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Abstract: Peridynamics (PD) is a novel nonlocal theory of continuum mechanics capable of describing
crack formation and propagation without defining any fracture rules in advance. In this study, a
multi-grid bond-based dual-horizon peridynamics (DH-PD) model is presented, which includes
varying horizon sizes and can avoid spurious wave reflections. This model incorporates the volume
correction, surface correction, and a technique of nonuniformity discretization to improve calculation
accuracy and efficiency. Two benchmark problems are simulated to verify the reliability of the
proposed model with the effect of the volume correction and surface correction on the computational
accuracy confirmed. Two numerical examples, the fracture of an L-shaped concrete specimen and the
mixed damage of a double-edged notched specimen, are simulated and analyzed. The simulation
results are compared against experimental data, the numerical solution of a traditional PD model,
and the output from a finite element model. The comparisons verify the calculation accuracy of the
corrected DH-PD model and its advantages over some other models like the traditional PD model.

Keywords: peridynamics; dual-horizon; crack propagation; variable horizon; multi-grid

1. Introduction

Material fracture is a classical problem in solid mechanics [1]. In contrast to experi-
mental research, numerical simulations provide a more efficient approach to understanding
material fractures since they eliminate the limitations of complex specimen preparation,
test environment conditions, and loading systems. The finite element method (FEM) is one
of the commonly used numerical methods for solving fracture problems [2,3]. However,
the crack-induced spatial discontinuities are not compatible with the partial differential
equations in classical FEM models [4]. To deal with this problem, some remeshing tech-
niques were incorporated into FEM models, which were usually cumbersome and time
consuming [5,6]. Recently, the extended finite element method (XFEM) was proposed to
solve the intermittent problems of cracks, holes, and inclusions by introducing additional
nodal degrees of freedom and local strengthening functions [7,8]. Besides, the element
erosion technique [9,10] and the phase field method [11,12] were proposed to simulate the
problems of crack propagation with different levels of success. However, these methods
are not applicable to simulate complex multi-crack extended penetration problems in three
dimensions [13].

In recent years, meshless methods have been developed and applied in various engi-
neering fields. They can simulate complex discontinuity without the remeshing process.
For example, Cheng and Li [14] proposed a complex variable meshless method for fracture
problems. Gao and Cheng [15] developed a meshless manifold method based on the com-
plex variable moving least-squares approximation and the finite cover theory for fracture
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problems. Khazal et al. [16] presented an extended element free Galerkin method (XEFGM)
for fracture analysis of functionally graded materials. In addition, the discrete element
method (DEM) is suitable for simulating crack formation and propagation based on the
discontinuity assumption. For instance, Kou et al. [17] adopted the DEM to investigate the
dynamic crack propagation and branching in brittle solids. Owayo et al. [18] investigated
the formation and propagation of cracks in cement-based materials via DEM simulations.
Although some promising achievements have been obtained through the above researches,
DEM has limitations when describing the mechanical behavior of the continuous material.

More recently, Silling et al. [19,20] proposed a new nonlocal theory of continuum
mechanics called peridynamics (PD) for solving material fracture problems. It describes
such a phenomenon by means of the failure of bonds linking material points. This method
replaces the differential form of traditional balance equations with an integral form to
avoid the singularity problem arising from the derivations at discontinuities. Therefore,
PD is appropriate to describe the crack propagation in a unified framework. Owing to
these advantages, it has been successfully applied to crack propagation problems [21,22],
composite material damage [23,24], fluid mechanics and acoustics [25], and heat conduction
analysis [26,27] etc. There are several kinds of peridynamics, such as bond-based PD [19],
state-based PD [28], and element-based PD [29] etc., and they can be easily coupled with
other numerical methods to deal with the interaction between different materials, such as
PD-FEM [30], PD-SPH [31], and PD-DEM [32].

In traditional PD, the problem domain should be discretized into a series of particles
with the same size and uniform distribution, thus limiting its application to complex
problems such as multiscale analysis, multi-material problems, and adaptive analysis.
Dipasquale et al. [33] proposed an adaptive refinement-coarsening method and applied
it to a one-dimensional elastic wave propagation simulation. However, the problem of
spurious stress waves was not completely solved in this model. Bobaru et al. [34] introduced
adaptive refinement algorithms for peridynamics to deal with static and dynamic elasticity
problems in 1D. Shojaei et al. [35] proposed an adaptive refinement strategy to use a
variable grid size in a peridynamic model, which was verified to be effective and efficient.
This approach was then successfully applied to simulate the fracture of a ceramic disk
under central thermal shock [36]. Ren et al. [37,38] proposed a dual-horizon peridynamics
(DH-PD) model incorporating non-uniform particle distribution and variable horizons to
completely solve the problem of spurious stress waves. Wang et al. [39] derived state-based
DH-PD governing equations using the Euler-Lagrange description, and they analyzed the
dispersion characteristics of the model.

In this study, a particle volume correction and a surface correction are introduced in
the DH-PD model to improve the calculation accuracy. In addition, the computational
efficiency of this model is increased by incorporating a multi-grid technique. Two bench-
mark problems are simulated to verify the calculation accuracy of this model. Finally, this
model is applied to analyze two numerical examples to validate the model’s reliability
and applicability.

2. Peridynamics Theory
2.1. Traditional Peridynamics Theory

In traditional PD, the object occupying the spatial domain R is discretized into a
series of closely arranged material points, as shown in Figure 1. The circular (spherical)
region around the material point, x, with itself as the center point and δ as the radius is
called the horizon, Hδ. The interaction force between the material point, x, with any other
neighboring point, x′, in the horizon (x′ ∈ Hδ) is called a pairwise force (bond). At any
moment, t, the governing equation for any material point, x, is as follows [19]:

ρ
∂2u(x, t)

∂t2 =
∫

Hx
f(η,ξ)dVx′ + b(x, t) ∀η,ξ. (1)
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Figure 1. Peridynamics model.

In Equation (1), f is the pairwise bond force between the material point x and its
neighboring point x′, ρ is the density of the material, b is the body force vector, and u is the
displacement vector. The integration domain, Hx, is the horizon of material point, x, in the
reference configuration, mathematically, as Hx = {x′ ∈ R| ‖ x′ − x ‖ ≤ δ}. Additionally,
δ is the radius of the nonlocal horizon of the material point, which is constant for each
material point in the traditional PD theory. Finally, ξ = x′ − x and η = u′ − u denote the
relative position vector and the relative displacement vector with neighboring particles in
the reference configuration, respectively.

The key to building a PD model is to find an appropriate pairwise force function, f.
Theoretically, any function that satisfies the linear admissibility condition and the angular
admissibility condition can be a pairwise force function. In a bond-based PD model, the
direction of the pairwise force vector is parallel to the displacement vector, ξ + η. For
microelastic materials, the pairwise force function in PD model is given by

f(η,ξ) = µc(δ)s(η,ξ)
η+ ξ

‖η+ ξ‖ . (2)

In Equation (2), c(δ) denotes the microelastic modulus, which can be derived from the
strain energy equivalence principle, and expressed in terms of E and ν:

c(δ) =



2E
Aδ2 1D,

3E
πδ3(1−ν)

planestress,
3E

πδ3(1+ν)(1−2ν)
planestrain,

3E
πδ4(1−2ν)

3D.

(3)

Additionally, s represents the bond stretch ratio between two material points, as
defined by:

s(η,ξ) =
‖η+ ξ‖ − ‖ξ‖

‖ξ‖ . (4)

When s is greater than the critical elongation ratio, s0, of the material, the bond
between these two points is considered to be broken, and the corresponding pairwise force
disappears. The critical elongation ratio, s0, can be determined by the relationship given by
Ren et al. [37]:

s0(δ) =


√

4πGc/(9Eδ) planestress,√
5πGc/(12Eδ) planestrain,√
5Gc/(6Eδ) 3D,

(5)
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where Gc is the critical energy release rate of the material.
The variable µ in Equation (2) is a historical parameter describing whether the bond is

broken. In this case, µ is defined as:

µ(t,η,ξ) =
{

1, s < s0,
0, other.

(6)

According to the above criterion for bond breakage, the degree of damage at the local
material point, x, can be expressed as:

ϕ(x, t) = 1−
∫

Hx
µ(t,η,ξ)dVx′∫

Hx
dVx′

. (7)

2.2. Dual-Horizon Peridynamics Theory

In traditional PD theory, the force acting on the particle x is the sum of the pairwise
forces from all the neighboring particles in the horizon. Therefore, the horizon must be
constant for all particles to ensure that the force always appears in pairs. If the horizons are
variable, as shown in Figure 2, particle x is subjected to the force f(η, ξ) from the particle x′

in its horizon. However, x′ is not subjected to the force from x because its horizon does
not include particle x. In this case, the existence of such an unbalanced force destroys
the balance of linear momentum and angular momentum and results in ghost forces and
spurious wave reflections during the simulation.

Figure 2. Force vector in peridynamics with varying horizons.

Recently, Ren et al. [37] proposed the concept of dual-horizon, which can solve the
spurious wave reflection problem. The dual-horizon is a union of points, the horizons
of which include x. It is expressed, mathematically, as H′x = {x′‖x ∈ Hx′ , x′ ∈ R}. The
superscript prime of H′x denotes a dual-horizon, and the subscript x denotes the object
particle. Therefore, dual-horizon can be interpreted as a set of horizons that belong to
particles that can include x in their horizons. In the DH-PD theory, a particle is subjected to
two types of forces. The first one is the force from a neighboring particle in the horizon.
The other one is the force from the particle in the dual-horizon. Furthermore, these two
different types of forces are independent of each other, and the bond and dual bond can
break independently in the fracture models.

In Figure 2, Hx is the horizon of particle x, where the bond xx′ will exert a direct force
fxx′ on x, and x′ will be subjected to the reaction force− fxx′ according to Newton’s third
law. Likewise, the dual bond x′x will exert a direct force fx′x on x′, and x will be subject
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to the reaction force− fx′x. The time-dependent governing equations of DH-PD [40] are
given as follows:

ρ
∂2u(x, t)

∂t2 =
∫

Hx
fxx′(η,ξ)dVx′ −

∫
H′x

fx′x(−η,−ξ)dVx′ + b(x, t), (8)

{
fxx′ = µc(x′,δx′)s

η+ξ
‖η+ξ‖ ,

fx′x = −µc(x,δx)s η+ξ
‖η+ξ‖ .

(9)

The micromodulus, c, in Equation (9) depends on the particle spacing of the material
point x and is half of the corresponding micromodulus in traditional PD, see Equation (3).

3. DH-PD Numerical Method

Figure 3 shows the program flowchart of the DH-PD model, which contains the pre-
processing module, particle generation module, boundary treatment module, and damage
degree calculation module. The C++ programming language is used to write the program
code in this study.

Figure 3. Program flowchart of the DH-PD model.
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3.1. Non-Uniform Discretization

The problem domain in the PD model is discretized into a series of particles with the
material information in the reference configuration. There are no elements or other geo-
metrical connections between the particles. The size of each particle is uniformly arranged
and contains a certain volume. The spatial information of each particle is characterized by
the geometric center. Horizons of the particles in the DH-PD model are variable, so, finer
discretization with smaller horizons is always used in the concerning region, such as the
damage area. Additionally, the variability of the horizons requires coarser particles for the
unimportant areas.

The discretization is carried out layer by layer. First, the domain is discretized into
a series of coarse particles with the same spacing. Then, the second-level discretization
is carried out in the area with high stress concentration. The coordinates of the second-
level particles can be determined based on their geometric relationship with the first-level
particles. For example, a two-dimensional plane consists of four particles (P0, P1, P2,
P3) with a volume of V and a spacing of ∆x, as shown in Figure 4. For the second-level
discretization, a coarse particle (P1) with the coordinates (x1, y1) can be divided into four
fine particles (P10, P11, P12, P13), with a volume of 0.25 V and a spacing of 0.5 ∆x. Therefore,
the coordinates of the fine particle P11 are (x1 + ∆x/4, y1 + ∆x/4). In the same way, the
second-level particle (P11) can be divided into four third-level particles (P110, P111, P112,
P113). The volume of the third-level particle is V/16, and the particle spacing is ∆x/4. Based
on this discretization, the coordinates of these finer particles can be easily determined by
their geometrical relationships.

Figure 4. Layer-by-layer discretization in DH-PD model.

It is worth noting that, when the size difference between adjacent particles is too big,
the finer particles cannot include any coarse particles in their horizons, which may result
in bond deficiency and lead to unexpected failure near the interface. Therefore, in the
presented model, the size difference between adjacent particles is suggested to be smaller
than the radius of the finer particle’s horizon.

3.2. Volume Correction and Surface Correction

In PD theory, the problem domain is discretized into a series of particles, and each
particle interacts with the neighboring particles in its horizon. However, some particles
are located on the boundary and are not completely included in the horizon, as shown
in Figure 5. Therefore, the model requires corrections with regards to the volumes of
these particles when calculating the pairwise forces. For the multilevel discretization in
DH-PD, the horizons of different particles vary with particle size, the particle volume can
be corrected as:

Vj =


∆x3 (‖ξ‖ ≤ δ− 0.5∆x),
[(δ+ 0.5∆x− ‖ξ‖)/∆x]∆x3 (δ− 0.5∆x < ‖ξ‖ ≤ δ),
0 otherwise.

(10)
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Figure 5. Volume correction for the collocation points inside the horizon.

For the particles near the boundary of the problem domain, the number of neighboring
particles in the horizon is lower than other particles, as shown in Figure 6. Therefore, the
stiffness of the particles near the boundary is falsely reduced [41]. To deal with this problem,
Scabbia et al. [42] presented an effective approach to mitigate the surface effect in state-
based Peridynamics. Madenci and Oterkus [43] reconstructed the strain energy density
near the boundary through the force density method and energy method to obtain the
corresponding correction coefficients. The surface correction factor can be obtained by
exerting a simple fictitious load to the object along the direction of the reference coordinate
system. Based on this, the ratio of the strain energy densities calculated through the classical
continuum mechanics theory and PD theory can be used as a valid surface correction factor.

Figure 6. Bond deficiency for the material points close to the free surfaces.

3.3. Explicit Time Integration

Explicit time integration is the simplest solution for the PD equations in dynamics
simulations. In this method, acceleration and velocity are approximatively determined by
the finite difference form of the displacement [44]:

..
un
(k) =

.
un+1
(k) −

.
un
(k)

∆t
, (11)

.
un+1
(k) =

..
un
(k)∆t +

.
un
(k). (12)
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In Equations (11) and (12), u,
.
u,

..
u define the displacement, velocity, and acceleration

vector, respectively. In addition, ∆t represents the time increment, k denotes the particle
number, and n equals the time step number. With this, displacement can be updated as:

un+1
(k) =

.
un
(k)∆t + un

(k). (13)

Restricting the time step increment ensures the stability of the time integration, because
the computational stability decreases as the time step increases. Silling and Askari [20]
proposed a relationship,

∆t =

√√√√ 2ρ

∑
p

∆VpCp
, (14)

to determine the critical time step in a PD model, where p is the number of the neighboring
particles in the horizon, ∆Vp is the volume of the neighboring particle, and Cp is the
microelastic modulus of the material.

4. Numerical Examples and Discussions

In this section, two benchmark tests are simulated to verify the accuracy and stability
of the corrected DH-PD model: longitudinal vibration of a bar and wave reflection in a
rectangular plate. The numerical results are compared with the analytical solutions and
the finite difference method (FDM) results to validate the computational accuracy and the
feasibility of the non-uniform discretization. Then, the corrected DH-PD model simulates
two numerical examples: fracture of an L-shaped concrete specimen and mixed damage of
a double-edged notched (DEN) specimen. The applicability and unique advantages of this
model in crack propagation modeling are discussed.

4.1. Benchmark Problem 1: Longitudinal Vibration of a Bar

Figure 7 shows a bar with a fixed end on the left. The set parameters for the bar
include the length of the bar, L = 1 m, the elastic modulus, E = 200 GPa, its Poisson’s ratio,
ν = 0.33, and the density, ρ = 7850 kg/m3. The initial velocity of each material point is
vx (x, t) = 0, and the initial displacement gradient is defined as:

∂ux

∂x
= εH(∆t− t), (15)

where H is a step function, and ε = 0.001 is the initial strain.

Figure 7. Geometry of a bar and its discretization.

The bar is discretized into 1000 particles with a particle size of ∆x = 0.001 m. Three
fictitious boundary particles are fixed at the left side of the bar for the enforcement of
displacement constraints. “No-fail zone” is commonly used for some applications under
extreme loading conditions to avoid unexpected failure between the particles close to the
external boundaries. For the loading conditions in the numerical examples presented in
this paper, no-fail zone is not used. The computational time step is set as ∆t = 0.2 µs, and
the horizon associated with each particle is set as 3∆x. The particle with the initial position
of x0 = 0.5 m is selected as the analysis object. Its displacement time history is compared
with the analytical solution [44], as shown in Figure 8. The expected longitudinal vibration
is successfully captured by the DH-PD model after the volume correction and surface
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correction. Overall, the numerical results are consistent with the analytical solution, thus
verifying the accuracy of the presented DH-PD model.

Figure 8. Variation of the displacement of the particle numbered 500 with time.

An error analysis is conducted, below, to assess the effect of the volume correction and sur-
face correction on the calculation accuracy. The parameters are set ‖Error‖ =

∥∥∥u− uanalytic

∥∥∥
(shown in Figure 9), and the analysis shows that the introduction of the volume correction
and surface correction reduces the error to 0.01 mm.

Figure 9. Errors of the DH-PD model with and without correction.

Figure 10 shows the convergence curves of DH-PD and corrected DH-PD models at
t = 4.0 ms. It indicates that the L2 error in the displacement of the corrected DH-PD model
is smaller than that of the DH-PD model, thus verifying that the volume correction and
surface correction can improve the computational accuracy to some extent. Figure 10b
shows that horizon size has little effect on the computational accuracy for the corrected
DH-PH model in this case study. According to Silling and Askari [20], the horizon radius
slightly greater than 3∆x usually works well. Therefore, the horizon radius is fixed at
3.015 times the particle size in this work.
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Figure 10. Convergence curves in L2 error norm of DH-PD and corrected DH-PD models.

4.2. Benchmark Problem 2: Wave Reflection in a Rectangular Plate

Figure 11 shows the geometric size of a rectangular plate in the initial state of: length,
L = 10 m, width, W = 1 m, elastic modulus, E = 10 GPa, density, ρ = 2500 kg/m3, and
Poisson’s ratio, ν = 0.33. The left end of the plate is fixed, and the right end is assigned a
velocity boundary, v(t), based on Equation (16). In Equation (16), H (t0 − t) is the Heaviside
function, and t0 = 2 ms is the duration of the velocity boundary. The plate is dispersed
into 1600 particles, and there is a dense area in the middle section of the plate with the
following PD parameters: matter point dispersion spacing (∆x = 0.1 m), particle spacing in
the encrypted region (0.5∆x), and the time step (∆t = 1 µs).

v(t) = (1− cos
2π

t0
t)H(t0 − t). (16)

Figure 11. Geometry of the plate in the initial state.

The numerical results of the velocity wave propagation through the dense zone are
shown in Figure 12 (DH-PD above, PD below). When the time is 2.4 ms, the velocity
waveform transmitted is about to enter the dense area. Figure 12a shows that both PD and
DH-PD simulate this stage accurately. When the time is 3.4 ms, the velocity of the center
point in the dense area reaches the theoretical maximum of 2 m/s when using the DH-PD
algorithm. When the traditional PD algorithm is used, the phenomenon of false wave
reflection to the right will be found, weakening the wave peak of the velocity waveform in
the dense area (Figure 12b). This violates the wave propagation theory in the same material
and cannot completely simulate the wave propagation process. When the time reaches
4.6 ms, the velocity wave leaves the dense area and enters the non-dense area (Figure 12c).
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Figure 12. Velocity contour of wave passing through dense area.

The material points at the free end of the plate and the middle-end of the plate are
monitored and their velocity characteristics are extracted and shown in Figure 13. The
FDM simulation curves are almost identical to the analytical solutions, both of which can
be used as a reference group. The conventional PD simulation is used to show anomalous
spurious reflected waves. At a time of 3.5 ms, the velocity in the dense region is less than
1 m/s, which is half of the real value, and the spurious velocity wave is also received at
the free end. DH-PD can simulate the complete propagation process of the wave, and it
matches both the analytical solution and the FDM solution.

Figure 13. Time-velocity curves of analytical solution and numerical solution. (a) Velocity history at
the free end of the bar. (b) Velocity history at the middle of the bar.
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4.3. Numerical Application 1: Fracture of L-Shaped Concrete Specimen

Figure 14 shows the geometry of an L-shaped concrete specimen [45,46]. A total of
22,728 particles with different particle sizes and varying horizons are used in this case.
Specifically, 7504 finer particles (∆x = ∆y = 1.25 mm) are used near the corner of the
L-shaped specimen, where the stress is relatively concentrated, 4300 coarser particles
(∆x = ∆y = 5 mm) are distributed at the periphery of the specimen, and 10,924 particles of
size ∆x = ∆y = 2.5 mm are distributed between finer particles and coarser particles. The
horizon size is set as 3.015 times the particle spacing. The information of the particles is
shown in Table 1 and Figure 14. The other physical parameters include the modulus of
elasticity, E = 25.85 GPa, the Poisson’s ratio, ν = 0.18, the energy release rate, Gc = 65 J/m2,
and the time increment, ∆t = 0.1 µs. A displacement boundary, u, is exerted at the left side
of the specimen, as shown in Figure 14.

Figure 14. L-shaped plate geometry and three-level discretization.

Table 1. Values of peridynamics parameters for the DH-PD model.

Level ∆x = ∆y Horizon δ Particle Numbers

I 5 mm 3.015 ∆x 4300
II 2.5 mm 3.015 ∆x 10,924
III 1.25 mm 3.015 ∆x 7504

Total 22,728

Figure 15 shows the simulated crack propagation in the L-shaped plate. At t = 0.65 ms,
a crack appears at the corner point of the L-shaped plate and propagates in the direction of
26◦ on the horizontal. Then, the direction of crack propagation changes to horizontal at a
time close to t = 1 ms. The transverse crack expands to the right boundary of the specimen
and cuts across the plate when t = 2.5 ms.



Mathematics 2021, 9, 2848 13 of 19

Figure 15. Snapshots of simulated crack propagation in the L-shaped plate.

Figure 16 shows the numerical and experimental crack propagation paths. The simu-
lated results essentially coincide with the experimental data recorded in the literature [45].
To quantitatively compare the results, the Pearson correlation coefficient of the experimen-
tal and numerical crack paths in Figure 16 is calculated. In this case, 52 points on the crack
paths with an equal horizontal distance from the corner point are selected as the analysis
objects. Assuming the vector X (x1, x2, x3, . . . . . . , x52) represents the calculated vertical
coordinates of these points, and Y (y1, y2, y3, . . . . . . , y52) represents the measured ones in
the experiment, the Pearson correlation coefficient of the two vectors can be calculated as:

Corr(X, Y) =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 ×

n
∑

i=1
(yi − y)2

. (17)

Figure 16. Comparison of the numerical and experimental crack propagation paths [45].

In Equation (17), x and y are the average values of the two data sets, respectively.
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According to Equation (17), the correlation coefficient between the experimental and
numerical results is calculated to be 0.988, suggesting that the numerical results have a
strong correlation with the experimental data. Therefore, the calculation accuracy of the
presented DH-PD model is verified.

To quantitatively compare the numerical and experimental results, the load-displacement
curves are obtained based on the numerical results, and are compared with the experimental
data in Figure 17. The comparison shows that the varying tendencies of the simulated
curves match the experimental data well, and the calculated peak values of the load are
close to the test value, thus verifying the validity and applicability of the presented model.
In addition, the figure also shows that the corrected DH-PD model has a relatively higher
simulation accuracy than DH-PD model.

Figure 17. Comparison of the numerical and experimental displacement–load curves [45].

4.4. Numerical Application 2: Mixed Damage of a DEN Specimen

Figure 18 shows a square thin plate with a length of 200 mm on each side, an elastic
modulus of E = 30 GPa, a density of ρ = 2265 kg/m3, a Poisson’s ratio of ν = 0.33, and
energy release rates of GIc = 110 J/m2 and GIIc = 1100 J/m2. There is a prefabricated crack
25 mm in length and 5 mm in width on both sides of the specimen [46,47]. A uniform load,
p, with a resultant force of 5 kN is applied in the horizontal direction on the left upper half
and the right lower part of the plate. Meanwhile, a velocity load, v = 10 mm/s, is applied
at the upper and lower boundaries of the plate, as shown in Figure 18.

Figure 18. Geometric dimensions of a double-edged notched specimen.
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The PD and DH-PD models are separately used to simulate this problem with the
model parameters shown in Table 2. In the PD model, the square specimen is discretized
into 25,440 particles with a spacing of ∆x = ∆y = 1.25 mm. In the DH-PD model, the
specimen is discretized into two kinds of particles: 5280 finer particles with a spacing of
∆x = ∆y = 1.25 mm in the middle part of the specimen, and 5040 coarser particles with a
spacing of ∆x = ∆y = 2.5 mm near the boundary of the specimen. The uniform force, p,
on both sides is transformed into a physical load, p/∆y, which is applied to the particles
at the outermost layer of the plate. The velocity load, v, is exerted on the three layers of
particles at the upper and lower boundaries of the specimen. Finally, the step length is set
to ∆t = 0.1 µs.

Table 2. Values of peridynamics parameters for the PD and DH-PD models.

Model ∆x = ∆y Horizon δ Particle Numbers

PD 1.25 mm 3.015 ∆x 25,440
DH-PD 2.5 mm, 1.25 mm 3.015 ∆x 5040 + 5280 = 10,320

Figure 19 shows the simulated crack propagation in the DEN specimen based on
both the traditional PD model and the DH-PD model proposed in this work. The crack
paths and the propagation velocities obtained from these two models match each other.
To compare the computational efficiency of the two models, Table 3 shows the calculation
times of the same simulation using both models. The DH-PD model drastically improves
the use of computational resources largely by increasing efficiency by 119.4% under the
same operation mode.

Figure 19. Cont.
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Figure 19. Snapshots of simulated crack propagation in the double-edged notched specimen using
the DH-PD model (left) and traditional PD model (right).

Table 3. Calculation time and efficiency of the two models.

Model Particle Numbers Calculation Time

PD 25,440 390.172 s
DH-PD 10,320 177.866 s

Efficiency Increased 119.4%

Figure 20 compares the simulated crack paths with experimental data obtained by
Nooru-Mohamed et al. [47], those calculated by the FEM model proposed in [48], and
the traditional PD model. All the simulated crack paths coincide with the experimental
results. To quantitatively analyze the computational accuracy of the corrected DH-PD
model, Table 4 lists the Pearson correlation coefficients of the numerical and experimental
crack paths shown in Figure 20. The comparison demonstrates that the simulation results
obtained by the corrected DH-PD model proposed in this study match the experimental
results better than those obtained by other numerical models.

Figure 20. Comparison of the experimental and numerical (from the models of current study and
other numerical studies) crack paths [47,48].
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Table 4. Correlation coefficients between the test and numerical results on the crack paths.

Numerical Models Corrected DH-PD DH-PD PD FEM

Correlation Coefficients 0.957 0.952 0.952 0.929

5. Conclusions

In this study, an efficient DH-PD model was developed based on the PD theory and
the concept of dual-horizon. In this model, a technique of nonuniformity discretization
with variable horizons was incorporated, which significantly improved the computational
efficiency. Moreover, volume correction and surface correction were introduced to improve
computational accuracy of the model. Finally, the DH-PD model was verified and applied
to simulate crack propagation problems, producing valuable results.

The presented DH-PD model was verified through the simulation of benchmark prob-
lems. After comparing the numerical results against the analytical solution and FDM
results, high goodness of fit was obtained to verify the accuracy of the corrected DH-PD
model. No spurious wave reflection was found during the simulation, confirming the
advantage of the corrected DH-PD model over the traditional PD method. Addition-
ally, the surface correction and particle volume correction could substantially reduce the
calculation error.

In the simulation of the fracture of an L-shaped concrete specimen, the specimen was
discretized into particles with three different sizes and varying horizons. The simulated
crack propagation produced a crack path consistent with the experimental results. Based on
the Pearson correlation coefficient for quantitatively comparing the results, the coefficient
value of 0.988 verified the calculation accuracy of the presented DH-PD model.

The corrected DH-PD model simulates the mixed damage of a DEN specimen. The
simulated crack paths were compared against the experimental data and the results ob-
tained by the traditional PD model and the FEM model. The comparison showed that
the corrected DP-PD model has a higher simulation accuracy than the FEM model and is
computationally more efficient than the traditional PD method.
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