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Abstract: In time–frequency analysis, an increasing interest is to develop various tools to split a
signal into a set of non-overlapping frequency regions without the influence of their adjacent regions.
Although the framelet is an ideal tool for time–frequency analysis, most of the framelets only give an
overlapping partition of the frequency domain. In order to obtain a non-overlapping partition of the
frequency domain, framelet sets and associated scaling sets are introduced. In this study, we will
investigate the relation between framelet (or scaling) sets and the frequency domain of framelets (or
frame scaling functions). We find that the frequency domain of any frame scaling function always
contains a scaling set and the frequency domain of any FMRA framelet always contains a framelet set.
Moreover, we give a simple approach to construct various framelet/scaling sets from band-limited
framelets and frame scaling functions.
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1. Introduction

Frames are an overcomplete version of bases [1–7]. Compared with bases, the redun-
dant representation offered by frames often demonstrates superior performances in time–
frequency analysis, feature extraction, data compression and compressed sensing [8,9].

Let {hn}∞
1 be a sequence in L2(R). If there exist A, B > 0 such that

A ‖ f ‖2≤
∞

∑
n=1
|( f , hn)|2 ≤ B ‖ f ‖2 ∀ f ∈ L2(R),

then {hn}∞
1 is called a frame for L2(R) with bounds A and B [1,8]. Let ψ ∈ L2(R) and

ψ
(µ)
j,k := 2

j d
2 ψ(µ)(2j · −k), j ∈ Z; k ∈ Zd; µ = 1, 2, . . . , r.

If the affine system {ψ(µ)
j,k } is a frame for L2(R), then the set Ψ = {ψ(1), . . . , ψ(r)} is called

a framelet [9,10]. Framelets are a natural extension of known wavelets. Similar to the
construction of wavelets, due to the existence of fast implementation algorithms, a general
approach to construct framelets is through frame multiresolution analysis (FMRA) [4–6,10]:

Let {Vm}m∈Z be a sequence of subspaces of L2(R) such that
(i) Vm ⊂ Vm+1 (m ∈ Z),

⋃
m∈ZVm = L2(Rd),

⋂
m Vm = {0};

(ii) f (t) ∈ Vm if and only if f (2t) ∈ Vm+1 (m ∈ Z);
(iii) there exists a ϕ(t) ∈ V0 such that {ϕ(t− n)}n∈Z is a frame for V0.
Then, {Vm} is called a frame multiresolution analysis (FMRA) and ϕ is called a frame

scaling function.
It is well-known [5,10] that the above condition (iii) can be replaced by two conditions:

V0 = span{ϕ(t− n), n ∈ Z} and

∑
k
|ϕ̂(ω + 2kπ)|2 = 0 or 1. (1)
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Furthermore, for any f ∈ V0, we have

f (t) = ∑
n∈Z

cn ϕ(t− n), where cn =
∫
R

f (t)ϕ(t− n)dt.

Since the suitable frequency domain of band-limited FMRAs can mitigate the effects
of narrow-band noises well, the perfect reconstruction filter bank associated with a band-
limited FMRA can achieve quantization noise reduction simultaneously with reconstruction
of a given narrow-band signal [4]. The frequency domain of band-limited frame scaling
functions can be characterized as:

Proposition 1 ([6]). Let G be a bounded closed set in R. Then, there is a frame scaling function ϕ
with supp ϕ̂ = G if and only if

(a) G ⊂ 2G, (b)
⋃

m 2mG = R, and (c)
(

G \ G
2

)⋂(G
2 + 2πµ

)
= ∅ (µ ∈ Z)

By the bi-scale equation of FMRA [4–6], it follows that

ϕ̂(2ω) = H(ω)ϕ̂(ω) (ω ∈ R), where H(ω) ∈ L2
2π .

Let H1, . . . , Hr be 2π-periodic bounded functions such that

r

∑
µ=0
|Hµ(ω)|2 = 1,

r

∑
µ=0

Hµ(ω)Hµ(ω + π) = 0 (ω ∈ Gper), (2)

where Gper = G + 2πZ and H0 = H. Let {ψµ}µ=1,...,r be such that

ψ̂µ(2ω) = Hµ(ω)ϕ̂(ω) (µ = 1, . . . , r). (3)

By (1) and the matrix extension principle of FMRA [6,11], we know that
Ψ = {ψ(1), . . . , ψ(r)} is a framelet for L2(R). Since Ψ is generated from an FMRA, Ψ
is often called an FMRA framelet. By (2) and (3), the FMRA framelet Ψ satisfies [9]

r

∑
µ=1
|ψ̂(µ)(2ω)|2 = |ϕ̂(ω)|2 − |ϕ̂(2ω)|2 (ω ∈ R), (4)

|ϕ̂(ω)|2 =
r

∑
µ=1

∞

∑
j=1
|ψ̂(µ)(2jω)| (ω ∈ R). (5)

In time–frequency analysis, there is an increasing interest in developing various tools
to split a signal into a set of non-overlapping time/frequency regions without the influence
of their adjacent regions: Saito and Remy [11] proposed a new sine transform without
overlaps: the polyharmonic local sine transform (PHLST). The core idea of PHLST is to
segment any signal into local pieces using the characteristic functions, decompose each
block into a polyharmonic component and a residual, and finally expand the residual into
a sine series. Yamatani and Saito [12] used a similar approach to improve discrete cosine
transform and proposed the polyharmonic local cosine transform (PHLCT). Zhang and
Saito [13] improved overlapped discrete wavelet transform and proposed the polyharmonic
wavelet transform. Weiss [14] first proposed the concept of the minimally supported
frequency (MSF) wavelets which can split a signal into a set of non-overlapping frequency
regions. The construction of MSF wavelets has been widely applied [15].

Due to their resilience to background noise, stability of sparse reconstruction, and
ability to capture local time–frequency information, the framelet is a better tool for time–
frequency analysis than the wavelet. Unfortunately, most of framelets only give an over-
lapping partition of the frequency domain [1,9,10]. In order to obtain a non-overlapping
partition of the frequency domain, we introduce the concepts of framelet sets and associated
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scaling sets: (a) if the Fourier transform of a framelet Ψ = {ψ(1), . . . , ψ(r)} is the character-

istic function of the point sets Ω1, . . . , Ωr, then the point set Ω =
r⋃

k=1
Ωk is called a framelet

set of order r; (b) if a band-limited frame scaling function ϕ whose Fourier transform is a
characteristic function of some point set M, we call M a scaling set. By using (2), (3) and
the splitting trick in [6,11], it is easy to construct framelet sets from scaling sets and these
framelet sets can provide an overlapping partition of the frequency domain for any signal.

In this study, we will investigate the relation between framelet (or scaling) sets and the
frequency domain of framelets (or frame scaling functions). In Theorems 1 and 2, we find
that the frequency domain of any frame scaling function always contains a scaling set and
the frequency domain of any FMRA framelet always contains a framelet set. Moreover, we
give a simple approach to construct various framelet sets and scaling sets from band-limited
framelets and frame scaling functions in the proof of Theorems 1 and 2.

2. Scaling Sets

In this section, we will show that for a band-limited frame scaling function ϕ, there
exists a scaling set M such that M ⊂ suppϕ̂. For this purpose, we introduce the concept of
2π-translation kernels:

Definition 1. Let E be a set of R. If a set E∗ ⊂ E satisfies the conditions E∗ + 2πZ = E + 2πZ
and E∗

⋂
(E∗ + 2πν) = ∅ (ν ∈ Z, ν 6= 0), then the set E∗ is called a 2π-translation kernel of E.

We give a partition of the frequency domain G = suppϕ̂ as follows. Since G is
bounded, there is a k ∈ Z+ such that

G ⊂ (−2kπ, 2kπ). (6)

Let Gj = 2−j(G \ G
2 ) (j = 0, 1, . . . ). By G

2 ⊂ G, we have

G =

k−1⋃
j=0

Gj

⋃(2−kG) (a disjoint union). (7)

By Proposition 1(iii), we have Gj
⋂
(2−j−1G + 2π2−jµ) = ∅ (j = 0, 1, . . . , µ ∈ Z).

Taking µ = 2jν (ν ∈ Z), we have Gj
⋂
(2−j−1G + 2πν) = ∅. By G ⊂ 2G, we further

obtain that
Gj
⋂
(2−j′G + 2πν) = ∅ (j′ > j, ν ∈ Z). (8)

From this and Gj′ ⊂ 2−j′G, we have

Gj
⋂
(Gj′ + 2πν) = ∅ (j′ > j, ν ∈ Z). (9)

By the bi-scale equation of FMRA [4–6], it follows that

ϕ̂(2ω) = H(ω)ϕ̂(ω) (ω ∈ R), H(ω) ∈ L2
2π , (10)

where the filter H(ω) in (10) is not unique. By G = suppϕ̂, it follows that ϕ̂(ω) = 0 for
ω /∈ G + 2πZ, so in (10), one can take

H(ω) = 0, ω /∈ G + 2πZ. (11)

Lemma 1. Let Gper = G + 2πZ. Then, |H(ω)|2 + |H(ω + π)|2 = χGper (2ω) (ω ∈ R), where
χGper is the characteristic function of Gper.
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Proof. By G = suppϕ̂, (1) and (10), we obtain

χGper (ω) = ∑k |ϕ̂(ω + 2kπ)|2 = ∑
k
|H
(

ω
2 + kπ

)
ϕ̂
(

ω
2 + kπ

)
|2

= ∑
k
|H
(

ω
2 + 2kπ

)
ϕ̂
(

ω
2 + 2kπ

)
|2 + ∑

k
|H
(

ω
2 + π + 2kπ

)
ϕ̂
(

ω
2 + π + 2kπ

)
|2.

Since H(ω) is 2π-periodic, we deduce that

χGper (ω) = |H
(

ω
2
)
|2 ∑

k
|ϕ̂
(

ω
2 + 2kπ

)
|2 + |H

(
ω
2 + π

)
|2 ∑

k
|ϕ̂
(

ω
2 + π + 2kπ

)
|2

= |H
(

ω
2
)
|2χGper

(
ω
2
)
+ |H

(
ω
2 + π

)
|2χGper

(
ω
2 + π

)
(ω ∈ R).

(12)

By (10), we obtain suppϕ̂(2·) = suppH
⋂

suppϕ̂, i.e.,

G
2

= suppH
⋂

G.

From this and the periodicity of Gper, we have G
2 + 2πZ = suppH

⋂
Gper. Noticing

that G
2 + 2πZ ⊂ G + 2πZ = Gper, by (11), it follows that suppH ⊂ suppχGper , furthermore,

we have |H(ω)|2χGper (ω) = |H(ω)|2 (ω ∈ R). Again by (12), we deduce that

|H(ω)|2 + |H(ω + π)|2 = χGper (2ω) (ω ∈ R).

Theorem 1. Let ϕ be a band-limited frame scaling function with G = suppϕ̂ ⊂ (−2kπ, 2kπ). Let

Ak = Gk = 2−k(G \ G
2 ), D = {ω ∈ R : |H(ω)| = 1},

Bk−j = Ak−j
⋂

D, Ck−j = Ak−j \ D, Ak−j−1 = (2Bk−j)
⋃
(2Ck−j)

∗ (j = 0, 1, . . . , k− 1),
(13)

where (2Ck−j)
∗ is a 2π-translation kernel of the set 2Ck−j. Denote

M =

 k⋃
j=1

Ak−j

⋃ G
2k . (14)

Then, M is a scaling set and M ⊂ G.

Remark 1. Theorem 1 not only shows that the frequency domain of any band-limited frame scaling
function must contain a scaling set, but also indicates how to construct a scaling set from a given
band-limited frame scaling function.

Lemma 2. Let {Ak−j}j=1,...,k be stated in (13). Then,
(i) Ak−j ⊂ Gk−j (j = 1, . . . , k) and (ii) (Ak−j + 2πν)

⋂
Ak−j′ = ∅ (j 6= j′, ν ∈ Z).

Proof. By (13), we have

Ak−1 = (2Bk)
⋃
(2Ck)

∗ ⊂ 2(Bk
⋃

Ck) = 2Gk = Gk−1,

Ak−2 = (2Bk−1)
⋃
(2Ck−1)

∗ ⊂ 2(Bk−1
⋃

Ck−1) = 2Ak−1 ⊂ 2Gk−1 ⊂ Gk−2,

...
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Continuing this procedure, we obtain Ak−j ⊂ Gk−j (j = 1, . . . , k). Again, by Proposi-
tion 1(iii), we deduce that for j 6= j′,

((Ak−j + 2πν)
⋂

Ak−j′) ⊂ ((Gk−j + 2νπ)
⋂

Gk−j′) = ∅ (ν ∈ Z).

Lemma 3. The sets {Ak−j + 2νπ}ν∈Z are pairwise disjoint for j = 1, . . . , k.

Proof. For j = 1, by definition,

Ak−1 + 2πν = (2Bk + 2νπ)
⋃
((2Ck)

∗ + 2νπ). (15)

First we prove that

(2Bk)
⋂
(2Bk + 2νπ) = ∅ (ν 6= 0). (16)

Let ω ∈ Bk. Since Bk ⊂ D, we have |H(ω)| = 1. From this and Lemma 1, we deduce
that H(ω + π) = 0. By periodicity, for ω ∈ (Bk + (2ν + 1)π) (ν ∈ Z), H(ω) = 0, and so
ϕ̂(2ω) = 0. Again by suppϕ̂ = G, we have

G
⋂
(2Bk + 4νπ + 2π) = ∅ (ν ∈ Z). (17)

Since 2Bk ⊂ 2Gk = Gk−1 ⊂ G, we obtain

2Bk
⋂
(2Bk + 4νπ + 2π) = ∅ (ν ∈ Z). (18)

By (6) and (7), it follows that Bk ⊂ Gk ⊂ [−π, π]; furthermore, Bk
⋂
(Bk + 2νπ) =

∅ (ν ∈ Z, ν 6= 0). So, (16) holds.
Next, we prove that

(2Ck)
∗⋂(2Bk + 2νπ) = ∅ (ν ∈ Z). (19)

By (6) and (7), it follows that Bk, Ck ⊂ Gk ⊂ (−π, π) and Bk
⋂

Ck = ∅; furthermore,
(Bk + 2νπ)

⋂
Ck = ∅ (ν ∈ Z). It means that (2Ck)

⋂
(2Bk + 4νπ) = ∅. By Ck ⊂ Gk, we

have 2Ck ⊂ Gk−1 ⊂ G. By (17), it follows that

(2Ck)
⋂
(2Bk + 4νπ + 2π) = ∅. (20)

From these, we obtain (19).
By (15), (16), (19) and Definition 1, we deduce that Lemma 3 holds for j = 1.
Now, we use the idea of mathematical induction to prove Lemma 3, i.e., assuming

that {Ak−j + 2νπ}ν∈Z are pairwise disjoint, we will prove that{Ak−j−1 + 2νπ}ν∈Z are
pairwise disjoint.

Noticing that

Ak−j−1 + 2νπ = (2Bk−j + 2νπ)
⋃
((2Ck−j)

∗ + 2νπ),

(2Ck)
∗ ⋂((2Ck)

∗ + 2νπ) = ∅ (ν 6= 0),

we only need prove that
(i) {2Bk−j + 2νπ}ν∈Z are pairwise disjoint;
(ii) (2Bk−j + 2νπ)

⋂
(2Ck−j)

∗ = ∅ (ν ∈ Z).
Since Bk−j ⊂ D and 2Bk−j ⊂ G, an argument similar to (18) shows that

(2Bk−j)
⋂
(2Bk−j + 4νπ + 2π) = ∅ (ν ∈ Z). (21)
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Since Bk−j ⊂ Ak−j and {Ak−j + 2νπ}ν∈Z are pairwise disjoint, we deduce that {Bk−j +
2νπ}ν∈Z are pairwise disjoint. So (2Bk−j)

⋂
(2Bk−j + 4νπ) = ∅ (ν ∈ Z). Again by (21), we

have (2Bk−j)
⋂
(2Bk−j + 2νπ) = ∅ (ν ∈ Z) and (i) follows.

Since D + 2πZ = D, we have

Bk−j + 2νπ = (Ak−j + 2νπ)
⋂
(D + 2νπ) = (Ak−j + 2νπ)

⋂
D (ν ∈ Z).

By Ck−j = Ak−j \ D, we have

(Bk−j + 2νπ)
⋂

Ck−j = ∅ (ν ∈ Z). (22)

Since Bk−j ⊂ D and 2Ck−j ⊂ G, an argument similar to (20) shows that

(2Bk−j + 4νπ + 2π)
⋂
(2Ck−j) = ∅ (ν ∈ Z).

From this and (22), we obtain (2Bk−j + 2νπ)
⋂
(2Ck−j) = ∅ (ν ∈ Z). Again, by

(2Ck−j)
∗ ⊂ 2Ck−j, we obtain (ii). Finally, by mathematical induction, we obtain Lemma 3.

Proof of Theorem 1. By the construction of M, we have

M + 2νπ =

 k⋃
j=1

(Ak−j + 2νπ)

⋃( G
2k + 2νπ

)
(ν ∈ Z).

By Lemmas 1 and 2, the sets {Ak−j + 2νπ}ν∈Z are pairwise disjoint. By Ak−ν ⊂ Gk−ν

and (8),(
(Ak−j + 2νπ)

⋂( G
2k + 2ν′π

))
⊂
(
(Gk−j + 2νπ)

⋂( G
2k + 2ν′π

))
= ∅ (j = 1, . . . , k; ν 6= ν′).

Again, by (6), we have ( G
2k + 2νπ)

⋂
( G

2k + 2ν′π) = ∅ (ν 6= ν′). From this, we deduce
that {M + 2νπ}ν∈Z are pairwise disjoint.

By Proposition 1.1(ii), we have
⋃

m 2mG = R. Again, by M ⊃ G
2k , we deduce that

R ⊃
⋃
m

2m M ⊃
⋃
m

2m−kG =
⋃
m

2mG = R,

i.e.,
⋃

m 2m M = R.
Finally, by (13), we have

Ak−j = (2Bk−j+1)
⋃
(2Ck−j+1)

∗ ⊂ 2(Bk−j+1
⋃

Ck−j+1) = 2Ak−j+1 (j = 2, . . . , k).

Again, by (14) and Gj = 2−j(G \ G
2 ), we deduce that

M ⊂

k−1⋃
j=1

(2Ak−j)

⋃Gk−1
⋃ G

2k = 2

k−1⋃
j=1

Ak−j

⋃( G
2k−1

)
⊂ 2

k−1⋃
j=1

Ak−j

⋃ G
2k

 ⊂ 2M.

Define a function ϕM such that its Fourier transform is ϕ̂M = χM. By using all the
above properties on M, it is easy to check that ϕM is a frame scaling function and M is a
scaling set.

Noticing that Ak−j ⊂ Gk−j, by (13) and (14), we have

M =

 k⋃
j=1

Ak−j

⋃ G
2k

 ⊂
 k⋃

j=1

Gk−j

⋃ G
2k

 = G.

Theorem 1 is proved.
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Example 1. For a region

G = [−8
6

π,−7
6

π]
⋃
[−5

6
π,

5
6

π]
⋃
[
7
6

π,
8
6

π],

we construct a frame scaling function ϕ whose Fourier transform is

ϕ̂(ω) =



1, ω ∈ [− 4
6 π, 4

6 π],

1√
2

, ω ∈ [− 8
6 π,− 7

6 π]
⋃
[− 5

6 π,− 4
6 π]

⋃
[ 4

6 π, 5
6 π]

⋃
[ 7

6 π, 8
6 π],

0, otherwise.

Taking M = [− 5
6 π, 5

6 π], it is clear that M is a scaling set and M ⊂ G

3. Framelet Sets

In this study, we will show that the frequency domain of any FMRA framelets always
contains a framelet set. At first, we need some lemmas.

Lemma 4. Assume that the framelet Φ = {ψ(1), . . . , ψ(r)} is generated from the frame scaling
function ϕ. Denote G = suppϕ̂ and D = {ω : |H(ω)| = 1}. Then, |ϕ̂(ω)| = |ϕ̂(2ω)| if and
only if ω ∈ (R \ G)

⋃
D.

Proof. Denote
S = {ω : |ϕ̂(ω)| = |ϕ̂(2ω)|},

P1 = {ω : |ϕ̂(2ω)| = |ϕ̂(ω)| = 0},

P2 = {ω : |ϕ̂(2ω)| = |ϕ̂(ω)| 6= 0}.

Then,
S = P1

⋃
P2. (23)

If ω ∈ P2, by ϕ̂(2ω) = H(ω)ϕ̂(ω), we have |H(ω)| = 1, and so ω ∈ D. This implies
that P2 ⊂ D. On the other hand, for ω ∈ D, we have |ϕ̂(2ω)| = |H(ω)||ϕ̂(ω)| = |ϕ̂(ω)|
and so ω ∈ S, i.e., D ⊂ S. Hence, P2 ⊂ D ⊂ S. Again, by (3.1), we obtain

S = (P1
⋃

P2) ⊂ (P1
⋃

D) ⊂ S.

This means that S = P1
⋃

D.
From G = suppϕ̂, it follows that ϕ̂(2ω) = 0 (ω ∈ R \ G

2 ). From this and G
2 ⊂ G,

we obtain

P1 = (R \ G)
⋂(

R \ G
2

)
= R \ G,

and so S = (R \ G)
⋃

D. Lemma 4 holds.

Lemma 5. Under the conditions of Theorem 1, we have χM(2ω) = χM(ω) for ω ∈ D, where
χM is the characteristic function of M.

Proof. First, we compute M
⋂

D.
By Bk−ν = Ak−ν

⋂
D (ν = 1, . . . , k− 1) and (14), we deduce that

M
⋂

D =

(
A0
⋃(k−1⋃

j=1
Ak−j

)⋃ G
2k

)⋂
D = (A0

⋂
D)
⋃(k−1⋃

j=1
Bk−j

)⋃( G
2k

⋂
D
)

. (24)
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We compute the first term on the right-hand side of (24): for ω ∈ G0 = G \ G
2 , we have

ϕ̂(ω) 6= 0 and ϕ̂(2ω) = 0. By the bi-scale equation, we have H(ω) = 0, and so ω 6∈ D.
This implies that G0

⋂
D = ∅. Again, by A0 ⊂ G0, we deduce that

A0
⋂

D = ∅. (25)

We compute the last term G
2k

⋂
D on the right-hand side of (24):

G
2k

⋂
D =

(
Gk
⋃ G

2k+1

)⋂
D = (Gk

⋂
D)
⋃( G

2k+1

⋂
D
)
= Bk

⋃( G
2k+1

⋂
D
)

. (26)

By (8), we have ( G
2k + 2νπ)

⋂
Gj = ∅ (j = 0, 1, . . . , k− 1; ν ∈ Z). By (6), we have(

G
2k + 2νπ

)⋂ G
2k = ∅ (ν 6= 0).

Again, by (7), we deduce that for ν 6= 0,

(
G
2k + 2νπ

)⋂
G =

k−1⋃
j=0

(
G
2k + 2νπ

)⋂
Gj

⋃(( G
2k + 2νπ

)⋂ G
2k

)
= ∅. (27)

By suppϕ̂ = G and (1.1), we have

∑
ν

|ϕ̂(ω + 2νπ)|2 = χGper (ω) (ω ∈ R),

where Gper = suppϕ̂ + 2πZ. By (27), we deduce that ϕ̂(ω + 2νπ) = 0 for ω ∈ G
2k and

ν 6= 0. Furthermore,

χGper (ω) = ∑
ν

|ϕ̂(ω + 2νπ)|2 = |ϕ̂(ω)|2 (ω ∈ G
2k ). (28)

Again, by G ⊂ 2G, we obtain |ϕ̂(2ω)| = |ϕ̂(ω)| = 1 (ω ∈ G
2k+1 ). By the bi-scale

equation ϕ̂(2ω) = H(ω)ϕ̂(ω), we obtain H(ω) = 1 (ω ∈ G
2k+1 ), and so G

2k+1 ⊂ D. From
this and (26), the last term G

2k

⋂
D on the right-hand side of (24) becomes

G
2k

⋂
D = Bk

⋃ G
2k+1 . (29)

By (24), (25) and (29), we know that

M
⋂

D =

(
k−1⋃
ν=0

Bk−ν

)⋃ G
2k+1 . (30)

By (13), it follows that

Bk ⊂ Gk ⊂ G
2k ,

Bk−ν ⊂ Ak−ν (ν = 1, . . . , k− 1),

2Bk−ν ⊂ Ak−ν−1 (ν = 0, . . . , k− 1).

From these and M =
(⋃k

j=1 Ak−j

)⋃ G
2k , we see that

χM(ω) = χM(2ω) = 1 (ω ∈ Bk−ν, ν = 0, . . . , k− 1).
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By G
2k+1 ⊂ G

2k , we obtain χM(ω) = χM(2ω) = 1 (ω ∈ G
2k+1 ). Finally, by (30),

χM(ω) = χM(2ω) (ω ∈ M
⋂

D). (31)

By M
2 ⊂ M, we know that for ω 6∈ M, we have ω 6∈ M

2 , i.e.,

χM(ω) = χM(2ω) = 0 (ω 6∈ M).

From this and (31), we obtain χM(ω) = χM(2ω) (ω ∈ D). Lemma 5 is proved.

Theorem 2. Let Ψ = {ψ(1), . . . , ψ(r)} be a band-limited FMRA framelet corresponding to a frame
scaling function ϕ. Then, there exists a framelet set W such that ΩM ⊂ Ω, where Ω is the whole
frequency domain of Ψ: Ω =

⋃r
µ=1 suppψ̂(µ).

Proof. Since Ψ is band-limited, by (5), we know that ϕ is band-limited. Let G = suppϕ̂
and the point sets D and M be stated in Theorem 1. It is clear that M ⊂ G. Let ϕM be
such that its Fourier transform satisfies |ϕ̂M| = χM. Since M is a scaling set, ϕM is a frame
scaling function. By Lemma 5, it follows that

|ϕ̂M(2ω)| = |ϕ̂M(ω)| (ω ∈ D). (32)

By (4) and ϕ̂M = χM,

r

∑
µ=1
|ψ̂(µ)

M (2ω)|2 = |ϕ̂M(ω)|2 − |ϕ̂M(2ω)|2 = χM(ω)− χ M
2
(ω) = χM\M

2
(ω),

and so ∑r
µ=1 |ψ̂

(µ)
M (ω)|2 = χ2M\M(ω), i.e., ΩM = 2M \M is a framelet set. So, we have

QM(ω) :=
r

∑
µ=1
|ψ̂(µ)

M (2ω)|2 = 0 (ω 6∈ M).

Since M ⊂ G, it follows that

QM(ω) = 0 (ω ∈ R \ G). (33)

By (32), QM(ω) = 0 (ω ∈ D), and so

QM(ω) = 0 (ω ∈ (R \ G)
⋃

D). (34)

By Lemma 4 and (4), it follows that ∑r
µ=1 |ψ̂(µ)(2ω)|2 = 0 if and only if ω ∈ (R \

G)
⋃

D. Again, by (34), we obtain that if ∑r
µ=1 |ψ̂(µ)(2ω)|2 = 0, then

QM(ω) =
r

∑
µ=1
|ψ̂(µ)

M (2ω)|2 = 0,

i.e.,

W =
r⋃

µ=1

(suppψ
(µ)
M ) ⊂

r⋃
µ=1

(suppψ̂(µ)) = Ω.

Theorem 2 is proved.
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