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Abstract: Positive linear electrical circuits systems described by generalized fractional derivatives are
studied in this paper. We mainly focus on the reachability and observability of linear electrical circuits
systems. Firstly, generalized fractional derivatives and ρ-Laplace transform of f is presented and
some preliminary results are provided. Secondly, the positivity of linear electrical circuits systems
described by generalized fractional derivatives is investigated and conditions for checking positivity
of the systems are derived. Thirdly, reachability and observability of the generalized fractional
derivatives systems are studied, in which the ρ-Laplace transform of a Mittag-Leffler function plays
an important role. At the end of the paper, illustrative electrical circuits systems are presented, and
conclusions of the paper are presented.

Keywords: generalized fractional derivatives; positive linear electrical circuits systems; reachability;
observability; ρ-Laplace transform

1. Introduction

Fractional differential equations play an important role in the analysis and modeling
of various processes. Many classical methods, such as perturbation method [1], Fourier
transform and Merlin transform, have important applications in fractional calculus. Frac-
tional calculus has many new diffusion processes in physics [2–4]. There are many types of
fractional derivatives in fractional calculus, see [5–11] for details. For the basic principles
of fractional calculus and its most interesting applications, see [12–18]. In recent years,
fractional calculus has become a useful and promising tool in modeling and analyzing dif-
ferent dynamic behavior processes. Fractional calculus system has attracted more and more
scholars’ attention since its wide application value in the field of science and engineering.

Fractional derivative has more advantages than classical derivative. The first advan-
tage is that the fractional derivative takes into account memory. Memory effect is a basic
property of differential equations. This explains the application of fractional derivative in
differential equation modeling [14,16]. Another advantage is that the fractional derivative
produces many diffusion processes [4]. Due to these advantages, fractional derivative also
has many applications in electronics [15,19,20].

The new mathematical model appears with the emergence of fractional derivative.
In recent years, researchers began to apply fractional derivatives to describe electrical
circuit systems. Many types of fractional electrical circuits have been introduced recently
in the literature, see [14,15,19,20] and fractional RL (Resistor-Inductor) and RC (Resistor-
Capacitance) circuit modeling in [11,18,21–23]. Many studies on the properties of fractional
electrical circuit system will use numerical solutions and analytical solutions., because
it is an important way to study properties of circuits systems. Reference [18] studies
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the analytical and numerical solutions of fractional RL and RC circuits using Atangana-
Baleanu derivative and bi-order derivative. Reference [21] studies the solutions of fractional
electrical RL, LC (Inductor-Capacitance) and RC electrical circuit systems described by
Mittag-Leffler fractional derivatives. Fractional RL and LC electrical circuits systems are
studied in reference [22]. They also compared the fractional electrical circuit systems with
the traditional electrical circuit systems.

In the literature of fractional electrical circuits systems, many studies mainly focus on
performance properties of systems, such as stability [11,23–32]. In [27,28], the asymptotic
stability of integer and fractional positive continuous-time linear system with delays is
studied, respectively. The necessary and sufficient conditions for the asymptotic stability
of integer and fractional positive linear system with delays are given, and it is proved that
the asymptotic stability integer and fractional of the systems is independent of delays. By
comparison, it can be found that the asymptotic stability conditions and checking methods
of integer and fractional positive linear systems with delays are similar. In recent years,
generalized fractional derivative has been widely used in stability analysis. For more
details, see [6,33,34]. In [29], several stabilities of fractional differential equations described
by Caputo type generalized fractional derivatives are studied. In this paper, a new concept
of stability, fractional input stability is introduced. Thus, it provides a new idea and method
for the stability analysis of fractional differential equations described by generalized frac-
tional derivatives. In [32], the stability of RLC (Resistor-Inductor-Capacitance) electrical
circuits described by Caputo-Liouville generalized fractional derivatives is studied. The
local asymptotic stability and global asymptotic stability of trivial equilibrium are analyzed.
The results of this paper are very valuable for the study of circuit stability. Of course, in
addition to stability, electrical circuits systems have other performance properties [35–37],
such as reachability and observability. In [37], fractional positive discrete-time linear sys-
tems are studied in the literature. The necessary and sufficient conditions of positivity,
reachability and controllability are given. In [38], the reachability and observability of
integer and fractional positive linear electrical circuits are studied.And it is found that the
reachability and observability of integer and fractional positive linear electrical circuits are
invariant. At this time, reference [39] further extends the result of [38] to positive linear
electrical circuits with delays. In [39], the electrical circuit systems are extended to positive
linear electrical circuits with delays, and it is found that the reachability and observability
of integer and fractional positive linear electrical circuits with delays are similar. Many
scholars have studied the properties of electrical circuits described by generalized frac-
tional derivatives and positive linear electrical circuit systems. In this paper, generalized
fractional derivatives are applied to positive linear electrical circuit systems.

The generalized fractional derivative units the Riemann-Liouville fractional derivative
and Hadamard fractional derivative into a unified form in that it is mediated by an
additional fractional parameter, which is more general than the ordinary classical fractional
derivative. By observing, we can find that when α is fixed, the smaller the parameter ρ is,
the greater the initial slope of the described circuit trajectory is, and the more realistic the
described trajectory is. Contributions of this paper are listed below:

(1) We present the positivity of linear electrical circuits systems described by general-
ized fractional derivatives and obtained conditions for checking positivity of the systems.
Also we investigate the checking method of reachability and observability of the general-
ized fractional derivatives studied.

(2) In references [23,29], the ρ-Laplace transform was performed on the Mittag-Leffler
function with a constant λ, but we are extended to the Mittag-Leffler function with matrix
A, and the corresponding form of ρ-Laplace transform is obtained.

(3) We investigate the effect of the parameter ρ on the electrical circuits systems. Since
the generalized fractional derivative involves parameters, which is more general than
the classical fractional derivative. Therefore, we studied the electrical circuits systems by
illustrative examples when the fixed order α is unchanged, We let the parameter ρ take
different values to observe how the parameter ρ affects the change of state trajectories.
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The remainder of the paper is organized as follows. In Section 2, generalized fractional
integrals, derivatives and ρ-Laplace transform are reviewed and some new results are given.
Positive linear electrical circuits systems described by generalized fractional derivatives
are presented in Section 3. In Section 4, reachability of positive linear electrical circuits
systems described by generalized fractional derivatives are investigated. Observability of
positive linear electrical circuits systems described by generalized fractional derivatives
are investigated in Section 5. The illustrative electrical circuits are presented in Section 6.
Concluding remarks are given in Section 7.

The following notation will be used in this paper. R is a set of real numbers, Rn×m is a
set of n×m dimensional real matrix, Rn×m

+ is a set of n×m dimensional real matrix with
nonnegative entries and Rn

+ = Rn×1
+ , Mn is a set of n× n Metzler matrix (real matrix with

nonnegative off-diagonal entries).

2. Generalized Fractional Integrals, Derivatives and ρ-Laplace Transform

For the knowledge of classical fractional calculus, we refer to references [7,13], in
which there are many types of fractional integrals and derivatives. In this paper, we
consider the following forms of generalized fractional integrals:

( a Iα,ρ f )(x) =
1

Γ(α)

∫ x

a
(

xρ − tρ

ρ
)α−1 f (t)

dt
t1−ρ

(1)

and

( I
α,ρ
b f )(x) =

1
Γ(α)

∫ b

x
(

tρ − xρ

ρ
)α−1 f (t)

dt
t1−ρ

. (2)

where α is the order, ρ is an additional fractional parameter, and integrals (1) and (2) are
left generalized fractional integral and right generalized fractional integral, respectively.
We can find that when ρ = 1, the integrals (1) and (2) become Riemann-Liouville fractional
integrals. See [13] for details. When the limit is ρ→ 0, the integrals (1) and (2) will become
Hadamard fractional integrals defined in [7].

The generalized fractional derivatives defined by [6] for order α > 0 are as follows:

( aDα,ρ f )(x) = γn( a In−α,ρ f )(x) =
γn

Γ(n− α)

∫ x

a
(

xρ − tρ

ρ
)n−α−1 f (t)

dt
t1−ρ

(3)

and

( D
α,ρ
b f )(x) = (−γn)( a In−α,ρ f )(x) =

−γn

Γ(α)

∫ b

x
(

tρ − xρ

ρ
)n−α−1 f (t)

dt
t1−ρ

(4)

where fractional parameter ρ > 0, n = bαc+ 1 and γ = x1−ρ d
dx .

Derivatives (3) and (4) are left and right generalized fractional derivatives, respectively.
We can find that when ρ = 1, the derivatives (3) and (4) become Riemann-Liouville
fractional derivatives. See [13] for details. When the limit is ρ→ 0, the derivatives (3) and
(4) will become Hadamard fractional derivatives defined in [7].

The reason we study the generalized fractional derivative is that it generalizes the
Riemann-Liouville fractional derivative and Hadamard fractional derivative into one form.
When the parameters are fixed at different values or take limits, the above derivative is
generated as a special case [6]. The generalized fractional derivative is more general than
the ordinary classical fractional derivative.

Let’s recall some details of the ρ- Laplace transform and its basic concepts, which
plays an important role in the next research.

Definition 1 ([9]). The ρ-Laplace transform of a continuous function f : [0, ∞)→ R is defined by

Lρ{ f (x)}(s) =
∫ ∞

0
e−s xρ

ρ f (x)
dx

x1−ρ
, ρ > 0, (5)
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The integral is valid for all values of s.

Theorem 1 ([7]). If the ρ-Laplace transform of a continuous function f : [0, ∞)→ R exists, the
following relationship holds

Lρ{ f (x)}(s) = L{ f ((ρx)
1
ρ )}(s), (6)

where L{ f } is the usual Laplace transform of f .

Theorem 2 ([7]). If continuous function f : [0, ∞)→ R has ρ-Laplace transform for s > c1 and
continuous function g : [0, ∞)→ R has ρ-Laplace transform for s > c2. Then, continuous function
a f + bg has Laplace transform for any constants a and b, and has the following linear property

Lρ{a f (x) + bg(x)}(s) = aLρ{ f (x)}(s) + bLρ{g(x)}(s), s > max{c1, c2}. (7)

The reference [9] gave some ρ- Laplace transforms of elementary functions as shown
below.

Theorem 3. Suppose Lρ{·} is the ρ-Laplace transform

(1)Lρ{1}(s) =
1
s

, s > 0.

(2)Lρ{tp}(s) = ρ
p
ρ

Γ(1 + p
ρ )

s1+ p
ρ

, p ∈ R, s > 0.

(3)Lρ{eλ tρ
ρ }(s) = 1

s− λ
, s > λ.

(4)Lρ{(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)}(s) = (sα I − A)−1, A ∈ Rn×n, ρ(A) < sαand lim

n→∞
(

A
sα
)n = 0,

where ρ(A) is the spectral radius of the matrix A.

(8)

Proof. (1), (2) and (3) have been proved, please refer to [9] for details. Only (4) will be
proved below

Lρ{(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)}(s) =

∞

∑
k=0

Ak

Γ(kα + α)ρkα+α−1Lρ{tkαρ+αρ−ρ} (9)

From (2) we can get

∞

∑
k=0

Ak

Γ(kα + α)ρkα+α−1 ρkα+α−1 Γ(kα + α)

skα+α
=

1
sα

∞

∑
k=0

(
A
sα
)k =

1
sα
(I +

A
sα

+
A2

s2α
+ · · · ). (10)

According to the famous Neumann series, we can know if lim
n→∞

An = 0, then I − A is

nonsingular and (I − A)−1 = I + A + A2 + · · · =
∞
∑

k=0
Ak. In that case, here Equation (10)

can be written in the following form

1
sα
(I +

A
sα

+
A2

s2α
+ · · · ) = 1

sα
(I − A

sα
)−1 = (sα I − A)−1 (11)

where we can find an s and let lim
n→∞

( A
sα )n = 0, then I − A

sα is nonsingular. Then

Lρ{(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)}(s) = 1

sα
(I − A

sα
)−1 = (sα I − A)−1 (12)

when lim
n→∞

( A
sα )n = 0, the above formula holds.



Mathematics 2021, 9, 2856 5 of 16

Definition 2 ([7]). Let f and g be two piecewise continuous functions on each interval [0, T] and
of exponential order. We define the ρ-convolution formula of functions f and g is

( f ∗ρ g)(t) =
∫ t

0
f ((tρ − τρ)

1
ρ )g(τ)

dτ

τ1−ρ
(13)

The following lemma gives the commutativity of ρ-convolution of two functions.

Lemma 1 ([7]). Let f and g be two piecewise continuous functions on each interval [0, T] and of
exponential order. Then

f ∗ρ g = g ∗ρ f (14)

Theorem 4 ([7]). Let f and g be two piecewise continuous functions on each interval [0, T] and of

exponential order ec tρ
ρ . Then

Lρ{ f ∗ρ g} = Lρ{ f }Lρ{g} s > c. (15)

The following theorem is the ρ-Laplace transformation of the left generalized fractional
derivative starting from 0.

Theorem 5 ([7]). Let α > 0 and f ∈ ACn
γ[0, a] for any a > 0 and 0 In−k−α,ρ f ,k = 0, 1, ..., n− 1

be of ρ-exponential order ec tρ
ρ . Then

Lρ{( 0Dα,ρ f )(t)}(s) = sαLρ{ f (t)} −
n−1

∑
k=0

sn−k−1( 0 In−k−α,ρ f )(0), s > c. (16)

3. Positive Linear Electrical Circuits Described by Generalized Fractional Derivatives

Consider the linear electrical circuit systems described by the left generalized fractional
derivatives as the following system equation:

( 0Dα,ρx)(t) = Ax(t) + Bu(t), 0 < α ≤ 1 (17)

y(t) = Cx(t) + Du(t), (18)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rp is the
output vector, and A ∈ Rn×n , B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The initial conditions for
(17)and (18) have the form x0 = ( 0 I1−α,ρx)(0), where x0 is a given vector function.

Theorem 6. The solution of Equation (17) is given by:

x(t) = (
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x(0) +

∫ t

0
(

tρ − τρ

ρ
)α−1Eα,α(A(

tρ − τρ

ρ
)α)Bu(τ)

dτ

τ1−ρ
(19)

where

Eα,α(A(
tρ

ρ
)α) =

∞

∑
k=0

Aktαρk

Γ(αk + α)ραk (20)

and Eα,α(A( tρ

ρ )
α) is the Mittage-Leffler matrix function, Γ(x) =

∫ ∞
0 e−ttx−1dt is the gamma

function.

Proof. Firstly, ρ-Laplace transform is performed on both sides of Equation (17). Then,
when n = 1, through Theorem 5, we can write

Lρ{( 0Dα,ρx)(t)} = ALρ{x(t)}+ Lρ{Bu(t)},
sαLρ{x(t)} − ( 0 I1−α,ρx)(0) = ALρ{x(t)}+ Lρ{Bu(t)},

(21)
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Let x0 = ( 0 I1−α,ρx)(0) and multiply the identity matrix I on both sides of the above
formula, then we have

sα ILρ{x(t)} − Ix0 = ALρ{x(t)}+ ILρ{Bu(t)},
(sα I − A)Lρ{x(t)} = Ix0 + ILρ{Bu(t)},
Lρ{x(t)} = (sα I − A)−1x0 + (sα I − A)−1Lρ{Bu(t)},

(22)

From (4) of Theorems 3 and 4, We can write the above form as follows

Lρ{x(t)} = (sα I − A)−1x0 + (sα I − A)−1Lρ{Bu(t)}

= Lρ{(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)}x0 + Lρ{(

tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)}Lρ{Bu(t)}

= Lρ{(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x0 + (

tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α) ∗ρ Bu(t)}.

(23)

Therefore,

x(t) = (
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x0 + (

tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α) ∗ρ Bu(t)

= (
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x0 +

∫ t

0
(

tρ − τρ

ρ
)α−1Eα,α(A(

tρ − τρ

ρ
)α)Bu(τ)

dτ

τ1−ρ
.

(24)

Definition 3 ([12]). The linear electrical circuit described by (17) and (18) is called (internally)
positive if x(t) ∈ Rn

+ and y(t) ∈ Rp for t ≥ 0 for any initial conditions x0 ∈ Rn
+ for t ≥ 0 and

u(t) ∈ Rm
+ , t ≥ 0.

Theorem 7 ([12]). The linear electrical circuit system described by (17) and (18) is (internally)
positive if and only if

A ∈ Mn, B ∈ Rn×m
+ , C ∈ Rp×n

+ , D ∈ Rp×m
+ . (25)

Theorem 8. Let A ∈ Rn×n and 0 < α ≤ 1. Then, for t ≥ 0,

Eα(A(
tρ

ρ
)α) =

∞

∑
k=0

Aktαρk

Γ(αk + 1)ραk ∈ Rn×n
+ (26)

and

Eα,α(A(
tρ

ρ
)α) =

∞

∑
k=0

Aktαρk

Γ(αk + α)ραk ∈ Rn×n
+ (27)

if and only if A is a Metzler matrix.

Proof. From the expansions:

Eα(A(
tρ

ρ
)α) = I +

Atαρ

Γ(α + 1)ρα
+

A2t2αρ

Γ(2α + 1)ρ2α
+ · · · ,

Eα,α(A(
tρ

ρ
)α) =

I
Γ(α)

+
Atαρ

Γ(2α)ρα
+

A2t2αρ

Γ(3α)ρ2α
+ · · · .

(28)

It follows that Eα(A( tρ

ρ )
α) ∈ Rn×n

+ and Eα,α(A( tρ

ρ )
α) ∈ Rn×n

+ for small t > 0 only if A
is a Metzler matrix.
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The sufficiency will be proved by counter evidence. Suppose Ψ = Eα,α(A( tρ

ρ )
α) is

not positive, that is, there are i and j such that Ψ(i, j) < 0, i 6= j. (27) can be written in the
following form

Eα,α(A( tρ

ρ )
α)− I

Γ(α)
tαρ

Γ(2α)ρα

= A[I +
AtαρΓ(2α)

Γ(3α)ρα
+ · · · ] (29)

Let ei = (0 0 1 · · · 0)T denote a vector whose i-th component is 1 and the rest is 0.
Calculate the limit of t→ 0+ for the above formula, we can get

lim
t→0+

Ψ(i, j)
tαρ

Γ(2α)ρα

= lim
t→0+

eT
i

Eα,α(A( tρ

ρ )
α)− I

Γ(α)
tαρ

Γ(2α)ρα

ej = eT
i Aej = aij (30)

where eT
i ej = 0 and eT

i Ψej = Ψ(i, j).
From Ψ(i, j) < 0, we can get aij < 0, i 6= j. Therefore, matrix A is not a Metzler

matrix. Thus, A is Metzler matrix, which means Eα,α(A( tρ

ρ )
α) > 0 for t ≥ 0. The proof for

Equation (26) is similar.

4. Reachability of Positive Linear Electrical Circuits Systems Described by
Generalized Fractional Derivatives

In this part, since it is independent of the output term, we only need to consider the
fractional electrical circuit systems (17).

Definition 4 ([12]). The fractional linear electrical circuit described by Equation (17) is called
(internally) positive if x(t) ∈ Rn

+ and all u(t) ∈ Rm
+ , t ≥ 0.

Theorem 9 ([12]). The fractional linear electrical circuit (17) is (internally) positive if and only if

A ∈ Mn, B ∈ Rn×m
+ . (31)

Definition 5 ([29]). If there exists the input u(t) ∈ Rm
+ for t ∈ [0, t f ], t f > 0, which steers the

state of electrical circuit from x(0) = 0 to the given final state x f ∈ Rn
+, i.e., x(t f ) = x f , we will

call this fractional positive electrical circuit (17), reachable in time [0, t f ].

Theorem 10. The fractional linear positive electrical circuit described by Equation (17) is reachable
in the time [0, t f ] if and only if the reachability matrix

Rα(t f ) =
∫ t f

0
(

t f
ρ − τρ

ρ
)α−1Eα,α(A(

t f
ρ − τρ

ρ
)α)BBTET

α,α(A(
t f

ρ − τρ

ρ
)α)

dτ

τ1−ρ
∈ Rn×n

+ (32)

is a monomial matrix.
The input u(t) ∈ Rm

+,t ∈ [0, t f ] which steers the state of system from x(0) = 0 to the given
final state x f ∈ Rn

+, is given by

u(τ) = BTET
α,α(A(

t f
ρ − τρ

ρ
)α)R−1

α (t f )x f ∈ Rm
+, τ ∈ [0, t f ]. (33)

Proof. The solution of (17) for t ≥ 0 has the form (18), let x(0) = 0, t = t f then we obtain

x(t f ) =
∫ t f

0
(

t f
ρ − τρ

ρ
)α−1Eα,α(A(

t f
ρ − τρ

ρ
)α)Bu(τ)

dτ

τ1−ρ
(34)
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It is well-known that R−1
α (t f ) ∈ Rn×n

+ if and only if the matrix (32) is monomial [12].
Substituting (33) into (34) we obtain

x(t f ) =
∫ t f

0
(

t f
ρ − τρ

ρ
)α−1Eα,α(A(

t f
ρ − τρ

ρ
)α)BBTET

α,α(A(
t f

ρ − τρ

ρ
)α)R−1

α (t f )x f
dτ

τ1−ρ

=
∫ t f

0
(

t f
ρ − τρ

ρ
)α−1Eα,α(A(

t f
ρ − τρ

ρ
)α)BBTET

α,α(A(
t f

ρ − τρ

ρ
)α)

dτ

τ1−ρ
R−1

α (t f )x f

= x f

(35)

Therefore, the input (33) steers the state of the electrical circuit from x(0) = 0 to
x(t f ) = x f .

Theorem 11. The fractional linear positive electrical circuit (17) is reachable if and only if the
following n× nm dimensional matrix is row full rank.

Qr = [B AB A2B · · · An−1B], rank Qr = n. (36)

Proof. Using the well-known Cayley-Hamilton theorem it is possible to write the transition
matrix in the form

Eα,α(A(
tρ

ρ
)α) =

n−1

∑
i=0

ai(tρ)Ai (37)

where the coefficients ai(tρ) depend on t, and ai(t) ≥ 0, i = 1, 2, . . . , n− 1.
Substitute the above formula into (34), we can get

x(t f ) =
n−1

∑
i=0

AiB
∫ t f

0
(

t f
ρ − τρ

ρ
)α−1ai(t f

ρ − τρ)u(τ)
dτ

τ1−ρ
(38)

where

∫ t f

0
(

t f
ρ − τρ

ρ
)α−1ai(t f

ρ − τρ)u(τ)
dτ

τ1−ρ
,



γi1
γi2

.

.

.
γim

 = γi, (i = 0, 1, ...n− 1). (39)

Then

x(t f ) =
n−1

∑
i=0

AiBγi = [B AB A2B ... An−1B]



γ0
γ1
.
.
.

γn−1

, (40)

where we let [B AB A2B · · · An−1B] = Qr. If the system is reachable γ0...γn−1 can
be obtained from Equation (40), when rank Qr = n.

5. Observability of Positive Linear Electrical Circuits Systems Described by
Generalized Fractional Derivatives

This section will study the observability of fractional linear electrical circuits described
by differential Equations (17) and (18). The positivity of electrical circuits described by (17)
and (18) have been explained in definition 3 and theorem 8. The observability of the circuit
will be studied below.
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Definition 6 ([29]). If by knowing the input u(t) and output y(t) for [0, t f ] it is possible to find
the unique x(0) ∈ Rn

+ of the electrical circuit, we will call the fractional positive electrical circuit
described by (17) and (18) is (strongly) observable in the interval of [0, t f ].

Theorem 12. The fractional positive electrical circuit described by (17) and (18) is observable in
the interval [0, t f ] if and only if the matrix

Wα =
∫ t f

0
(

tρ

ρ
)α−1ET

α,α(A(
tρ

ρ
)α)CTCEα,α(A(

tρ

ρ
)α)dt ∈ Rn×n

+ (41)

is a monomial matrix.

Proof. Assuming u(t) = 0 and we have

y(t) = C(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x(0). (42)

Using the value of y(t) in [0, t f ], by weighting, i.e., multiply ET
α,α(A( tρ

ρ )
α)CT left on

both sides of (42), then

(
tρ

ρ
)α−1ET

α,α(A(
tρ

ρ
)α)CTCEα,α(A(

tρ

ρ
)α)x(0) = ET

α,α(A(
tρ

ρ
)α)CTy(t). (43)

Integrating (43) on the interval [0, t f ], we obtain

Wαx(0) =
∫ t f

0
ET

α,α(A(
tρ

ρ
)α)CTy(t)dt

and

x(0) = W−1
α

∫ t f

0
ET

α,α(A(
tρ

ρ
)α)CTy(t)dt ∈ Rn

+ (44)

if and only if the matrix (41) is monomial [29].

Theorem 13. The fractional linear positive electrical circuit system described by (17) and (18) is
observable if and only if the following np× n dimensional matrix is column full rank.

Qo =



C
CA

.

.

.
CAn−1

, rank Qo = n (45)

Proof. Let u(t) = 0, the solution of the system described by (17) and (18) is

x(t) = (
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x(0), (46)

y(t) = C(
tρ

ρ
)α−1Eα,α(A(

tρ

ρ
)α)x(0), (47)
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Using the well-known Cayley-Hamilton theorem (37) and substituting (47), we have

y(t) = (
tρ

ρ
)α−1

n−1

∑
i=0

ai(tρ)CAix(0)

= (
tρ

ρ
)α−1[a0(tρ) a1(tρ) ... an−1(tρ)]



C
CA

.

.

.
CAn−1

x(0).

(48)

Let [C CA · · · CAn−1]T = Qo, since ai(tρ) is a known function, the initial state x(0)
can be uniquely determined according to y(t) in finite time [0, t f ] if and only if the matrix
Qo is column full rank.

6. Illustrative Examples

In this section, we will present some generalized fractional derivatives circuit systems
examples.

6.1. RC Circuit Systems

The circuit shown in Figure 1 is a fractional RC circuit. It includes source e, resistances
R1, R2 and R3 and fractional element Capacitor C1 and C2; both of them are of α. Denote
v(t) as voltage, let x1(t) = vC1 , x2(t) = vC2 and u(t) = e is the source voltage; u(t) and y(t)
are input and output vectors, respectively. Set its parameters as follows: C1 = 3× 104 µF,
C2 = 3× 104 µF, R1 = 10 Ω, R2 = 20 Ω, R3 = 30 Ω. Using Kirchhoff’s law, we can write
the following systems:

( 0Dα,ρx1)(t) = −
R2 + R3

C1R
x1(t) +

R3

C1R
x2(t) +

R2

C1R
u(t) (49)

( 0Dα,ρx2)(t) =
R3

C2R
x1(t)−

R1 + R3

C2R
x2(t) +

R1

C2R
u(t) (50)

where R = [R1(R2 + R3) + R2R3] and choose

y(t) = x1(t) + x2(t) (51)

Figure 1. The fractional RC circuit.
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The Systems Equations (49)–(51) can be rewritten into the following system

( 0Dα,ρx)(t) = Ax(t) + Bu(t) (52)

y(t) = Cx(t) (53)

where

A =

[
− R2+R3

C1R
R3

C1R
R3

C2R − R1+R3
C2R

]
, B =

[
R2

C1R
R1

C2R

]
, C =

[
1 1

]
. (54)

From (54), we have

A =

[
−1.515 0.909
0.682 −0.909

]
, B =

[
0.606
0.227

]
, C =

[
1 1

]
. (55)

According to (36),

Qr =
[
B AB

]
=

[
0.606 −0.71175
0.227 0.20695

]
, rank Qr = 2. (56)

From Theorem 11 it follows that the fractional RC circuit is reachable.
Also, from Theorem 13 it follows that

Qo =

[
C

CA

]
=

[
1 1

R3
C2R −

R2+R3
C1R

R3
C1R −

R1+R3
C2R

]
=

[
1 1

−0.833 0

]
, rank Qo = 2 (57)

the fractional RC circuit is observable.

6.2. RL Circuit Systems

The circuit shown in Figure 2 is a fractional RL circuit. It includes sources e1, e2,
resistances R1, R2 and R3, and fractional element Capacitor L1 and L2, both of them are
of α. Denote i(t) as current, let x1(t) = iL1 , x2(t) = iL2and u(t) is the source voltage;
u(t) and y(t) are input and output vectors, respectively. Set its parameters as follows:
L1 = 0.6 H, L2 = 0.8 H, R1 = 300 Ω, R2 = 400 Ω, R3 = 500 Ω.

Using Kirchhoff’s law, we can obtain the following systems equations:

( 0Dα,ρx1)(t) = −
R1 + R3

L1
x1(t) +

R3

L1
x2(t) +

1
L1

e1 (58)

( 0Dα,ρx2)(t) =
R3

L2
x1(t)−

R2 + R3

L2
x2(t) +

1
L2

e2 (59)

and choose
y(t) = R1x1(t) + R2x2(t) (60)

The system Equations (58)–(60) can be rewritten into the following systems equations:

( 0Dα,ρx)(t) = Ax(t) + Bu(t) (61)

y(t) = Cx(t) (62)

where

A =

[
− R1+R3

L1

R3
L1

R3
L2

− R2+R3
L2

]
, B =

[
1
L1

0
0 1

L2

]
, C =

[
R1 R2

]
, u(t) =

[
e1
e2

]
. (63)

From (63), we have

A =

[
−1.3 0.8
0.6 −1.1

]
, B =

[
1.7 0
0 1.25

]
, C =

[
300 400

]
. (64)
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According to (36),

Qr =
[
B AB

]
=

[
1.7 0 −2.2 1
0 1.25 1 1.4

]
, rank Qr = 2. (65)

From Theorem 11 it follows that the fractional RL circuit is reachable.
Also, from Theorem 13 it follows that

Qo =

[
C

CA

]
=

[
300 400
−150 −200

]
, rank Qo = 2 (66)

the fractional RL circuit is observable.

Figure 2. The fractional RL circuit.

6.3. RC, RL Circuit Systems with Different Parameters ρ

Consider the RC electrical circuit (49–51) described by the left generalized fractional
derivative with C1 = 3× 104 µF, C2 = 3× 104 µF, R1 = 10 Ω, R2 = 20 Ω, R3 = 30 Ω and
e = 6. The numerical simulations for the circuit with α = 0.85 and ρ = 0.8 are depicted in
Figure 3. In the RC circuit described by (49–51) with α = 0.85, the relationship between the
states and different parameters ρ is shown in Figure 4.

Consider the RL electrical circuit (58–60) described by the left generalized fractional
derivative with L1 = 0.6 H, L2 = 0.8 H, R1 = 300 Ω, R2 = 400 Ω, R3 = 500 Ω, e1 = 23.56
and e2 = 5.89. The numerical simulations for the circuit with α = 0.85 and ρ = 0.8 are
depicted in Figure 5. And the relationship between states and different parameters in RL
circuit described by (58–60) with α = 0.85 are depicted in Figure 6.
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Figure 3. Voltage trajectories across the capacitors described by the fractional RC circuit (49–51).

(a) (b)

Figure 4. States with different parameters in RC circuit (49–51): (a) Trajectory of x1 with different parameters; (b) Trajectory
of x2 with different parameters.

Figure 5. Current trajectories across the inductors described by the fractional RL circuit (58–60).



Mathematics 2021, 9, 2856 14 of 16

(a) (b)

Figure 6. Relationship between states and different parameters in RL circuit (58–60): (a) Trajectory of x1 with different
parameters; (b) Trajectory of x2 with different parameters.

7. Conclusions

In this work, we use the differential equations based on the generalized fractional
derivative to describe linear electrical circuits systems, and discuss the positivity of the
electrical circuits systems, methods of checking the positivity of the systems are also pre-
sented. The main work is to deduce the checking method of reachability and observability
of fractional order positive linear electrical circuit systems described by generalized frac-
tional derivative. The ρ-Laplace transform of a Mittage-Leffler function with matrix form
is proved, and the conditions of this transformation are also given. At the end of the
paper, illustrative examples of RLC, RC and RL electrical circuits systems are presented, the
influence of parameter ρ on the state trajectory is observed, and it is found that parameter ρ
has an influence on the slope of the state trajectory. The state trajectory of the circuit system
described by the generalized fractional derivative is more realistic.
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Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 23–26 August 2021; Institute of Electrical and
Electronics Engineers: New York, NY, USA, 2021.

36. Gu, P.; Chen, Y.; Tian, S. Learnability of Linear Fractional-Order ILC Systems. IEEE Trans. Circuits Syst. 2021, 68, 963–967.
[CrossRef]

http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1016/j.cam.2014.10.016
http://dx.doi.org/10.1016/j.chaos.2019.08.017
http://dx.doi.org/10.3934/Math.2019.1.147
http://dx.doi.org/10.3906/elk-1312-49
http://dx.doi.org/10.1140/epjp/i2017-11293-3
http://dx.doi.org/10.5560/zna.2014-0049
http://dx.doi.org/10.1177/1687814017707132
http://dx.doi.org/10.1002/cta.2564
http://dx.doi.org/10.1016/j.aeue.2017.12.031
http://dx.doi.org/10.1002/cta.2348
http://dx.doi.org/10.1007/s00034-012-9432-z
http://dx.doi.org/10.1140/epjp/i2019-12618-x
http://dx.doi.org/10.1515/ijnsns-2019-0267
http://dx.doi.org/10.12716/1001.07.02.08
http://dx.doi.org/10.22436/jnsa.012.09.01
http://dx.doi.org/10.1109/TCSII.2021.3069323
http://dx.doi.org/10.3390/math9192441
http://dx.doi.org/10.1016/j.aej.2020.01.008
http://dx.doi.org/10.1093/qmath/os-11.1.212
http://dx.doi.org/10.2478/s13540-014-0174-4
http://dx.doi.org/10.1109/TCSII.2020.3017498


Mathematics 2021, 9, 2856 16 of 16

37. Kaczorek, T. Reachability and controllability to zero of positive fractional discrete-time systems. In Proceedings of the European
Control Conference (ECC), Kos, Greece, 2–5 July 2007; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2007.

38. Kaczorek, T. Invariant properties of positive linear electrical circuit. Arch. Elektrotech. 2019, 68, 875–890.
39. Yuan, T.; Yang, H. Invariance of reachability and observability for fractional positive linear electrical circuit with delays. Arch.

Elektrotech. 2021, 70, 513–530.


	Introduction
	Generalized Fractional Integrals, Derivatives and -Laplace Transform
	Positive Linear Electrical Circuits Described by Generalized Fractional Derivatives
	Reachability of Positive Linear Electrical Circuits Systems Described by Generalized Fractional Derivatives
	Observability of Positive Linear Electrical Circuits Systems Described by Generalized Fractional Derivatives
	Illustrative Examples
	RC Circuit Systems
	RL Circuit Systems
	RC, RL Circuit Systems with Different Parameters 

	Conclusions
	References

