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Abstract: Non-negative matrix factorization is a relatively new method of matrix decomposition
which factors an m× n data matrix X into an m× k matrix W and a k× n matrix H, so that X ≈W × H.
Importantly, all values in X, W, and H are constrained to be non-negative. NMF can be used for
dimensionality reduction, since the k columns of W can be considered components into which X
has been decomposed. The question arises: how does one choose k? In this paper, we first assess
methods for estimating k in the context of NMF in synthetic data. Second, we examine the effect
of normalization on this estimate’s accuracy in empirical data. In synthetic data with orthogonal
underlying components, methods based on PCA and Brunet’s Cophenetic Correlation Coefficient
achieved the highest accuracy. When evaluated on a well-known real dataset, normalization had
an unpredictable effect on the estimate. For any given normalization method, the methods for
estimating k gave widely varying results. We conclude that when estimating k, it is best not to apply
normalization. If the underlying components are known to be orthogonal, then Velicer’s MAP or
Minka’s Laplace-PCA method might be best. However, when the orthogonality of the underlying
components is unknown, none of the methods seemed preferable.

Keywords: non-negative matrix factorization; normalization; PCA; factorization rank; number of
factored components; high-dimensional data; unsupervised learning

1. Introduction

Matrix decomposition methods [1–3] are an important area of study in mathematics,
and encompass approaches to factoring an observed matrix into a mixture of other matrices.
This addresses a common challenge in environmental and public health research where
data is measured empirically as a mixture of source signals, but it is important to unmix
the data to understand the underlying structure of the phenomenon being studied.

NMF is an unsupervised learning approach used to perform matrix decomposition,
and requires that the number of unmixed components be supplied by the experimenter.
Yet, the number of underlying components is often unknown and, indeed, the optimal
approach to determining the correct number is not clear. Moreover, data is typically
preprocessed, including normalization, prior to applying the NMF procedure. Similarly,
it is not clear what normalization procedure is optimal. Here, we formally evaluate existing
rank selection methods based on various normalization schemes in the context of NMF.
We are not aware of a paper that specifically addresses the issue of rank selection and data
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normalization within the context of NMF, and believe this is the first of its kind in dealing
with this important problem.

The NMF approach has found a range of uses in both environmental science and
public health, with various computational implementations. For instance, Jiang et al. [4]
employed a concordance method to discover five stable factors shaping the family structure
of ocean microbes based on genomic sequencing. Sutherland-Stacey and Dexter [5], used
projected gradient descent to identify two chemical factors corresponding to pollutants in
the spectra measured from dairy processing wastewater. Ramanathan et al. [6] used the
alternate least squares algorithm to identify and characterize five geo-temporal patterns
explaining the co-occurrence of asthma and flu based on ZIP code. In the context of public
health, Stein-O’Brien et al. [7] demonstrated the application of NMF to gene-expression
data and reviewed its utility in addressing questions ranging from systems-level to cell-
level analysis in genetics. Liu et al. [8] demonstrated a graph-regularized implementation
to identify 38 factors linking microbes and their associated diseases. Applications of NMF
are not limited to −omics data, as evidenced by a recent effort in which Luo et al. [9]
used alternating least squares with a projected gradient descent to capture 13 latent topics
related to suicidality in social media.

Some decomposition methods, such as the Cholesky decomposition, the Lower-Upper
decomposition, the QR decomposition, and Singular Value Decomposition (SVD), provide
a means for computing the inverse or pseudoinverse (generalized inverse) of a square
matrix, or for solving a system of simultaneous linear equations (e.g., see Chapter 2 of [10]).
Other decomposition methods provide a way to cluster or summarize data, that is, to
reduce dimensionality. A classic example is the Principal Components Analysis (PCA),
which is closely related to SVD, and which constrains its components to be orthogonal (for
applications, see [11], e.g.). Another example is the Independent Components Analysis
(ICA) (for applications, see [12,13]), which instead constrains its components to be statisti-
cally independent. Non-negative matrix factorization (NMF) [14–16] is a relatively new
matrix decomposition method. NMF factors an m× n non-negative data matrix X into an
m× k matrix W and a k× n matrix H such that

X = W × H + e
≈W × H

(1)

where e is an m × n matrix of approximation errors, and where k is chosen such that
(n + m)k < nm, i.e., k is less than both m and n [15,16]. Importantly, NMF constrains
all three matrices, X, W, and H, to have only non-negative elements; hence the term
non-negative matrix factorization.

Much like PCA, NMF can be used to reduce dimensionality. However, unlike PCA,
the NMF approach can account for a hierarchical structure [17]. NMF has an advantage
over standard hierarchical clustering (HC; for an introduction, see [18]): whereas HC
forcibly imposes a hierarchical structure on data, even when no such hierarchical structure
is present, NMF will refrain from such Procrustean behavior.

In their seminal paper introducing the NMF approach, Lee and Seung [16] provided
the following recurrence relation to estimate a solution to Equation (1):

Wia ←Wia ∑
j

Xij

(W H)ij
Haj (2)

Wia ←
Wia

∑j Wja
(3)

Haj ← Haj ∑
i

Xij

(W H)ij
Wia (4)

Matrices W and H are usually initialized with non-negative pseudorandom values;
however, note that some researchers have examined the effect of initializing with more
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carefully selected values [19–22]. A possible stopping criterion for Equations (2)–(4) might
be defined as follows. The Kullback-Liebler criterion [15,16] is:

KL(X||WH) = ∑
ij

[Xij log
Xij

(W H)ij
− Xij + (WH)ij] (5)

Brunet’s MATLAB implementation of NMF minimizes this criterion [23].
Define

δκ+1 = Dκ+1 − Dκ (6)

where Dκ is the Kullback-Liebler criterion (Equation (5)) evaluated at the κth iteration.
Iterate Equations (2)–(4) until δκ (Equation (6)) falls below some threshold value. An
alternative criterion to minimize is the squared Euclidean distance

E2(X||WH) = ∑
ij

[
Xij − (WH)ij

]2

= ||X−WH||2F
(7)

where ||·||F is the Frobenius norm [24] (or alternatively called the Euclidean norm).
While the choice of criterion is relevant to the distribution of the data at hand, Lee and

Seung state that this choice is not as important as the non-negativity constraints “for the
success of NMF in learning parts” [16], and that the use of the Kullback-Liebler criterion
may have computational advantages over the squared Euclidean distance, especially for
larger data sets [16].

Since Lee and Seung’s paper, newer methods for computing the NMF have been
devised. Lin’s projected gradients method is based on a Euclidean metric [24]. Kim and
Park suggest a fast approach based upon a block principal pivoting method [25,26].

Moreover, the computed non-negative factorization is not unique. Different answers
could be obtained depending on the initialization of the matrices W and H. Additionally,
each different initialization may obtain distinct local minima in the search space of the criterion.

In this manuscript, we will use k0 to denote the true underlying number of components.
On the other hand, k̂ will represent an estimation of k0 by one of the methods tested.
Evaluating k̂ will mean the same thing as estimating k0. k will simply mean a possible
number of underlying components.

With NMF, one must choose the number of components k into which one wants to
decompose a matrix X (Equation (1)). This requirement is analogous to the situation in
k-means clustering, in which one must choose a priori the number of desired clusters k.
Indeed, the link between k-means clustering and NMF goes beyond the superficial similar-
ity of needing to choose a priori the number of desired components or clusters. A deeper
link has been shown between the algorithms. Specifically, Ding, He, and Simon (2005) [27]
initially claimed that symmetric NMF was equivalent to kernel k-means. Later, Kim and
Park (2008) [28] showed that, by placing certain constraints on the NMF formulation, it
becomes equivalent to a variation of k-means clustering.

Because the number of true underlying components k is often unknown in practice,
and given that NMF is an unsupervised learning method, the importance of estimating
k accurately is self-evident. The proper value for k depends on the natural underlying
properties of the phenomenon under investigation, but as noted above, this is often un-
known. If k is chosen to be too small, then potentially-important clustered structures in the
data are missed, and the original goal of NMF to reduce the dimensionality of the dataset
in a meaningful way is not achieved. If k is too large, then these important components
may become excessively fragmented and difficult to study or interpret. Yet, despite the
importance of choosing an appropriate k, the best way for estimating k is still unclear, and
moreover, we are not aware of a paper that specifically addresses the issue of rank selection
and data normalization within the context of NMF.
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The need to choose k a priori can be argued to be similar to the situation in PCA and
ICA, in which one must decide a posteriori which components to consider true signal, and
which to consider as merely noise. With PCA, one might use Cattell’s scree test [29] or
Kaiser’s rule [30], or perhaps newer methods such as Velicer’s Minimum Average Partial
(MAP) method [31,32] and Minka’s Laplace-PCA and BIC-PCA methods [33]. Similar methods
have been developed in the ICA context as well; see, for example, Li et al., 2007 [34].

Three methods for evaluating k that were developed in the context of PCA are:

• Velicer’s Minimum Average Partial (MAP) method [31,32]. In this method, a complete
PCA is performed. Then, a stepwise assessment of a series of N− 1 matrices of partial
correlations is performed, where N is the number of principal components. In the
pth such matrix, the first p principal components are partialed out of the correlations.
Then, the average squared coefficient in the off-diagonals of the resulting partial
correlation matrix is computed. Components are retained if the variance in the matrix
of partial correlations is judged to represent systematic variance. For a full description
of this method, see the original papers [31,32], as well as O’Connor [35]).

• Minka’s Laplace-PCA method [33]. In this method, Minka uses Bayesian model
selection to estimate k0. He uses Laplace’s method [36] to approximate an integral,
which would otherwise be difficult to compute analytically. See Equation (78) of
Minka’s technical report for details.

• Minka’s BIC-PCA method [33]. This is a variant of Minka’s Laplace-PCA method in
which a second approximation is made that further simplifies the computation. See
Equation (82) of Minka’s technical report for details.

The following four methods are based on criteria that must be numerically optimized,
and are thus considered “iterative” methods in this paper. Note that they contain a squared
difference term; they are thus based on the Frobenius norm. For Poisson-distributed
data, or for use with NMF computed using the Kullback-Liebler criterion (Equation (5)),
the squared difference term should be replaced with the Kullback-Liebler criterion. For
normally distributed data, it might be best to retain the squared difference term.

• Three Bayesian Information Criterion (BIC) methods. Let W(k) and H(k) be the result
of computing the NMF as per Equation (1), where k is some possible number of
underlying components, i.e., W is m× k and H is k× n. Further, let X̂(k) = W(k)×H(k).
Then three model selection criteria similar to the Bayesian Information Criterion ([37];
see [38] for review) are [39,40]:

BIC1(k) = log (||X̂(k) − X||2) + k
m + n

mn
log (

mn
m + n

), (8)

BIC2(k) = log (||X̂(k) − X||2) + k
m + n

mn
log (c2), (9)

BIC3(k) = log (||X̂(k) − X||2) + k
m + n

mn
log (c2)

c2 , (10)

where c = c(m, n) = min
(√

m,
√

n
)
, and ||A|| = [tr(A′A)]1/2 = ||A||F [39,40].

• Shao’s relative root of sum of square differences (RRSSQ). With X̂(k) as defined above,
Shao et al. suggest the following optimization criterion [41]:

RRSSQ(k) =

√√√√√ ||X− X̂(k)
ij ||

2

F

∑m
i ∑n

j
(
Xij
)2 (11)

Three methods for evaluating the number of underlying components k that have been
developed in the context of NMF are:

• Fogel and Young’s volume-based method (FYV). Let X̂k be X̂(k) reshaped into a column
vector, with X̂(k) defined as above. The k̂ vectors X̂k, 1 ≤ k ≤ k̂ are computed, and
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are each normalized. A k̂-column matrix is then constructed from the k̂ vectors X̂k,
and the determinant of this matrix is used as the optimization criterion. An abrupt
decrease in the value of this determinant (plotted as a function of k̂) indicates the
best estimate of the underlying components k; Fogel and Young use the algorithm
of Zhu and Ghodsi [42], originally developed to automate Cattell’s scree test [29], to
detect this abrupt decrease. This volume-based method is based on the geometric
interpretation of the determinant of an N×N matrix as the volume of a N-dimensional
parallelepiped ([43], p. 154).

• Brunet’s cophenetic correlation coefficient method (CCC) [23]. This method uses
the cophenetic correlation coefficient ρk̂

(
C
)

to measure dispersion for the calculated
consensus matrix C, computed specifically as the Pearson correlation between two
matrices measuring distance:

1. I − C, the distance between samples measured by the distance matrix; and
2. the distance between samples measured by the linkage used to reorder C.

The value of k̂ where ρk̂
(
C
)

begins to decrease is selected as the best estimate of k.
• Owen and Perry’s bi-cross-validation method (BCV) [40]. This method is based on

the Frobenius norm criterion given in Equation (7) (see step 8 in the algorithm on
page 11 of Owen and Perry’s technical report), uses a truncated SVD, and performs
cross-validation across both columns and rows (hence bi-cross-validation).

While NMF seems to be a robust algorithm [44], some sort of normalization of the data
matrix X is usually necessary as a pre-processing step to make the estimated components
“more evident” [45]. For that reason, Pascual-Montano et al. have implemented several nor-
malization methods in their bioNMF system [45]. Interestingly, Okun and Priisalu showed
that normalization can sometimes reduce the time required to compute the NMF [21] when
using Lee and Seung’s original recurrence relation (Equations (2)–(4)) [16]), and with W
and H initialized with non-negative random values. This raises the question whether
normalization might affect the estimate of the number of underlying components k.

However, although there are instances of normalization by column [4], there is fre-
quently no mention of normalization [5,6,8,9]. An examination of the effect of normaliza-
tion on the estimation of k0 is warranted. Note that, after normalization, the data may
have negative values, so some method for enforcing non-negativity may be necessary.
Pascual-Montano et al. suggest four such methods [45]: subtracting the absolute minimum,
fold data by rows, fold data by columns, and exponential scaling.

In summary, this paper had two objectives. The first objective was to assess several
methods for estimating the number of underlying components k0 in the context of NMF.
The second objective was to examine the effect of various normalization methods on
the estimation of k0. To address the first objective, ten methods for evaluating k̂ were
assessed on simulated data with a known number of components k0. To address the second
objective, eight normalization methods [45] were applied to a well-known data set [46],
and the number of underlying components was then estimated using ten methods. Lin’s
method [24] was used to compute the NMF [47].

2. Materials and Methods

Several of the methods for estimating k0 (e.g., Velicer’s MAP [31] and Minka’s Laplace-
PCA method [33]), as well as two of the implementations for computing the NMF Lin’s
method [24], and Brunet’s method [44]), were already available as MATLAB scripts. For
this reason, MATLAB was selected as the language to use for this work. As much as
possible, the original MATLAB scripts were used; if modifications were necessary, these
were kept to a very minimal level. Fogel and Young’s volume-based method was provided
as a JMP code snippet, which was translated to MATLAB. The translation was checked by
the original author (P. Fogel) and confirmed to be correct.

We simulated data with a known number of underlying components k0, and then
observed the accuracy of ten different methods for estimating the number of components.
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To simulate data, we implemented a hybrid of the approaches from Kim and Park [26] and
Cichocki et al. [48]. Kim and Park’s basic method was used because it was straightforward
and explicitly described, while Cichocki’s idea of using orthogonal components was used
to enable recovered components to be easily visualized. Specifically, for k0 = 2 through 20,
we constructed a 100× k0 matrix W with orthogonal columns, and a k0 × 1000 matrix H
containing pseudorandom values generated from a uniform distribution with 40% sparsity.
The 100× 1000 matrix X = W × H was then computed, and Gaussian noise with mean
zero and SD = 5% of the average magnitude of elements in X was added. All negative
values were then forced to be positive by taking the absolute value. The MATLAB imple-
mentation of this procedure is included as a Supplementary Materials File S1 (Generation
of Synthetic Data).

Then, the following nine methods for estimating the number of underlying compo-
nents k0 were applied to the synthetic data:

• Velicer’s MAP [31].
• Minka’s Laplace-PCA method [33].
• BIC1 [39,40]
• BIC2 [39,40]
• BIC3 [39,40]
• Shao’s relative root of sum of square differences (RRSSQ) [41].
• Fogel and Young’s volume-based method (FYV) [44].
• Brunet’s cophenetic correlation coefficient method (CCC) [44].
• Perry’s BCV Method [40]

1000 datasets were simulated at each true k0 value (2 to 20). Each method for estimating
k0 was then applied once to each of the 1000 simulated datasets at each true k0. Minimum
reconstruction error was not used to select the run for estimating W and H. The CCC
method was run only once with number of runs specified at 20. Reproducibility across
simulations was evaluated using the concordance correlation coefficient [49].

Brunet’s CCC-based approach requires a threshold to be applied to choose the answer
from the multiple possibilities tested. We automated this selection procedure as:

1. Compute the CCC for a range of values for k̂. Let the CCC value corresponding to a
value k̂ be CCCk̂.

2. Find the maximum value of CCCk̂ across the range of values for k̂; call this Cmax.
3. Compute the CCC threshold, Cthr = Cmax · q, where q is a tuning parameter, 0 < q < 1.

For example, if you want to allow for peaks that are at least 99.9% of the maximum
value Cmax, set q = 0.999.

4. Find the largest index k̂ such that CCCk̂ ≥ Cthr.

An empirically chosen value of q = 0.999 was used.
Brunet’s implementation of the CCC requires the user to input the desired number of

re-initializations; in the datasets they examined, Brunet et al. found 20–100 re-initializations
to be sufficient [44]. In this study, the CCC was re-initialized 20 times. Lin’s method [24]
was used to compute the NMF.

The well-known data set of Golub et al. [46] was used to examine the effects of
normalization on the estimate of k0. Briefly, this dataset consists of 72 individuals with
cancer with ~7500 genes typed. Only the 5000 genes with the greatest coefficient of variation
were used. The 72 observations were rows, while the 5000 variables were columns. In the
absence of other publicly available datasets, we focus on this dataset because it has been
used as a benchmark by many researchers. Although we are interested in applications in
environmental science and public health research, we believe it has enough complexity to
be practically useful and still relevant to the types of datasets studied in public health and
environmental science. Critically, there is agreement on the true underlying number of
clusters in this dataset.
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The following eight methods were assessed for their effect on estimating k:

1. No normalization
2. Scale columns, then normalize rows. See [45,50] for this method.
3. Set mean = 0, standard deviation = 1 by rows.
4. Set mean = 0, standard deviation = 1 by columns.
5. Set mean = 0, standard deviation = 1 globally. (This method was not listed by Pascual-

Montano et al. [45], but was included for completeness.)
6. Subtract the mean by the rows.
7. Subtract the mean by the columns.
8. Subtract the mean by the rows and then by the columns.

The eight methods listed above were then applied to the data. After certain methods
of normalization are applied (e.g., subtracting the mean by rows), some values may be
negative. To enforce non-negativity, the global minimum value was subtracted from all
matrix entries. Then, the ten methods for estimating k listed above were each applied to
the normalized data. Lin’s method [24] was again used to compute the NMF.

3. Results
3.1. Methods for Estimating k0

3.1.1. Methods Based on PCA

With the simulated data, the three methods tested based on PCA (Velicer’s MAP,
Minka Laplace, and Minka BIC) closely tracked the number of underlying components in
terms of accuracy (Figure 1A). Velicer’s MAP method was accurate in 100% of simulations
up until k0 = 10, but at k0 = 10, Velicer’s method began to overestimate k0 by 1 in a
small proportion of stimulations, and this proportion grew to 7% of simulations at k0 = 20.
Minka’s Laplace method overestimated k0 by 1 in approximately 0.2% of simulations where
k0 ≤ 3, and was accurate in 100% of simulations where k0 > 3 (Figure 1B). Minka BIC was
100% accurate in all simulations for all values of k0 tested in this paper (Figure 1C).
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ing Velicer’s method (A), Minka Laplace method (B), and Minka’s BIC method (C). The results are 
Figure 1. This figure plots the average accuracy result for the three methods based on PCA, including
Velicer’s method (A), Minka Laplace method (B), and Minka’s BIC method (C). The results are
plotted as the true number of components simulated on each x axis and the number of components
discovered by each algorithm on each y axis. Perfect accuracy should appear as a diagonal line, and
indeed that is nearly what each of these three methods achieved. Note that the standard deviation is
shown for each estimate by blue error bars, although these errors are small.

3.1.2. Iterative Methods

As shown in Figure 2A–C, the BIC1, BIC2, and BIC3 results were accurate for all
simulations, overestimating by only 1, for all k0 between 3 and 19. For k0 = 3 and k0 = 19,
there were no peaks in the response criterion, and consequently the selected k̂ was incorrect.
The same pattern of accuracy and offset was observed for the RRSSQ method (Figure 2D).
The three BIC methods achieved numerically identical concordance correlation coefficients
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of 0.98 (95% CI = 0.94–0.99), while the RRSSQ method achieved a similar concordance
correlation coefficient of 0.98 (95% CI = 0.94–0.99)
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Figure 2. This figure plots the average results for seven iterative methods. The results are plotted as
the true number of components simulated on each x axis and the number of components discovered
by each algorithm on the y axis. Perfect accuracy should appear as a diagonal line, following the
black circles. The mean result at each k0 is shown as a black dot and its standard deviation is
shown as a black vertical line. Panes include results for (A–C) three Bayesian information criterion
(BIC) methods, (D) Shao’s relative root of sum of square differences method (RRSSQ), (E) Fogel
and Young’s volume-based method, (F) Owen and Perry’s bi-cross-validation method (BCV), and
(G) Brunet’s cophenetic correlation coefficient method (CCC).

3.1.3. NMF Methods

For the FYV method (Figure 2E), the best estimate of the number of underlying
components k0 is found by an abrupt decrease in the value of the determinant plotted
as a function of k̂. The inflection point was chosen as the first element followed by a
decrease with a magnitude greater than 25% of the average decrease for the k̂ vector. The
FYV method achieved 100% accuracy for all simulations where k0 < 15. For k0 = 15, the
method began to estimate a progressively lower k̂ with a greater degree of variability
(note error bars). The FYV method achieved a concordance correlation coefficient of 0.88
(95% CI = 0.71–0.95). The BCV method’s accuracy (Figure 2F) was on average one index
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short of the simulated k0, but remained accurate up to around k0 = 12, at which point the
estimate plateaued around 12 for the remainder of values of k0. The BCV method achieved
a concordance correlation coefficient of 0.99 (95% CI = 0.98–0.997). The CCC method’s
accuracy (Figure 2G) was on average perfect across the full range of simulated k0, achieving
a concordance correlation coefficient of 0.998 (95% CI = 0.995–0.999).

3.2. Effects of Normalization

For each method of normalization, the result of estimating k0 using various methods
is shown in Table 1 below. For any given method for estimating k0, the choice of normal-
ization method appears to have an unpredictable effect on the estimate. In addition, for
any given normalization method, the methods for estimating k0 in general give widely
varying results. It should be noted that the FYV method is the only approach which consis-
tently returns 4 components, which is thought to be a biologically sound number for this
particular data set [23,44].

Table 1. This table shows the estimates of k for eight normalization methods (columns) using ten methods (rows).

k Estimation
Method

Normalization Method

None
Scale Cols

Then Norm
Rows

Subtract
Mean by

Rows Then
Std to 1

Subtract
Mean by
Columns

Then Std to 1

Subtract
Global

Mean Then
Std to 1

Subtract
Means by

Rows

Subtract
Mean by
Columns

Subtract
Mean by

Rows Then
by Columns

Velicer 20 9 10 20 20 15 20 15
Minka-Laplace 27 17 15 25 27 27 27 27

Minka-BIC 70 70 70 70 70 70 70 70
FYV 4 4 4 4 4 4 4 4
BIC1 4 4 4 4 4 4 10 4
BIC2 4 4 4 4 4 4 10 4
BIC3 4 4 4 4 4 4 10 4

RRSSQ 4 8 4 4 4 4 10 12
BCV 18 10 24 20 14 16 12 16
CCC 18 10 24 20 14 16 12 16

4. Discussion

Matrix decomposition methods allow mixtures of signals to be separated into their
original components, but it is often unclear how many components to choose. We explored
this question by simulating signal mixtures and testing various matrix decomposition
methods on them to estimate the number of underlying components. We also explored the
effect of normalization on estimates of the number of components.

We found that the three methods based on PCA that we tested consistently and
accurately measure the true number of simulated components. The four iterative methods
tested also performed well, but estimates at the boundaries of their “guessing range” were
inaccurate. In contrast, the NMF-based methods differed in their accuracy. While the
CCC method achieved perfect accuracy across all simulated values of k, the FYV and BCV
method became inaccurate around k = 15 and 13, respectively. This likely relates to the
heuristic for choosing the inflection point for k̂. One possibility is that point at which
these two methods start becoming inaccurate (e.g., FYY becoming inaccurate starting
around k = 15) depends in part on the heuristic method for finding the inflection point. For
example, in the Results section it was stated that “The inflection point was chosen as the
first element followed by a decrease with a magnitude greater than 25% of the average
decrease for the k̂ vector.” If this heuristic was modified somehow, e.g., use 50% instead
of 25%, FYY might have become inaccurate starting at some other point (e.g., k0 = 20).
Perhaps some other method for finding the inflection point such as Zhu & Ghodsi (2006)
could have been used instead.

If it is known, or at least assumed that the underlying components are orthogonal, then
Velicer’s MAP or Minka’s Laplace-PCA method might be best to use. These two approaches
use PCA, which forces components to be orthogonal. And indeed Figure 1 shows that these
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methods achieved high accuracy on synthetic data where the true underlying components
were forced to be orthogonal. However, the results indicate that in the general case of
non-orthogonal components, none of the methods for estimating k assessed in this study
seemed to work very well.

With respect to normalization methods, the various methods for estimating the num-
ber of underlying components k produced widely differing estimates. The results indicate
that although normalization may speed up processing [21], it has an unpredictable effect
on the estimation of the number of components k. We therefore recommend that, at least
for the purpose of estimating k, data not be normalized. Indeed, this is the approach that
has been taken in much of the public health and environmental science literature using
NMF [5,6,8,9].

We suggest four possible areas for future study. First, it was noted in the second study
results that for the larger values of k0, none of the methods achieved high accuracy. So, a
possible future study might be to fix k0 at one of these values, fix the number of genes at 60
while allowing the number of observations (subjects) to vary, and determine whether the
estimate of k0 becomes better for a larger number of observations. The experiment might be
repeated, but with the number of observations fixed at 1000, and with the number of genes
allowed to vary. A second possible future area of work is to examine the effectiveness of
ensembles of methods for evaluating k̂ in order to enhance the accuracy or precision. That is,
one might run multiple methods for evaluating k̂, and from the multiple results from some
sort of “consensus” selection for k̂ by weighting combinations of the results of the multiple
different methods. Third, another possible future project might be to apply one or more
of the methods for estimating k0 described in this study to real microarray data (e.g., the
leukemia data of Golub et al., 1999 [46]), characterize the data using NMF and selecting
a value for k̂, and then use those results to simulate microarray data with k̂ components.
Finally, this study was designed to evaluate the accuracy of algorithms for identifying
the number of components, and we have started with the simpler case of orthogonal
components. However, because we simulated orthogonal components, we naturally gave
an advantage to methods that work on orthogonal components. However, it is likely
that real-world data present more complex cases where components are not orthogonal.
Thus, future simulation studies should be carried out on cases where components are
non-orthogonal.

One limitation of this study is that we focus on older NMF methods which have more
stable and efficient implements, which have been more extensively used, and with which
practitioners are more familiar. However, we recognize that the last two decades have seen
an explosion of techniques based on NMF. Indeed, these developments include extensions
of NMF that include sparseness constraints so that over-complete data can be modeled [51],
new divergence measures [52–54], and multiple algorithms to address signal-dependent
noise [55]. Others have examined NMF extensions on the basis of sparseness and other
constraints for graphical analysis [56] and deeply enhanced weighted NMF [57]. Even
more recent work has leveraged NMF in the context of deep learning [58–60]. These
newer techniques have not been used as extensively and have not been included here.
Nevertheless, future simulation studies could include these newer methods, especially to
address questions related to data normalization. Finally, another limitation of this study
is that, although we focus on a handful of metrics for estimating k, we do not include
information-based criteria like AIC or BIC (e.g., [61]). Future work could evaluate the
accuracy of selecting k on the basis of these additional criteria.

In conclusion, for the purpose of estimating k0, we recommend that no normalization
be performed. If one is willing to assume that the underlying components are orthogonal,
then it may be reasonable to use Velicer’s MAP or Minka’s Laplace-PCA method. Otherwise,
we recommend using methods for estimating the number of underlying components with
great caution. Perhaps several methods should be tried for any given data set.
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