∑
m=1
m 6=j

p(m)
sc =

∞

∑
n=−∞

{
A(j)

n +
M

∑
m=1
m 6=j

∞

∑
l=−∞

Pnl(rjm)B(m)
l

}
U +

n (xj). (A15)
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The response of shell Sj to the incident field (A15) can be obtained by incorporating

the boundary conditions at the interface and the transition matrix elements T(j)
nq of cylinder

Sj [48,49]:

p(j)
sc =

∞

∑
n=−∞

∞

∑
q=−∞

T(j)
nq

{
A(j)

q +
M

∑
m=1
m 6=j

∞

∑
l=−∞

Pql(rjm)B(m)
l

}
V +

n (xj). (A16)

The transition matrix components T(j)
nq of cylinder Sj in isolation are given in [38,48,49].

Specifically, T-matrix for a thin elastic shell is given in [49] and for rigid cylinder it reduces
to the form [38]: T(j)

nq = −J′n
(1)(ka)/H′n

(1)(ka). Thus, Equations (A8) and (A16) yield a
linear system of equation

B(j)
n −

∞

∑
q=−∞

T(j)
nq

M

∑
m=1
m 6=j

∞

∑
l=−∞

Pql(rjm)B(m)
l =

∞

∑
q=−∞

T(j)
nq A(j)

q , n ∈ Z. (A17)

Equivalently, Equation (A17) can be written as

∞

∑
q=−∞

T(j)
nq
−1

B(j)
q −

M

∑
m=1
m 6=j

∞

∑
l=−∞

Pnl(rjm)B(m)
l = A(j)

n , n ∈ Z. (A18)

Thus

M

∑
m=1

∞

∑
l=−∞

Xjnml B
(m)
l = A(j)

n , j = 1, M, n ∈ Z, (A19)

Xjnml =

T(j)
nl

−1
, m = j,

−Pnl(rjm), m 6= j.
(A20)

Consider now a truncated version of the infinite sum in Equation (A19) that yields an
algebraic system of equations with finite dimensions:

M

∑
m=1

N

∑
l=−N

Xjnml B
(m)
l = A(j)

n , j = 1, M, n ∈ (−N, N), (A21)

or in matrix form
Xb = a, (A22)

where X, b, and a are given by Equations (17) and (10).

Appendix A.2. Far-Field Radiated Response

Using the asymptotic expansion of the Hankel function for large argument, the scat-
tered field psc of Equation (A8) in the far-field, defined as k|x| � 1, becomes

psc = f (θ)

√
k

i 2π|x| e
i k|x|

[
1 + O

( 1
k|x|

)]
, (A23)

where the far-field amplitude function is

f (θ) =
2
k

M

∑
m=1

e− i k|rm | cos(θ−arg (rm))
∞

∑
n=−∞

(− i)nB(m)
n ei nθ . (A24)
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