
mathematics

Article

Genetic Algorithm-Based Fuzzy Inference System for
Describing Execution Tracing Quality

Tamas Galli 1,* , Francisco Chiclana 1,2,* and Francois Siewe 3

����������
�������

Citation: Galli, T.; Chiclana, F.;

Siewe, F. Genetic Algorithm-Based

Fuzzy Inference System for

Describing Execution Tracing Quality.

Mathematics 2021, 9, 2822. https://

doi.org/10.3390/math9212822

Academic Editor: Vassilis C.

Gerogiannis

Received: 30 September 2021

Accepted: 1 November 2021

Published: 6 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computing, Engineering and Media, Institute of Artificial Intelligence (IAI),
De Montfort University, Leicester LE1 9BH, UK

2 Andalusian Research Institute on Data Science and Computational Intelligence (DaSCI),
University of Granada, 18071 Granada, Spain

3 Software Technology Research Laboratory (STRL), Faculty of Computing, Engineering and Media,
De Montfort University, Leicester LE1 9BH, UK; FSiewe@dmu.ac.uk

* Correspondence: tamas.galli@bcs.org or tamas.galli@my365.dmu.ac.uk (T.G.); chiclana@dmu.ac.uk (F.C.)

Abstract: Execution tracing is a tool used in the course of software development and software main-
tenance to identify the internal routes of execution and state changes while the software operates.
Its quality has a high influence on the duration of the analysis required to locate software faults.
Nevertheless, execution tracing quality has not been described by a quality model, which is an
impediment while measuring software product quality. In addition, such a model needs to consider
uncertainty, as the underlying factors involve human analysis and assessment. The goal of this study
is to address both issues and to fill the gap by defining a quality model for execution tracing. The
data collection was conducted on a defined study population with the inclusion of software profes-
sionals to consider their accumulated experiences; moreover, the data were processed by genetic
algorithms to identify the linguistic rules of a fuzzy inference system. The linguistic rules constitute a
human-interpretable rule set that offers further insights into the problem domain. The study found
that the quality properties accuracy, design and implementation have the strongest impact on the
quality of execution tracing, while the property legibility is necessary but not completely inevitable.
Furthermore, the quality property security shows adverse effects on the quality of execution trac-
ing, but its presence is required to some extent to avoid leaking information and to satisfy legal
expectations. The created model is able to describe execution tracing quality appropriately. In future
work, the researchers plan to link the constructed quality model to overall software product quality
frameworks to consider execution tracing quality with regard to software product quality as a whole.
In addition, the simplification of the mathematically complex model is also planned to ensure an
easy-to-tailor approach to specific application domains.

Keywords: software product quality model; quality assessment; execution tracing; logging; execution
tracing quality; logging quality; fuzzy logic; artificial intelligence

1. Introduction

Execution tracing is a tool used in the course of software development and software
maintenance to identify the internal routes of execution and state changes while the
software operates. As a term, it is used interchangeably with logging in the scope of
this study. Execution tracing quality has a high influence on the duration of the analysis
required to locate software faults, especially in cases when reproducing the issue with a
debugger is not a feasible option [1]. Nevertheless, execution tracing quality has not been
described by a quality model, nor is it included in software product quality frameworks in
an appropriate manner, which is an impediment while measuring software product quality
and formulating quality targets for software products [1,2].

Moreover, the ability to describe and assess a software product from any point of view
that involves human evaluation results in uncertainty to some extent [3]. Nevertheless,

Mathematics 2021, 9, 2822. https://doi.org/10.3390/math9212822 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8297-3513
https://orcid.org/0000-0002-3952-4210
https://orcid.org/0000-0002-3741-3074
https://doi.org/10.3390/math9212822
https://doi.org/10.3390/math9212822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212822
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212822?type=check_update&version=2


Mathematics 2021, 9, 2822 2 of 71

the evaluation of how the software operates and relates to its environment and the extent
to which the end user is satisfied with it are aspects that cannot be covered by static
code analysis, only by human assessment. The input variables of logging quality elicited
in [1]—accuracy, design and implementation, legibility, and security—involve human
assessment. Thus, modelling the problem requires the implicit uncertainty to be handled.

An urge appears in different publications to improve the quality of execution tracing,
but no overall guidelines exist for software developers to follow at present [1,4–15].

Consequently, there is a significant gap in the field, which the present study addresses
and attempts to solve by defining a quality model for execution tracing. Such a quality
model makes it possible to consider each previous individual endeavour for logging
improvement and to see their relations to each other and to the quality as a whole, as
well as to articulate general guidelines or requirements with which good execution tracing
quality can be achieved. Furthermore, the model would support the measurement and
assessment of logging quality, allowing researchers to compare the same project at different
milestones of its development and maintenance or to compare different projects.

To describe the uncertainty associated with the quality modelling process, fuzzy
logic [16,17] was used in this study. A basic and concise summary of the main concepts of
fuzzy set theory and fuzzy logic is presented in [18]. The current research preferred fuzzy
logic to evidential reasoning [19,20] due to its efficient modelling language implemented by
linguistic rules and its capability to build adaptive systems. Linguistic rules are if–then rules
that contain linguistic variables in the form of fuzzy sets [21,22]. As fuzzy sets make the
description of a partial membership in a given set possible, the antecedents of the linguistic
rules do not require a full match with the given conditions. In such cases, the consequent
part is also partially applied according to the degrees of memberships. The effects of the
different consequent parts of the linguistic rules are combined by the inference mechanism
implemented, which is Takagi–Sugeno–Kang inference [23] in the present study. The basic
steps of how to define a fuzzy inference system can be summarised in the following manner:
(1) determining the inputs and input partitions—i.e., the regions to describe with fuzzy sets,
(2) determining the outputs and output partitions, (3) determining the type of inference,
(4) defining the membership functions for the inputs and for the output, (5) defining the
linguistic rules, and (6) testing the system. The parameters of the membership functions
and the number of the linguistic rules can be tuned adaptively [24–27].

1.1. Research Question

The goal of the study can be formalised in the form of a research question in the
following manner:

RQ: How can execution tracing quality be modelled with regard to the uncertainty inher-
ently present in the quality measurement process?

1.2. Research Protocol

Conducting the research encompassed the following steps: (1) investigating the cur-
rent state of the research in the field, (2) determining the goal of the study, (3) designing
the data collection including (a) the identification of the study population and (b) the deter-
mination of the sampling method, (4) collecting the data with an online questionnaire [28],
(5) performing exploratory data analysis and preprocessing the data, (6) constructing the
model by the extraction of the linguistic rules of a fuzzy inference system by means of
genetic algorithms from the collected data, (7) verifying the constructed model’s perfor-
mance through a different machine learning approach (ANFIS) [24,25], (8) carrying out
pre-validation and model adjustments in a mini-focus group, (9) validating the constructed
model by engaging international experts through another online questionnaire [28] and
tuning the model based on the feedback, and (10) writing the research report.



Mathematics 2021, 9, 2822 3 of 71

1.3. Contributions

The study contributes to the body of knowledge in the following fields: (1) data
collection based on human experiences regarding execution tracing quality, (2) using
intelligence systems to extract knowledge from the accumulated human experiences on
logging, and (3) constructing a quality model to describe execution tracing quality with the
consideration of the inherent uncertainty present in quality measurements. The constructed
quality model can appropriately describe execution tracing quality.

1.4. Structure of the Study

The structure of the research report follows the steps of the research protocol. Section 2
gives an account of the works related to the current study; Section 3 presents the research
methods, including the data collection, the sampling strategy and modelling of human ex-
periences; Section 4 highlights the results with regard to the collected data, the exploratory
data analysis, and the model construction; Section 5 is devoted to the validation of the
study; Section 6 outlines the limitations; Section 7 presents the discussions, and the research
closes with the concluding remarks and future work plans in Section 8. Appendixes A–F
highlight important steps of the model construction stages, including verification and
model validation.

2. Related Works

The studies related to the current research lie in two different fields: (1) logging quality,
which forms the problem domain; and (2) quality modelling with adaptive methods,
including the consideration of uncertainty, which constitute tools to deal with the problem
domain from the point of view of modelling. The major points in both fields relevant for
the research conducted are briefly summarised below.

2.1. Logging

Overall guidelines on how to construct logging do not exist but would be desirable
as stated in [4,5,8,10,29]. Present studies mainly focus on three distinct areas: (1) where
to insert log statements in the source code of the application [6–9,11,13–15], (2) what data
to log to make sufficient information available for error analysis [10,12–14] and (3) how
to log [5,13,14], as summarised in Table 1. Moreover, tool support is provided to offer
assistance for each of the three facets listed above [6,10–15]. The Apache Common Best
Practices formulates recommendations for creating consistent severity levels in the logging
code statements, but the description does not contain overall guidelines for execution
tracing [30]. Zeng et al. explicitly claim that the usefulness of logging depends on the
quality of logs, and support is needed for logging decisions with respect to (1) the severity
level, (2) logging code location, (3) text in the log message and (4) when to update the log
statements [31].

Table 1. Main Focus of Publications Related to Logging.

Where to Insert Log Statements in
the Source Code What to Log How to Log Tool Support Publication

x [9]
x [7]
x x [15]
x x [11]
x [8]
x x x x [13]
x x x x [14]
x x [6]

x x [10]
x x [12]
x [5]



Mathematics 2021, 9, 2822 4 of 71

Yuan et al. conducted a study on the efficiency of logging practices, in which they
included 5 large software systems, 250 randomly chosen error reports, and the analysis
of the related source code [13]. They found that the error analysis based on the existing
log data caused a problem in 57% of cases [13]. Furthermore, log messages can reduce the
median time of analysis required to locate errors and accelerate the diagnosis between 1.4
and 3 times in terms of median values [13,32]. In addition, 39% of the program faults were
not logged in the investigated cases [13].

Moreover, Yuan et al.’s measurement in [32] including four large C/C++ software
projects concluded that logging is pervasive, as 30 lines of source code contains a log
statement on average. The study was replicated by Chen at al. investigating Java projects,
who found on average a log statement for each 51 lines of source code [33], which supported
the claim of tje pervasiveness of logging.

Logging mechanisms can be constructed by a proprietary log implementation or by
the use of log libraries. Kabbina et al. investigated 223 Apache Software Fundation projects
and found that log library migration took place in 33 of them [34]. More than 70% of
the migrated projects had post-migration errors [34]. In addition, the median log library
migration time amounted to 26 days for the 33 projects [34], which indicates that log library
migration is not a straightforward and trivial task.

Zheng et al., based on the analysis of 1.444 open-source Android applications, found
that logging practices deviated from the practices applied in desktop and server applica-
tions; moreover, log statements in the mobile applications are less pervasive and far less
maintained than in their desktop and server counterparts [31].

Galli et al. investigated the complete software product quality models and their
tailored variants published in the past 20 years [2]. The term complete software product
quality model refers to quality models that aim to cover and describe each presently known
aspect of software product quality. The study identified 23 software product quality model
families, as listed in Table 2, and found that none of them considers logging quality in an
appropriate manner [1,2].

Table 2. Software Product Quality Model Families Defined, Tailored, or Referenced in the Last 20 Years [2].

No. Software Product Quality Model Families, Names in Alphabetic Order

1 2D Model [35]
2 ADEQUATE [36,37]
3 Boehm et al. [38]
4 COQUALMO [39,40]
5 Dromey [41]
6 EMISQ [42–44]
7 FURPS [45–47]
8 GEQUAMO [48]
9 GQM [49]
10 IEEE Metrics Framework Reaffirmed in 2009 [50]
11 ISO25010 [51–58]
12 ISO9126 [59–67]
13 Kim and Lee [68]
14 McCall et al. [69,70]
15 Metrics Framework for Mobile Apps [71]
16 Quamoco [72–75]
17 SATC [76]
18 SQAE [77]
19 SQAE and ISO9126 combination [78]
20 SQALE [79–86]
21 SQUALE [87–90]
22 SQUID [91]
23 Ulan et al. [92]



Mathematics 2021, 9, 2822 5 of 71

In spite of the extensive research in the field, the basic issue remains: there are no
overall guidelines available for logging, and no model exists to measure the quality of
logging as a whole. Furthermore, it is not feasible at present to quantitatively compare
logging quality in the same project at different milestones or to compare the logging quality
of different projects. Galli et al. explored the variables on which logging quality depends [1].
This step opened the way to the creation of a quality model for execution tracing to consider
each identified aspect of its quality and to perform quantitative measurements.

2.2. Adaptive Methods in Quality Modelling

As human experiences and human qualities need to be considered while modelling
execution tracing quality, artificial intelligence (AI) methods were used in the present
study. AI and machine learning have found several application areas in the field of
software quality modelling, including software defect prediction, bug report classification,
uncertainty modelling, and multi-criteria decision-making problems as summarised below.
Nevertheless, none of the listed studies focused on logging quality.

Lai et al. lay down key performance metrics for computer network quality and
predict customer satisfaction by means of recurrent neural networks [93]. Software defect
prediction became an intensively researched field with different machine learning methods,
including AI, used to forecast errors or system breakdowns [94]. Pradhan et al. use
machine learning to predict software defects in large systems [95]. Madera and Tomon
apply machine learning to identify source code artefacts that are probably endangered by
software defects [96]. Software defect prediction is highly influenced by the amount of
availability of data for training the machine learning models, including neural networks,
SVM, KNN, K-Means Clustering, Naive Bayes, decision trees, logistic and linear regression
models, as well as their combinations with ensemble learning [97]. Khan et al. use transfer
learning to utilise the data of different projects and to overcome the data availability
barrier [97]. Blas predicts the quality of the software by means of simulation and modelling
based on the architecture defined in [98]. Xing et al. predict software quality based on
complexity-related quality metrics by means of SVM [99]. Lafi et al. apply classification
for bug reports to reduce the maintenance efforts [100]; their method assigns an action to
the fault report with the following labels: (1) faults to repair, (2) new functionality desired,
(3) existing functionality needs change, and (4) the software needs adaptation to new
environments.

Ubayashi et al. give an account of the uncertainty that developers face in the software
development [101]. Their publication reveals the potential for the use of fuzzy logic. Singh
et al. determine four quality metrics—(1) separation of concerns, (2) coupling, (3) cohesion,
and (4) size—to describe the reliability of aspect-oriented software systems while they use
fuzzy modelling [102]. The linguistic rules were constructed on the basis of the opinions of
experts. Li et al. defined a quality model for software products involved in digitalising
antiquarian resources with the use of fuzzy logic [62]. Li et al. took over concepts from
the ISO/IEC 9126 standard [64], but they defined a separate quality model [62]. Fuzzy
mathematics is applied to evaluate the membership of the defined quality properties in the
fuzzy sets: excellent, good, general, unqualified [62]. Liang and Lien extend the quality
model of the ISO/IEC 9126 standard [64] to encompass enterprise resource planning (ERP)
software-related properties [65]; moreover, they describe the selection of the optimal ERP
software as a multi-criteria decision-making problem and use a fuzzy analytic hierarchy
process to produce a ranking with regard to the criteria considered [65]. In addition, Ag-
garwal et al., Nerurkar et al., Canfora et al., and Mittal and Bhatia applied fuzzy modelling
to consider qualitative and quantitative data to assess the reusability and maintainability
of software components in [103–106]. Galli et al. carried out a pilot study in [18,107] to
test the performance of the different fuzzy inference methods with different membership
functions in the context of modelling execution tracing quality. The study resulted in
the findings that (1) Takagi–Sugeno–Kang inference with overlapping Gaussian-shaped
membership functions achieved the best performance, and (2) the manual linguistic rule



Mathematics 2021, 9, 2822 6 of 71

creation is error-prone, and contradictions can easily be introduced in the rule-base. For
these reasons, the study concludes that Takagi–Sugeno–Kang inference with overlapping
Gaussian-shaped membership functions should be used to describe execution tracing qual-
ity with an adaptive fuzzy system, where the linguistic rules are constructed automatically
from the collected data.

Malhotra and Lata outline the machine learning approaches used for software main-
tainability in [108].

3. Methods

In this section, the research methods are briefly explained, including the data collection,
modelling, pre-validation, and validation stages. As the study is empirical, it collects and
processes experiences of software professionals accumulated in the IT domain, as illustrated
in Figure 1.

Uncertainty and vagueness are inherently present in the software product quality
measurement and assessment process as explained in Sections 1 and 2. In the scope of
a pilot study [107], it was tested how the uncertainty and vagueness in the context of
execution tracing quality can be approximated in the most appropriate manner. The
findings of the pilot study [107] were used in the current research; therefore, an adaptive
fuzzy system with overlapping, Gaussian-shaped membership functions at the inputs and
with Takagi-Sugeno-Kang inference [23] was selected for modelling.

Figure 1. Process of the Conducted Research.

3.1. Data Collection

The study population was defined as an approachable and geographically localised
group of software professionals in Hungary including software developers, software
maintainers, and testers, from software companies of the competitive sector, the main
activity of which is in the IT service delivery domain (TEAOR ID 620× at the Hungarian
Central Statistical Office); furthermore, the employee count of the companies exceeded
1000 people. Many companies may have the TEAOR ID 620× or its sub-IDs beside having a
different main TEAOR ID, but only those were included in the study population for whom
the main activity belonged to the TEAOR ID 620× or to one of its sub-IDs. Such software
houses are usually international software companies with coding guidelines and a company
culture that spans across countries, including premises also in Hungary. For this reason,
the geographical localisation does not impose an impediment for the generalisability of
the study. However, extra measures were taken, as described at the validation stage, to
mitigate this risk.

The size of the study population is estimated to be N = 12.107 (data originate from
August 2017) full-time employees. Multistage random sampling [109,110] was applied to
achieve the desired target; i.e., the companies of the study population were sampled, and
then the employees of the selected companies were sampled. Random sampling possesses
several advantages over stratified sampling [110], but the major advantage in the research
context can be characterised by the fact that the different strata do not need to be known in
the study population in advance to achieve a trustworthy sample.



Mathematics 2021, 9, 2822 7 of 71

Information and consent letters were sent to the management of the chosen companies,
and in the case of approval, employees were also selected. Before involvement, each
selected employee was informed about the research to be able to give informed and
voluntary consent for their participation in the study.

The data were collected through an online questionnaire [28], which was tested by two
software professionals before sending it out. Furthermore, the ω coefficient and Cronbach’s
α were computed for the collected data. The online questionnaire [28] collected the input
variable values—i.e., values for (1) accuracy, (2) legibility, (3) design and implementation,
and (4) security—and the corresponding values for the output variable—i.e., for execution
tracing quality to produce the data for supervised machine learning. The online survey
contained three parts.

Part 1 of the questionnaire [28] introduced eight use cases with a textual description of
each use case to provide background information and sample log data. The demonstrated
use cases showed different execution tracing mechanisms and trace outputs ranging from
poor quality to good quality, where the respondents had to assign a score value in the
range of [0; 100] to each use case for the inputs (1) accuracy, (2) legibility, (3) design
and implementation, and (4) security; moreover, they assigned a score for the output:
execution tracing quality. Necessary variable definitions were provided for the respondents.
Altogether, 40 questions were contained in this part of the survey.

Part 2 of the questionnaire [28] collected data about the quality of logging in two
real projects to which the respondents were assigned in the past. In addition to the input
variables and the output variable given above, the software professionals had to answer a
question about the type of the application: (1) server application, (2) desktop application,
(3) web UI, (4) mobile application, or (5) embedded application. Altogether, 12 questions
were contained in this part.

Part 3 of the questionnaire [28] introduced extreme input variable value combinations
for (1) accuracy, (2) legibility, (3) design and implementation, and (4) security, which might
not be frequent in real-life but which need also to be considered by the model construction.
The respondents had to assign an output variable value—i.e., execution tracing quality—to
each listed combination of inputs. This part of the survey contained 23 questions altogether.

Two further questions were also included in the questionnaire [28] about the profes-
sional background of participants and about the opinion of the respondents on whether
the type of the application—(1) server application, (2) desktop application, (3) web UI, (4)
mobile application, or (5) embedded application—had an influence on the responses to the
questions in the survey.

3.2. Data Processing, Exploratory Data Analysis, and Modelling

After concluding the data collection stage, the data were cleaned—i.e., checked for
valid responses—and the distribution of the data was analysed, exploratory data analysis
was carried out, outliers were removed, and the confidence intervals were determined. The
variable with the worst—i.e., the largest—confidence interval was considered; moreover,
with regard to the confidence interval and to the statistical reliability of the sample, the
model validation was designed. The collected data were reshaped to achieve the format
necessary for machine learning, and the data were randomly split into a training and a
checking set. The training set was used to fit the model to the data, while the checking
set was used to test the training process and to avoid overfitting. Constructing the quality
model was accomplished by an adaptive fuzzy system, in which genetic algorithms pro-
vided the learning capability [27]. The performance of the constructed model was verified
by a different machine learning approach: ANFIS [24,25].

3.3. Model Adjustment and Pre-Validation

The created fuzzy systems with different numbers of linguistic rules were reviewed by
a mini focus group containing three software professionals with many years of experience



Mathematics 2021, 9, 2822 8 of 71

in industrial and academic settings. The optimal model was selected, adjusted, and checked
for validity.

3.4. Model Validation

The data used for model validation were collected by a second online question-
naire [28]. The responses stemmed from selected international experts located in different
countries, including Austria, Germany, and Hungary (countries are listed in alphabetic
order). The questionnaire [28] contained the linguistic variables and the model in the form
of linguistic rules; moreover, the impacts of the model’s pairwise inputs in the output were
also depicted in charts. The experts were asked to check the model and its fit and the
model’s responses to the changes in the inputs through an online meeting if necessary. In
addition, the authors also validated the model prepared by face validity. Thus, the UK was
also represented in the list of countries of origin of the experts to perform the validation.
The model was tuned according to the responses of the experts. Consequently, the risk of
geographical localisation in the course of the data collection from international companies
was mitigated.

4. Results
4.1. Data Collection

The employee count of the software companies which declared themselves to be ready
to participate in the study amounted to approximately 6000 people. Thus, the first stage of
sampling covered nearly 50% of the study population. The goal was to achieve a completely
random sample from the companies involved, possibly selecting individuals randomly
from the register and then contacting them, but this was practically infeasible. Thus, all the
employees of selected areas at the selected companies received an email notification with
information and with the link to the online questionnaire [28] to fill in. The individuals of
the selected areas of the selected companies showed low response rates, which might have
been caused by the long and complex questionnaire [28]. Overall, 41 software professionals
filled in the survey, which had three parts with 77 questions in total.

The reliability indicators, ω coefficient, and Cronbach’s α in Table 3 were computed
for each separate part of the questionnaire [28] after removing the rows with NA values
and removing the outliers as discussed in Section 4.2.

Table 3. Reliability Indicators of the Online Questionnaire [28].

Use Cases Real Projects Extreme Input Values

α 0.98 0.92 0.83
ωtotal 0.98 0.94 0.87

The extreme high reliability indicator values for the use cases might have been caused
by the repeating questions, which are valid in the context of the present research as each
use case represents a different setting, where the respondents rated the corresponding
input and output variable values.

4.2. Data Processing and Exploratory Data Analysis

The data collected were examined for each question answered, and the responses were
depicted in box plots to see the dispersion and the outliers. The questions in part 2 of the
survey constituted an exception from the outlier detection as each respondent could think
of a different project in the past, leading to valid input–output data pairs from the point of
view of the data collection, but they did not necessarily come from the same probability
distribution.

The box plots depict the Q1 and Q3 quartiles with a box, which is called the interquar-
tile range; i.e., 50% of the data fall into this range. The median is shown by the middle
bold line in each box, while the outliers are highlighted with dots over the whiskers. The



Mathematics 2021, 9, 2822 9 of 71

distance of the whiskers (W) from the Q1 and Q3 quartiles is computed by 1.5 times the
interquartile range. If the exact W value computed is not present in the data set, then the
whiskers are placed to the closest value towards the median.

The chart on Figure 2 illustrates the dispersion of the assigned quality scores—i.e.,
the output values—of the defined use cases. An upwards trend in the median value can
be observed, which mirrors the description of the use cases and the quality of the log
excerpts rated by the respondents. The box plots of the input variable values are given in
Appendix A and depicted in the charts of Figures A1–A4. In addition, Figure 3 highlights
the Q1, Q3, and median values of the quality scores assigned to the combination of the
extreme input values.

Figure 2. Quality Scores Assigned to the Use Cases, with Q1, Q3, and Median Values.

The data show an asymmetric dispersion and skewness regarding the majority of the
collected variables. Nevertheless, quantile–quantile plots were computed to check how the
collected data approximate the theoretical normal distribution. The charts, presented in
Appendix A.2, show the 0.95% confidence intervals and the computed Sharpio–Wilk nor-
mality tests. Before computing the quantile–quantile plots, the outliers and the rows with
NA values were removed. The use case data are illustrated in Figures A5–A12. The follow-
ing variables do not approximate the theoretical normal distribution on pSharpio−Wilk < 0.05:
use case 1: all variables; use case 2: accuracy, security; use case 3: accuracy; use case 4:
none of the variables; use case 5: design and implementation; use case 6: design and
implementation, quality; use case 7: accuracy, quality; use case 8: accuracy, design and
implementation. The collected data about real projects are not normally distributed, as
shown in Figure A13, but they may represent different projects. The following variables do
not approximate the theoretical normal distribution on pSharpio−Wilk < 0.05 regarding the
data assigned to the extreme input variable values Q2, Q4, Q8, Q10, Q12, Q13, Q14, Q15,
Q16, Q17, Q18, Q19, and Q21 as illustrated in the charts of Figures A14–A17. The variables
Q20 and Q22 were excluded from the normality test as they only possessed identical values.



Mathematics 2021, 9, 2822 10 of 71

Figure 3. Quality Scores Assigned to the Extreme Input Values, with Q1, Q3, and Median Values.

As many of the variables collected were not normally distributed, as illustrated
above, the p = 90% confidence interval was computed by the non-parametric Wilcoxon
test [111]. To highlight the uncertainty related to all questions in a meaningful way, the
lower and upper values of the confidence intervals are not reported below but the range
they encompass.

The ranges of confidence intervals for the input and out variable values without the
outliers, related to the described eight use cases, possess the following characteristics: min
value: 9.99, max value: 24.99, median: 12.49. The 24.99 range of the confidence interval
emerged for the values of the input variable security for use case 1 and use case 2, while
the ranges of the other variables approximated the median.

The assigned execution tracing quality—i.e., the output variable—to the extreme
input variable value combinations showed a lower dispersion than the responses to the
use cases. The most definite answers were found when all the four input variables had
the maximum value of 100 for question Q20 and when they all had the value of 0 for
question Q22. In these cases, 100 was assigned for Q20 and 0 was assigned for Q22 by all
respondents, not counting the outliers. The ranges of the confidence intervals show the
following characteristics after removing the outliers: min value: 1, max value: 15, median:
10.

In conclusion, the collected data after removing the outliers show a median value
of 12.5 for uncertainty related to the constructed use cases and median value of 10 for
uncertainty related to the extreme input variable value combinations on a scale from 0–100
when p = 90%. Thus, the uncertainty on the scale 0–100 at this specified probability value
lies between 10 % and 12.5 % with regard to the medians of the confidence intervals.
An approximately 10% uncertainty while rating software quality on a ratio scale is an
acceptable value; however, the small sample size (n = 41) makes a stronger validation
necessary, as usual.



Mathematics 2021, 9, 2822 11 of 71

4.3. Modelling: Machine Learning

The data collection and exploratory data analysis resulted in a tabular representation
of the data in which the questions of the survey form the columns; however, another data
format is necessary for machine learning that contains the input and output pairs. To
achieve this, the data were transformed into a matrix representation, where the columns
represent (a) the four input variables—(1) accuracy, (2) legibility, (3) design and implemen-
tation, and (4) security—and (b) the corresponding output: execution tracing quality. The
rows of the matrix represent input and output pairs. Where an outlier was marked in the
rows of the matrix, the complete row was removed. After reshaping the data this way and
removing the outliers, 1185 pairs of inputs and the corresponding output were created; i.e.,
the matrix possessed 1185 rows suitable for machine learning. The data set was randomly
split into proportions of 70% and 30% for training data and checking data, as introduced in
Section 3.

Modelling was performed in the Matlab R2021a environment, where a fuzzy inference
system was created with four inputs and one output, according to the data set above.
The input membership functions and their partitions are shown in Figure 4. The output
membership functions were defined as five constants; i.e., zero-order membership functions
were used in the output at the values {0, 25, 50, 75, 100} for the singleton fuzzy sets {very
poor, poor, medium, good, very good}. The fuzzy inference system was constructed with
the inference type Takagi–Sugeno–Kang [23] with no initial linguistic rules.

Figure 4. Membership Functions of the Inputs.

In the scope of machine learning, the system was adapting to minimise the root mean
squared error of the input–output data pairs, while the learning was carried out with
genetic algorithms [112], and the numbers of possible linguistic rules were limited to {1, 3,
5, 8, 12, 16, 20, 40, 80, 160} per run. Genetic algorithms have a non-deterministic nature; i.e.,
several runs of the same algorithm with the same parameters in the same problem domain
may achieve different but similar results. Therefore, each run with the same parameters
and with the same upper bound settings for the linguistic rules was executed five times,
and the results were recorded. In addition, the whole run-suite was executed six times.

Thus, six iterations of five models were created for each rule limit in the set {1, 3, 5,
8, 12, 16, 20, 40, 80, 160}. In addition, the best results of the five models were collected
for each rule limit in each of the six run suites. The predictions of the models with
different numbers of maximal rules were analysed with regard to the mean absolute error
(MAE), root mean squared error (RMSE), and minimal and maximal deviation from the
desired target in the course of each run. The runs with the best performance, which come



Mathematics 2021, 9, 2822 12 of 71

from run suite 2, are depicted in Figure 5, and the corresponding data are illustrated in
Table 4 with regard to the training data set; moreover, the same runs are also shown in
Figure 6 with regard to the checking data set, and the corresponding data are highlighted
in Table 5. The RMSE indicators for the training data and the checking data are shown in
Appendix B in Figures A18 and A19; furthermore, the corresponding data are highlighted
in Tables A1 and A2. The machine learning process was ceased when the new generations
produced by the genetic algorithm reached a saturation point with regard to the mean
RMSE value of the individuals in the population.

The charts with the data predicted by the created models as outputs and the original
collected outputs are shown for each rule limit in the set {1, 3, 5, 8, 12, 16, 20, 40, 80, 160} in
Appendix C with the best maximum error and the best RMSE error model candidates for
the checking data in Figures A20, A21, A24, A25, A28, A29, A32, A33, A36, A37, A40, A41,
A44, A45, A48, A49, A52, A53, A56 and A57, and for the corresponding training data in
Figures A22, A23, A26, A27, A30, A31, A34, A35, A38, A39, A42, A43, A46, A47, A50, A51,
A54, A55, A58 and A59. The original data have been sorted to ensure that the deviations
from the desired targets are easy to observe. Each extracted rule set designates a distinct
model.

It is important to consider that when the maximal number of linguistic rules would
have allowed 80 or 160 rules, then the number of rules learnt by the systems was usually
below 80 linguistic rules.

Figure 5. Depiction of the Best Maximal Errors for the Training Data.



Mathematics 2021, 9, 2822 13 of 71

Figure 6. Depiction of the Best Maximal Errors for the Checking Data.

Table 4. Best maximal errors for the training data.

Limit: 1
Rule

Limit: 3
Rules

Limit: 5
Rules

Limit: 8
Rules

Limit: 12
Rules

Limit: 16
Rules

Limit: 20
Rules

Limit: 40
Rules

Limit: 80
Rules

Limit:
160 Rules

RMSE 30.59485 19.56332 18.47743 16.21253 17.859 15.67844 15.83771 15.45328 15.69313 18.56351
MAE 26.16265 15.88731 15.17334 11.79144 14.31864 11.31696 11.97357 11.01256 11.41314 15.22481
Min. Error 0 0 0.00002 0.000731 0 0.025736 0.022271 0.004223 0.039392 0.153897
Max. Error 50 74.97749 50.51683 55.28113 50.51682 50.522 51.50747 50.01046 49.81493 52.96985

Table 5. Best maximal errors for the checking data.

Limit: 1
Rule

Limit: 3
Rules

Limit: 5
Rules

Limit: 8
Rules

Limit: 12
Rules

Limit: 16
Rules

Limit: 20
Rules

Limit: 40
Rules

Limit: 80
Rules

Limit:
160 Rules

RMSE 30.23458 19.79506 17.11367 16.42312 15.58643 15.5542 15.39485 15.32827 15.32682 16.35666
MAE 25.92113 15.74546 12.96622 11.99584 11.08251 11.26821 11.27761 11.13463 10.90988 12.2782
Min. Error 0 0 0.00001 0.010229 0.014746 0.000246 0.011135 0.000583 0.007301 0.01093
Max. Error 50 74.97749 50.00047 50.5166 51.03274 50.77524 51.05456 51.48755 50.05721 50.25765

The data shown in Figures 5 and 6, as well as the data in Appendix B in
Figures A18 and A19, indicate that increasing the number of linguistic rules results in
a better accuracy up to the approximation with 12 rules. Exceeding this value does not
lead to better performance. Consequently, the extracted rule set with 12 rules became the
target for further processing. The extracted rule sets of the selected run suite 2 are listed in
Appendix C with their evaluation charts for the checking data set.

4.4. Modelling: Verification of the Constructed Model by a Different Machine Learning Approach

As introduced in Section 4.3, the quality model for execution tracing was prepared
by machine learning through genetic algorithms, adapting a fuzzy inference system to the
collected data set; i.e., the model was trained on the training data and tested on both the
training and on the checking data, while the input and output membership functions were
kept unchanged and the linguistic rules were identified. To test whether the model created
at the end of the machine learning stage can be verified by a different machine learning
approach, the authors applied ANFIS [24,25] and compared the same error indicators.

Thus, a new model was created by ANFIS [24,25]; i.e., the linguistic rules of the fuzzy
inference system were specified with grid-partitioning at the start, and each linguistic
rule was associated with a distinct output membership function, while the same initial
input membership functions were assigned as in the case of the previous model trained



Mathematics 2021, 9, 2822 14 of 71

by genetic algorithms. ANFIS [24,25] adjusts the parameters of the input and output
membership functions. Grid partitioning, selected due to the homogeneous coverage of
the whole problem domain, resulted in as many linguistic rules as the possible variations
of the input partitions; i.e., four inputs with three partitions (34 = 81). Consequently, 81
output membership functions were required. Thus, the efficient human interpretation of
the rule set to understand the problem domain, after training the model, is not feasible, in
contrast to the model created in Section 4.3.

Furthermore, ANFIS training was implemented in two different ways: with (1) back-
propagation and (2) hybrid approaches. For each learning approach, a separate model was
trained with one of the initial step sizes from the set {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5}. The best-performing models with regard to the maximal errors and RMSE errors were
selected in the course of 100 learning epochs. Table 6 presents the best error indicators with
regard to the initial step sizes. The adaptation of the initial step sizes during the learning
process can be observed in Figures A77, A79, A81 and A83.

The change of the RMSE error for all the best four models in Table 6 as a function
of learning epochs for the training and checking data are depicted in Appendix F in
Figures A76, A78, A80 and A82. In addition, the evaluation charts of the four best models in
Table 6 with the ANFIS approach [24,25] are illustrated in Appendix F in Figures A72–A75.

The evaluation charts and the best error indicators in Table 6 show only minor dif-
ferences in comparison to those achieved with genetic learning in Section 4.3. Thus, the
results of Section 4.3 could be verified by a different machine learning approach on the
same training and checking data sets.

Table 6. Error Indicators of the Best-Performing Models Trained by the ANFIS Approach.

Training: Backpropagation Training: Hybrid
Best Max. Error Best RMSE Error Best Max. Error Best RMSE Error

RMSE 15.04308982 14.92059348 16.35542215 16.31984729
MAE 10.91966752 10.68467212 10.9482579 10.66809624
Min. Error 0.046226241 0.042525692 0.049740427 0.012379938
Max. Error 50.61656014 51.15983193 66.11773115 96.19663932
Initial Step
Size 2.5 3 3.5 5

4.5. Modelling: Adjustments and Pre-Validation

The rule set with the 12 upper-bound value of the linguistic rules became, for the
above reasons, the starting point for the investigation in which direct human experience
was also incorporated into the results gained by computational intelligence. A mini focus
group with three software professionals—a software maintainer, a software tester, and a
system administrator—whose job roles require intensive log analysis, with many years of
experience in industry and in academia, investigated the established rules, their plausibility,
and the evaluation charts of Figures A36 and A37. In addition, the pairwise effect of the
inputs on the output was also analysed as shown in Appendix D in Figures A60–A65.

The goal of the discussion in the mini focus group was to incorporate direct human
experiences in the rule base through investigating the existing linguistic rules, (1) leaving
the correct and plausible linguistic rules in the rule set, (2) removing or changing the
incorrect ones, and (3) adding the missing ones. Furthermore, the adjustments did not
attempt to improve the error indicators of RMSE, MAE, maximal error, and minimal
error for the training and checking data sets as the genetic algorithm used had already
approximated the optimal fit to the data sets with the extracted rules. The adjustments also
involved a pre-validation by the three participants of the mini focus group.

The following problems were identified: the initial evaluation charts in Figures A36–A39
show an accumulation of the predicted values in the middle range of the output variable.
Moreover, (P0) no linguistic rules existed, which would have explicitly defined the output
value {good} from the possible outcome set {very good, good, medium, poor, very poor}.
In addition, (P1) if all input values lie in the domain {good}, then the output value should



Mathematics 2021, 9, 2822 15 of 71

lie in the domain {very good}; (P2) for the input variables of legibility and security, while
they decrease in the {poor}–{poor} domain, they should not contribute to an increase in
the output on Figure A64; (P3) for all values of the input variable security, while the input
variable accuracy increases in the {good} domain, the output in Figure A64 should not
fall back; (P4) while moving from the {poor} and {medium} values of the input variable
design and implementation towards the domain {good} and increasing the input variable
accuracy from the {medium} to the {good} domain, then the output should not decrease
in Figure A61; (P5) while increasing the input variable accuracy for all values of the input
variable legibility, the output in Figure A60 in the {good} domain of accuracy should not
produce a decreasing effect; moreover, (P6) while increasing the input variable legibility
from the {medium} domain and keeping the variable accuracy in the {poor} domain, the
output in Figure A60 should not drop.

The rules R1, R2, R4, R6, R7, and R10 were taken over from the original rule set,
without any change. The rules R3, R5, R9, R11, and R12 underwent changes to gain
approval by the mini focus group, while the rules from R13 to R19 were added to resolve
the issues from P0 to P6 listed above.

R13. resolves P1—i.e., if all input values possess {good} values, then the output value
should belong to the domain {very good};

R14. resolves P2, as illustrated in Figure A70;
R15. resolves P3 and P4, as shown in Figures A70 and A67;
R16.–17. resolve P5 and P6, as depicted in Figure A66;
R18.–19. resolves P0—i.e., explicit linguistic rules were created for the output value {good}.

While identifying the necessary changes and applying the adjustments, the fuzzy
model was tested with the combination of vectors [0, 50, 100]; i.e., each input received
a value from the vector, and the output of the model was analysed. Furthermore, the
response of the model was also investigated while three inputs of the model were fixed
and one input underwent a continuous increase and decrease. The final set of the linguistic
rules sent for validation is summarised below:

R1. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is poor) then (Quality is very poor);

R2. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is poor) then (Quality is medium);

R3. If (Accuracy is poor) and (Legibility is poor) and (Security is medium) then (Quality
is very poor);

R4. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is medium) then (Quality is medium);

R5. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is medium);

R6. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is good) then (Quality is poor);

R7. If (Legibility is poor) and (DesignAndImplementation is medium) and (Security is
medium) then (Quality is poor);

R8. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very poor);

R9. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is medium) then (Quality is medium);

R10. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is medium) then (Quality is poor);

R11. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is poor);

R12. If (Accuracy is medium) and (Legibility is poor) and (Security is medium) then
(Quality is medium);



Mathematics 2021, 9, 2822 16 of 71

R13. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is good) then (Quality is very good);

R14. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is very poor);

R15. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is not good) then (Quality is medium);

R16. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is medium);

R17. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is poor);

R18. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is good);

R19. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is good).

4.6. Modelling: Validity

The final step of modelling was conducted within the validation stage, which was
implemented (1) by sending out a second questionnaire [28] to selected international
experts located in Austria, Germany, and Hungary, and (2) considering their feedbacks and
tuning the created model. After tuning the model, the authors also validated the results by
face validity.

4.6.1. Validation by International Experts

The online questionnaire [28] contained the input variable definitions, the input
membership function, their partitions, and the brief description of the technique used for
modelling; moreover, the linguistic rules adjusted by the mini focus group, as introduced
in Section 4.5. Furthermore, the survey ensured the possibility of giving textual feedback.
It also encompassed the description of the effects of the pairwise inputs on the output as
shown in Appendix E in Figures A66–A71. An online model demonstration was offered to
the experts, the possibility of which was accepted by one expert.

Based on the feedback from the experts, rule R19 was changed, as presented below:

R19. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is very good).

The experts did not propose or request any further change to the constructed model.
In addition, two insights from two different experts were summarised to highlight the
nature of the quality property security and its possible impacts on execution tracing quality:
(1) increasing security has a negative impact on execution tracing quality, as leaving out
sensitive or GDPR-related data, including login names, reduces analysability; (2) security
requirements are domain-specific—security is a must for medical software, and without
a certain base-level quality for this property, the whole application is inadequate. These
opinions illustrate that, even with regard to one individual quality property, contrasting
requirements may exist in connection with the output, and a possible optimum needs to
be found. This also supports the use of fuzzy logic in the problem domain, which can
adequately describe contradicting information.

Table 7 highlights the different errors of the created model after each modelling stage.
The error indicators were measured on the training and checking data sets and are rounded
to four decimal places in Table 7. The measurements indicate an error increase in the
scope of model adjustments and tuning, which can be explained (1) by the approximated
optimal fit of the linguistic rules, after the machine learning had taken place with genetic
algorithms, to the collected data in the training and checking data sets; (2) by the addition
of new information to the model, which was not present in the initial data sets, in the scope
of the mini focus group; and (3) by the incorporation of the opinions of experts into the
created model to tune it, which further increased the deviation from the collected data.



Mathematics 2021, 9, 2822 17 of 71

This deviation and error increase between the above stages could probably have been
diminished or eliminated if the sample size of the initial data set could have been increased.

Table 7. Error Indicators of the Created Model After the Different Modelling Stages.

Base 12-Rule Model Model After Adjustments Model After Validation
Error Type Checking Data Training Data Checking Data Training Data Checking Data Training Data

RMSE 15.5864 15.5653 19.5772 19.9272 23.5540 23.3813
MAE 11.0825 11.3225 14.1003 14.0510 16.3166 16.1725
Min. Error 0.0147 0.0033 0.0055 0.0015 0.0055 0.0015
Max. Error 51.0327 55.7013 73.9973 76.0869 97.4981 97.4981

4.6.2. Face Validity by the Authors

The authors investigated the outcome of the modelling stage after incorporating the
feedback of the international experts. They found the formalised linguistic rules reasonable
and plausible; moreover, they also examined the pairwise impacts of the inputs on the
output, which is reported below the evaluation charts in Figures 7–12.

• Accuracy–legibility in Figure 7: When accuracy lies in the {poor} domain, the increase
of legibility produces a slight increase, which quickly saturates. The behaviour is
similar in the {medium} range of accuracy, but the saturation occurs at a higher value,
while the increase of legibility in the range of {good} accuracy values produces a strong
increase in the output. In the {good} ranges of legibility, the described relationship
contributes an increasing effect to the output as accuracy increases. On the other hand,
in the {poor} and {medium} ranges of legibility, the increase of accuracy produces a
far smaller increase in the output than in the {good} range of legibility; moreover, the
increasing effect saturates at a lower value.
The chart demonstrates that accuracy has greater impact on the output in the {medium}–
{good} accuracy domain if legibility lies in the {good}domain.

• Accuracy–design and implementation in Figure 8: In the {poor} domain of design and
implementation, the increase of accuracy can only produce a small increase with a
quick saturation in the output, while this saturation occurs in the {medium} domain
of design and implementation at a higher value. Furthermore, in the {good} range of
design and implementation, the increase of accuracy contributes an increase to the
output, with a horizontal segment in the {medium} domain of accuracy. When accu-
racy possesses {poor} ranges and design and implementation increases, the variable
combination contributes a slight increase to the output, with a horizontal segment
at a low value, while the contribution increases in the {good} domain of design and
implementation. The {medium} domain of accuracy values with increasing design
and implementation values contributes an increase with a saturation to the output,
while the same increase in the {good} ranges of accuracy produces an increase with a
horizontal segment at {medium} design and implementation values.
The chart demonstrates that both variables have approximately the same effect on the
output.

• Accuracy–security in Figure 9: In the {poor} range of accuracy, the increase of security
can only contribute a small increase with a very quick saturation to the output in the
relation of these two variables. In the {medium} range of accuracy, this contribution
is greater, but the saturation is quick and occurs at a higher value than in the {poor}
domain. At {good} values of accuracy, security only has an influence on the output in
the {good} domain of security, where it contributes a slight rise. When security lies in
the {poor} range, the increase of accuracy produces an increasing effect to the output
with a late saturation in the {good} accuracy domain. At {medium} security values,
the increase of accuracy produces the same increasing effect with a quicker saturation
at the same value as in the {poor} domain of security. In the {good} security domain,
the increase of accuracy produces a similar effect to the {medium} security domain,
but it also contributes an increase to the output in the range of {good} accuracy values.



Mathematics 2021, 9, 2822 18 of 71

The chart illustrates that the effect of accuracy is far stronger than the effect of security,
which is similar to the case with the variables security and design and implementation.

• Legibility–design and implementation in Figure 10: In the {poor} range of legibility, the
increase of design and implementation causes an increasing effect in the output with a
short, nearly horizontal segment in the {medium} design and implementation domain.
In the {medium} domain of legibility, an increase in design and implementation
contributes an increase to the output, which achieves its maximum at a higher value
and at lower design and implementation inputs than in the {poor} legibility domain.
Increasing design and implementation in the {good} legibility domain contributes a
strong increase to the output. In the {poor} design and implementation domain, the
increase of legibility contributes a small increase to the output, with a saturation at a
low value. The domain with {medium} design and implementation values produces a
similar effect as that for increasing legibility, but the starting point of the contribution
to the output is a higher value and the saturation occurs also at a higher value than
in the {poor} domain. The increase of legibility in the {good} range of design and
implementation produces a contribution to the output only in the {good} domain of
legibility, which is an increase.
The chart depicts that the effect of design and implementation is stronger than the
effect of legibility.

• Legibility–security in Figure 11: In the {poor} range of legibility, the increase of security
contributes a strong increasing effect to the output in the {poor} security domain, but
this effect saturates at the beginning of the {medium} security domain. A slightly
increasing contribution to the output can be observed in the {medium} legibility
domain if security increases, but the initial contribution without the changes is high.
In the {good} legibility domain, the increase of security only in the {good} domain has
an effect on the output, which is increasing, in the relation of these two variables. In
the {poor} domain of security, the increase of legibility produces a strongly increasing
contribution to the output in the {poor} legibility domain. In the {medium} security
domain, the increase of legibility contributes a slight increase to the output. The
contribution has a high initial value. In the {good} security domain, the contribution to
the output starts from a high initial value while increasing legibility, but the increase
is mild, with a horizontal segment in the range of {medium} legibility values.
Practically, these variables take effect only in the {poor}–{poor} domain, but then the
triggered effect is strong.

• Design and implementation–security in Figure 12: In the {poor} range of design and
implementation, the increase of security produces a slightly increasing effect in the
output, but this effect saturates at low security values. In the {medium} domain of
design and implementation, the rise of security has an effect only in the {poor} security
domain, which is increasing with regard to the output. In the {good} range of design
and implementation, the increase of security contributes no effect to the output in the
relation of these two variables. In the {poor} domain of security, the increase of design
and implementation produces an increasing effect in the output. This effect is stronger
in the {medium} and {good} ranges of security if design and implementation increases,
but then the contribution to the output saturates at lower design and implementation
values.
The chart is very similar to the chart of accuracy–security; i.e., the variable design
and implementation shows a far stronger effect towards the output than the variable
security. In the {good} range of design and implementation, the increase of security
contributes no effect to the output in the relation of these two variables, which does
not mean that the increase of security, in the relation to all inputs, contributes no effect
to the output.



Mathematics 2021, 9, 2822 19 of 71

Figure 7. Effect of the Inputs Accuracy and Legibility on Execution Tracing Quality after Tuning the Rules.

Figure 8. Effect of the Inputs Accuracy and Design and Implementation on Execution Tracing Quality after Tuning the Rules.



Mathematics 2021, 9, 2822 20 of 71

Figure 9. Effect of the Inputs Accuracy and Security on Execution Tracing Quality after Tuning the Rules.

Figure 10. Effect of the Inputs Legibility and Design and Implementation on Execution Tracing Quality after Tuning the Rules.



Mathematics 2021, 9, 2822 21 of 71

Figure 11. Effect of the Inputs Legibility and Security on Execution Tracing Quality after Tuning the Rules.

Figure 12. Effect of the Inputs Design and Implementation and Security on Execution Tracing Quality after Tuning the Rules.

The above comparisons describe solely three dimensions: two inputs and one out-
put. All input variable combinations are depicted to highlight their effects in the output.
Consequently, the described effects refer to the output with regard to the presented input
combinations.

All the input combinations above, depicted in the three-dimensional charts and
described in the listing, have a reasonable effect on the output, which is in accordance with
the experience of the authors. In conclusion, the face validity by the authors is satisfied.

5. Validation

This section is devoted to the validity of the study. In complex modelling studies,
validity is a scale with different degrees that can describe the distinct validity facets of the
conducted research. Internal, external, content, and construct validities are investigated
and documented below. Every reasonable effort was made in the context of the study to
satisfy the documented validity aspects.



Mathematics 2021, 9, 2822 22 of 71

Internal validity establishes that the research conducted represents the truth with
regard to the phenomenon studied [113]. In the context of the conducted study, this is based
on the (1) representativeness of the sample drawn from the defined study population, on
the (2) human experiences incorporated in the rule base, and on the (3) internal consistency
of the study. The online questionnaire [28] was tested before sending it out; moreover, the
reliability indicators ωtotal and Cronbach’s α were computed for the collected data, and they
showed high-reliability values as presented in Section 4.1. The sample size (n = 41) in the
research is low; however, the median value of the ranges of the p = 90% confidence intervals
are acceptable with regard to the problem domain, as discussed in Section 4.1. Nevertheless,
1185 input–output data pairs were collected to accomplish machine learning; furthermore,
additional data collection was carried out in the mini focus group while investigating the
performance of the created model, as described in Section 4.5. The internal consistency
of the study was achieved (a) in the scope of the machine learning by training the model
on the training data set, which contained 70% of the data randomly selected from the
whole data set, and checking the performance of the created models on both the training
and on the checking data; moreover, (b) the linguistic rules generated in the scope of
machine learning underwent adjustment in the mini focus group; (c) finally, the model
created was investigated by experts and tuned based on their feedback, as explained in
Section 4.6. In addition, machine learning was implemented in two different manners and
the errors of the two approaches were compared, as reported in Section 4.4; furthermore,
the non-deterministic algorithms were executed several times, and the models with the
best performance runs were selected, as described in Sections 4.3 and 4.4.

External validity establishes the generalisability of the findings identified in the
study [113]. This kind of validity was satisfied by including a broad range of software
professionals in the study: software architects, software developers, software maintainers,
software testers, and system administrators. On the other hand, the study population was
defined with a localisation to Hungary; however, international companies with employee
counts over 1000 were involved in the study, with international coding habits and guide-
lines extending across geographical boundaries. In addition, the model underwent final
tuning based on the opinions of international experts located in Austria, Germany, and
Hungary, also counting authors in the UK.

Content validity [114] in the context of this study refers to the extent to which all
possible opinions of software professionals were considered. A higher sample size could
have helped to better satisfy this kind of validity, but the p = 90% confidence intervals and
the variance of the data presented in Section 4.1 show acceptable ranges for the context
of the research. Nevertheless, the error indicators in Table 7 increase with regard to the
collected data set as direct, valid human experiences are incorporated in the rule base in
the scope of the mini focus group and in the course of tuning the model based on the
feedback of the international experts. This increase could probably have been diminished
or eliminated if the sample size could have been increased.

Construct validity represents the extent to which the findings reflect the content of
the constructs in the phenomenon investigated [114]; i.e., whether the created model really
reflects execution tracing quality, including the input variables and their impact on the
output. On the one hand, the content of the constructs with regard to the input variables
was elicited in the authors’ previous publication [1] while defining the quality properties
of execution tracing. On the other hand, the experiences collected from the software
professionals describe the content of the phenomenon with regard to the effect of the input
variables in the output as (1) the p = 90% confidence intervals show acceptable ranges
for the context of the research in Section 4.1, (2) an adjustment of the created model was
performed by a mini-focus group in the scope of an adjustment and pre-validation stage, as
reported in Section 4.5, and (3) international experts also validated the model, as reported
in Section 4.6. In addition, the method applied for modelling can capture and describe
vagueness and uncertainty; therefore, the deviations among the opinions collected from
the software professionals did not cause a problem.



Mathematics 2021, 9, 2822 23 of 71

In summary, the internal validity, external validity, content validity, and construct
validity of the conducted research are satisfactory. Nevertheless, increasing the sample
size of the data collected for machine learning could improve the above validity indicators.
However, the low sample size does not cause a serious impediment in the present study, as
the technique used for modelling, fuzzy logic, allows the direct incorporation of human
experiences accumulated in the problem domain, by which further data were incorporated
in the model during the mini focus group discussion and in the course of tuning the model
based on the opinions of international experts.

6. Limitations

The research was planned with great care, including the study population and sam-
pling. However, the desired number of responses could not be achieved in the scope of
sampling, which resulted in a low sample size. Nevertheless, the investigated confidence
intervals of the data in Section 4.1 were satisfactory with regard to the problem domain. In
addition, the low sample size was complemented by incorporating data collected at two
further stages: (1) a mini focus group and (2) validation by international experts located in
Austria, Germany, Hungary, and counting also authors in the UK.

The initial study population was restricted to Hungary, but the population included
international companies with premises in different countries, with the same company-wide
coding guidelines and coding habits; therefore, the initial restriction to a geographically
localised population does not represent an impediment for the generalisability of the study,
but it imposes a risk. This risk was mitigated by the stronger validation in the scope of the
model tuning, in which international experts participated from different countries; i.e., the
model has been validated by these international experts.

Furthermore, the constructed and validated model is a general model for describing
execution tracing quality. The application domain used—i.e., (1) server application, (2) desktop
application, (3) web UI, (4) mobile application, or (5) embedded application—can also have
an influencing effect on the importance of the single linguistic rules identified. Thus, tuning
the model with regard to the application domain can improve the performance.

7. Discussions

The application of fuzzy logic in the context of the present research shows the follow-
ing main advantages: (1) uncertainty related to execution tracing quality and its inputs
can be captured and described, (2) linguistic rules that describe the problem domain in
an human-understandable manner are available, (3) human experience can directly be
incorporated in the rule base to tune the model, and (4) adaptive methods exist to extract
the linguistic rules from a data set containing the experiences of software professionals.
The properties of fuzzy systems mentioned in point 2 and 3 outperform those of the neural
networks (NN). NNs neither produce a rule base in a human-understandable manner nor
make the direct incorporation of human experiences in the system possible. In addition,
the linguistic rules can also be regarded as guidelines for software professionals on how to
implement a good-quality execution tracing mechanism, as they explicitly formulate which
input variable combinations result in a {good, very good} output, and they also describe
the poor results in linguistic terms; however, the rules also impact each other’s output.

In the scope of a pilot study [107], the authors tested with which approach the un-
certainty and vagueness in the context of execution tracing quality can be captured in the
most appropriate manner. The findings of the pilot study [107] were used in the current
research; therefore, an adaptive fuzzy system with overlapping, Gaussian-shaped member-
ship functions at the inputs with the Takagi–Sugeno–Kang inference mechanism [23] was
selected for modelling. In contrast to the pilot study, the present research is based (1) on
the elicited quality properties of execution tracing [1], which formulate the input variables
of the created quality model; (2) on the experiences of many software professionals from
a well-defined study population; (3) on the linguistic rules extracted from the collected
data by machine learning; (4) on the incorporation of direct human experiences into the



Mathematics 2021, 9, 2822 24 of 71

model created by computational intelligence from software professionals with many years
of experience in academia and in the industry; and (5) on the feedback from international
experts, who also validated the created model.

While establishing the knowledge base of the fuzzy system in the form of linguistic
rules, it is easy to introduce contradictions based on the different opinions of individual
experts in the problem domain [107]. To avoid this issue, the linguistic rules have been
identified in an adaptive manner by fixing the input membership functions and the output
membership functions and letting the system find the optimum of the root mean squared
error (RMSE) by fitting the rules to the collected data by genetic algorithms [26,27,112,115].
The same training procedure was repeated in a manner by which all possible variations of
the input partitions were combined into linguistic rules with separate output membership
functions. In this second case, the linguistic rules were fixed, and the adaptive process
looked for the minimum of the RMSE while changing the parameters of the membership
functions by an adaptive-network-based fuzzy inference system approach (ANFIS) [24,25].
Both the GA and the ANFIS approach achieved the same accuracy; i.e., they supported
the outcome of each other with regard to the data. The adaptive process was implemented
as supervised learning; i.e., the optimal parameters of the membership functions and the
best matching rules were identified in the scope of the learning process, where input and
output data pairs were provided for the system. After achieving the desired accuracy and
performance, the trained system became available for carrying out the specified tasks. In
the context of the present research, the output of the GA approach was used for further
processing as it defined the knowledge base in the form of linguistic rules with an upper
bound, which was further tuned and validated by experts.

The application domains of (1) server applications, (2) desktop applications, (3) web
UIs, (4) mobile applications, and (5) embedded applications have different characteristics.
These differences might influence the created model, and the formalised linguistic rules
can have a different importance in each of the listed domains, which opens further tuning
possibilities with regard to the specificities of these domains.

8. Conclusions and Future Work

The previous studies introduced in Section 2 focus on individual aspects of logging,
such as what to log, how to log, and where to embed log statements in the source code of
the applications. Overall guidelines on how to construct logging do not exist but would be
desirable, as stated in [4,5,8,10,29]. In addition, measuring logging quality quantitatively,
setting quality targets for it, and comparing the log quality of different projects or the same
project at different points in time were not possible. For these reasons, it was necessary to
create a quality model for execution tracing, which was done in the scope of the conducted
research.

Uncertainty and vagueness are inherently present in the software product quality
measurement and assessment process. In addition, the dispersion of the collected data
in comparison to the range of the possible answers the respondents could give was high,
which indicates vagueness associated with the rating process. Consequently, the application
of fuzzy logic was an ideal candidate to capture and describe the phenomenon; on the
other hand, more detailed guidelines can be elaborated regarding how the respondents
should judge the variables in question to decrease the uncertainty.

In addition to the constructed quality model, the study identified the following
findings: (1) the inputs accuracy and design and implementation have the most influence
on the quality of execution tracing, and these quality properties approximately determine
the quality with the minimum-relationship; i.e., the lower value determines the quality of
logging. (2) Legibility is a benefit, as it helps to reduce the effort while localising errors;
moreover, it reduces the psychological load on the software development and software
maintenance professionals while performing the analysis. The absence of this quality
property causes an unnecessary load on the staff and deteriorates analysis performance,
but it does not block the analysis itself, which might be the case with the quality properties



Mathematics 2021, 9, 2822 25 of 71

of accuracy and design and implementation if they are missing. (3) The quality property
security is a feature that does not lie in the primary focus while localising errors, but this
feature also needs to be satisfied to some extent to avoid leaking sensitive information
and to observe legal regulations. Tracing highly sensitive information might block the
deployment of the application in certain domains due to legal regulations, including the
medical and financial fields. The quality property security has a reverse relationship with
execution tracing quality as far as the amount of information is concerned. On the other
hand, tracing sensitive information can also cause additional work to be incurred to remove
it if the logs need to be passed on to other teams for further analysis.

In future work, the authors plan to link the constructed quality model to overall software
product quality frameworks to consider execution tracing quality with regard to software
product quality as a whole. In addition, the simplification of the mathematically complex
model is also planned to ensure an easy-to-tailor approach to specific application domains.

Author Contributions: Conceptualization, T.G., F.C. and F.S.; methodology, T.G.; validation, T.G.,
F.C. and F.S.; formal analysis, T.G.; investigation, T.G.; resources, T.G.; data curation, T.G.; writing—
original draft preparation, T.G.; writing—review and editing, F.C. and F.S.; visualization, T.G.;
supervision, F.C. and F.S.; project administration, T.G.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the De Montfort
University, ethical approval code: 1718/453, date of approval: 31 May 2018.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The collected data sets and the questionnaires used for data collection
have been made available: Tamas Galli, Francisco Chiclana, Francois Siewe. Genetic Algorithm-Based
Fuzzy Inference System for Describing Execution Tracing Quality-Collected Data [Data set]. Zenodo.
2021. https://doi.org/10.5281/zenodo.5552684 (accessed on 6 October 2021).

Acknowledgments: The authors are grateful to all the professionals who participated in the study;
moreover, they also express special thanks to the management of the companies involved for making
the organisation of the survey possible.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Data Processing and Exploratory Data Analysis

Appendix A.1. Rating the Input Variables of the Use Cases

The charts below depict the responses for each input variable of the defined use cases.

https://doi.org/10.5281/zenodo.5552684


Mathematics 2021, 9, 2822 26 of 71

Figure A1. Distribution of the Accuracy Scores Assigned to the Use Cases.

Figure A2. Distribution of the Legibility Scores Assigned to the Use Cases.



Mathematics 2021, 9, 2822 27 of 71

Figure A3. Distribution of the Design and Implementation Scores Assigned to the Use Cases.

Figure A4. Distribution of the Security Scores Assigned to the Use Cases.

Appendix A.2. Normality Checks of the Collected Data

The quantile–quantile plots below depict the distribution of each collected variable.
The 0.95% confidence interval is also shown; moreover, the computed Sharpio–Wilk nor-
mality test values are added to the charts. The extreme input variable value combinations



Mathematics 2021, 9, 2822 28 of 71

Q20 and Q22 contained solely identical values; therefore, they were excluded from the
normality test.

Figure A5. Distribution of Collected Variables Regarding Use Case 1.

Figure A6. Distribution of Collected Variables Regarding Use Case 2.



Mathematics 2021, 9, 2822 29 of 71

Figure A7. Distribution of Collected Variables Regarding Use Case 3.

Figure A8. Distribution of Collected Variables Regarding Use Case 4.



Mathematics 2021, 9, 2822 30 of 71

Figure A9. Distribution of Collected Variables Regarding Use Case 5.

Figure A10. Distribution of Collected Variables Regarding Use Case 6.



Mathematics 2021, 9, 2822 31 of 71

Figure A11. Distribution of Collected Variables Regarding Use Case 7.

Figure A12. Distribution of Collected Variables Regarding Use Case 8.



Mathematics 2021, 9, 2822 32 of 71

Figure A13. Distribution of Collected Variables Regarding Real Project Data.

Figure A14. Distribution of the Assigned Variables to the Extreme Input Variable Values, Q0–Q5.



Mathematics 2021, 9, 2822 33 of 71

Figure A15. Distribution of the Assigned Variables to the Extreme Input Variable Values, Q6–Q11.

Figure A16. Distribution of the Assigned Variables to the Extreme Input Variable Values, Q12–Q17.



Mathematics 2021, 9, 2822 34 of 71

Figure A17. Distribution of the Assigned Variables to the Extreme Input Variable Values, Q18–Q21.

Appendix B. Modelling

Figures A18 and A19 illustrate the different error indicators with regard to the maximal
number of rules set in the course of the learning process. In addition, the corresponding
data are demonstrated in Tables A1 and A2.

Figure A18. Depiction of the Best RMSE Errors for the Training Data.

Table A1. Best RMSE Errors for the Training Data.

Limit: 1
Rule

Limit: 3
Rules

Limit: 5
Rules

Limit: 8
Rules

Limit: 12
Rules

Limit: 16
Rules

Limit: 20
Rules

Limit: 40
Rules

Limit: 80
Rules

Limit:
160 Rules

RMSE 30.59485 19.56332 16.78509 15.39203 15.56531 15.67844 15.58645 15.34062 15.43388 15.99222
MAE 26.16265 15.88731 12.31566 11.08484 11.32251 11.31696 11.08999 11.08607 10.99209 11.69641
Min. Error 0 0 0.00007 0.000461 0.003325 0.025736 0.000437 0.007998 0.007301 0.010426
Max. Error 50 74.97749 66.16576 55.69301 55.70125 50.522 63.85966 55.72273 55.05721 55.02147



Mathematics 2021, 9, 2822 35 of 71

Figure A19. Depiction of the Best RMSE Errors for the Checking Data.

Table A2. Best RMSE Errors for the Checking Data.

Limit: 1
Rule

Limit: 3
Rules

Limit: 5
Rules

Limit: 8
Rules

Limit: 12
Rules

Limit: 16
Rules

Limit: 20
Rules

Limit: 40
Rules

Limit: 80
Rules

Limit:
160 Rules

RMSE 30.23458 19.79506 15.93676 15.46742 15.58643 15.39114 15.39485 15.23949 15.32682 16.07228
MAE 25.92113 15.74546 11.78425 11.01338 11.08251 11.37357 11.27761 11.14186 10.90988 11.8917
Min. Error 0 0 0.00001 0.000461 0.014746 0.011548 0.011135 0.007144 0.007301 0.010426
Max. Error 50 74.97749 50.50592 51.03276 51.03274 51.01228 51.05456 56.15333 50.05721 50.49569

Appendix C. Extracted Rule Sets and Model Performance

This section contains the extracted rule sets in the course of run suite 2 according to
the upper bounds for the maximal number of the linguistic rules specified for the algorithm.
Each extracted rule set represents a distinct model. In addition, the charts are also presented
that show the performance of each model on the checking and the corresponding training
data. The original data are sorted to ensure that the deviations from the desired targets are
easy to observe.

Appendix C.1. Maximal Number of Linguistic Rules: 1

1. If (Legibility is good) and (Security is medium) then (Quality is medium)

Figure A20. Evaluation of the Best-Performing Single-Rule Model with Regard to Maximum Error for Checking Data.



Mathematics 2021, 9, 2822 36 of 71

Figure A21. Evaluation of the Best-Performing Single-Rule Model with Regard to RMSE Error for Checking Data.

Figure A22. Evaluation of the Best-Performing Single-Rule Model with Regard to Maximum Error for Training Data.

Figure A23. Evaluation of the Best-Performing Single-Rule Model with Regard to RMSE Error for Training Data.



Mathematics 2021, 9, 2822 37 of 71

Appendix C.2. Maximal Number of Linguistic Rules: 3

1. If (Legibility is poor) and (DesignAndImplementation is medium) then (Quality is
medium)

2. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
good) and (Security is medium) then (Quality is good)

3. If (Accuracy is poor) and (Security is poor) then (Quality is poor)

Figure A24. Evaluation of the Best-Performing Three-Rule Model with Regard to Maximum Error for Checking Data.

Figure A25. Evaluation of the Best-Performing Three-Rule Model with Regard to RMSE Error for Checking Data.



Mathematics 2021, 9, 2822 38 of 71

Figure A26. Evaluation of the Best-Performing Three-Rule Model with Regard to Maximum Error for Training Data.

Figure A27. Evaluation of the Best-Performing Three-Rule Model with Regard to RMSE Error for Checking Data.

Appendix C.3. Maximal Number of Linguistic Rules: 5

1. If (Legibility is poor) and (DesignAndImplementation is good) and (Security is
medium) then (Quality is medium)

2. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is good) then (Quality is poor)

3. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
medium) then (Quality is medium)

4. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
good) and (Security is good) then (Quality is very good)

5. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) then (Quality is poor)



Mathematics 2021, 9, 2822 39 of 71

Figure A28. Evaluation of the Best-Performing Five-Rule Model with Regard to Maximum Error for Checking Data.

Figure A29. Evaluation of the Best-Performing Five-Rule Model with Regard to RMSE Error for Checking Data.

Figure A30. Evaluation of the Best-Performing Five-Rule Model with Regard to Maximum Error for Training Data.



Mathematics 2021, 9, 2822 40 of 71

Figure A31. Evaluation of the Best-Performing Five-Rule Model with Regard to RMSE Error for Training Data.

Appendix C.4. Maximal Number of Linguistic Rules: 8

1. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is medium)

2. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is very good)

3. If (Accuracy is poor) and (Legibility is medium) then (Quality is poor)
4. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is poor)

then (Quality is medium)
5. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is

medium) and (Security is poor) then (Quality is poor)
6. If (Legibility is poor) and (DesignAndImplementation is poor) and (Security is poor)

then (Quality is very poor)
7. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is

medium) and (Security is medium) then (Quality is good)
8. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation

is medium) then (Quality is medium)

Figure A32. Evaluation of the Best-Performing Eight-Rule Model with Regard to Maximum Error for Checking Data.



Mathematics 2021, 9, 2822 41 of 71

Figure A33. Evaluation of the Best-Performing Eight-Rule Model with Regard to RMSE Error for Checking Data.

Figure A34. Evaluation of the Best-Performing Eight-Rule Model with Regard to Maximum Error for Training Data.

Figure A35. Evaluation of the Best-Performing Eight-Rule Model with Regard to RMSE Error for Training Data.



Mathematics 2021, 9, 2822 42 of 71

Appendix C.5. Maximal Number of Linguistic Rules: 12

1. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is poor) then (Quality is very poor)

2. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is poor) then (Quality is medium)

3. If (Accuracy is poor) and (Legibility is poor) and (Security is medium) then (Quality
is poor)

4. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is medium) then (Quality is medium)

5. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is very poor)

6. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is good) then (Quality is poor)

7. If (Legibility is poor) and (DesignAndImplementation is medium) and (Security is
medium) then (Quality is poor)

8. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is poor)

9. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is medium) then (Quality is very good)

10. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is medium) then (Quality is poor)

11. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is medium)

12. If (Accuracy is medium) and (Legibility is poor) and (Security is medium) then
(Quality is good)

Figure A36. Evaluation of the Best-Performing 12-Rule Model with Regard to Maximum Error for Checking Data.



Mathematics 2021, 9, 2822 43 of 71

Figure A37. Evaluation of the Best-Performing 12-Rule Model with Regard to RMSE Error for Checking Data.

Figure A38. Evaluation of the Best-Performing 12-Rule Model with Regard to Maximum Error for Training Data.

Figure A39. Evaluation of the Best-Performing 12-Rule Model with Regard to RSME Error for Training Data.



Mathematics 2021, 9, 2822 44 of 71

Appendix C.6. Maximal Number of Linguistic Rules: 16

1. If (Legibility is good) and (DesignAndImplementation is medium) and (Security is
poor) then (Quality is good)

2. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is poor)
and (Security is good) then (Quality is good)

3. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)

4. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is poor)

5. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is medium) then (Quality is medium)

6. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
good) and (Security is medium) then (Quality is very good)

7. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is poor)

8. If (Legibility is poor) and (DesignAndImplementation is good) and (Security is
medium) then (Quality is medium)

9. If (Legibility is poor) and (DesignAndImplementation is medium) and (Security is
good) then (Quality is medium)

10. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is poor)
and (Security is medium) then (Quality is good)

11. If (Accuracy is good) and (Legibility is medium) and (Security is medium) then
(Quality is good)

12. If (Accuracy is poor) and (DesignAndImplementation is poor) and (Security is poor)
then (Quality is very poor)

13. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very poor)

14. If (Accuracy is poor) and (Legibility is poor) and (Security is good) then (Quality is
very poor)

15. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is medium)

16. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
poor) then (Quality is poor)

Figure A40. Evaluation of the Best-Performing 16-Rule Model with Regard to Maximum Error for Checking Data.



Mathematics 2021, 9, 2822 45 of 71

Figure A41. Evaluation of the Best-Performing 16-Rule Model with Regard to RMSE Error for Checking Data.

Figure A42. Evaluation of the Best-Performing 16-Rule Model with Regard to Maximum Error for Training Data.

Figure A43. Evaluation of the Best-Performing 16-Rule Model with Regard to RMSE Error for Training Data.



Mathematics 2021, 9, 2822 46 of 71

Appendix C.7. Maximal Number of Linguistic Rules: 20

1. If (Accuracy is good) and (DesignAndImplementation is poor) and (Security is
medium) then (Quality is medium)

2. If (Legibility is poor) and (DesignAndImplementation is good) then (Quality is
medium)

3. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is good) then (Quality is good)

4. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is poor) then (Quality is good)

5. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is medium) then (Quality is medium)

6. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) then (Quality is good)

7. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is poor)

8. If (DesignAndImplementation is poor) and (Security is poor) then (Quality is poor)
9. If (Accuracy is medium) and (DesignAndImplementation is poor) and (Security is

medium) then (Quality is medium)
10. If (Accuracy is poor) and (Legibility is poor) and (Security is poor) then (Quality is

very poor)
11. If (Accuracy is poor) and (DesignAndImplementation is good) and (Security is

medium) then (Quality is very poor)
12. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is

poor) then (Quality is good)
13. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is

medium) and (Security is poor) then (Quality is good)
14. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is

good) and (Security is good) then (Quality is medium)
15. If (Accuracy is poor) and (DesignAndImplementation is poor) then (Quality is very

poor)
16. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)

and (Security is medium) then (Quality is good)
17. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is good)

and (Security is medium) then (Quality is very good)
18. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is

good) and (Security is poor) then (Quality is poor)
19. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is good)

and (Security is poor) then (Quality is medium)



Mathematics 2021, 9, 2822 47 of 71

Figure A44. Evaluation of the Best-Performing Model with Regard to Maximum Error for Checking Data, with Upper
Bound of 20 Rules.

Figure A45. Evaluation of the Best-Performing Model with Regard to RMSE Error for Checking Data, with Upper Bound of
20 Rules.

Figure A46. Evaluation of the Best-Performing Model with Regard to Maximum Error for Training Data, with Upper Bound
of 20 Rules.



Mathematics 2021, 9, 2822 48 of 71

Figure A47. Evaluation of the Best-Performing Model with Regard to RMSE Error for Training Data, with Upper Bound of
20 Rules.

Appendix C.8. Maximal Number of Linguistic Rules: 40

1. If (Accuracy is poor) and (Security is poor) then (Quality is very poor)
2. If (Legibility is good) and (DesignAndImplementation is medium) and (Security is

medium) then (Quality is good)
3. If (Accuracy is good) and (DesignAndImplementation is medium) and (Security is

poor) then (Quality is poor)
4. If (Legibility is poor) and (DesignAndImplementation is good) and (Security is poor)

then (Quality is very poor)
5. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is poor) then (Quality is good)
6. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is good) then (Quality is good)
7. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is

good) and (Security is poor) then (Quality is poor)
8. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is poor)

and (Security is medium) then (Quality is good)
9. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is medium) then (Quality is very good)
10. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)

and (Security is poor) then (Quality is very good)
11. If (Accuracy is medium) and (DesignAndImplementation is medium) and (Security is

good) then (Quality is medium)
12. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is

medium) then (Quality is medium)
13. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is medium) then (Quality is poor)
14. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation

is poor) then (Quality is medium)
15. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is poor)

and (Security is poor) then (Quality is good)
16. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is

poor) and (Security is poor) then (Quality is good)
17. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)

and (Security is good) then (Quality is poor)
18. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is

poor) and (Security is medium) then (Quality is medium)



Mathematics 2021, 9, 2822 49 of 71

19. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is good)

20. If (Accuracy is medium) and (Legibility is good) and (Security is good) then (Quality
is very good)

21. If (Accuracy is medium) and (Legibility is poor) then (Quality is medium)
22. If (Legibility is poor) and (DesignAndImplementation is poor) and (Security is good)

then (Quality is poor)
23. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is poor)

and (Security is medium) then (Quality is very poor)
24. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is poor) then (Quality is very good)
25. If (Accuracy is medium) and (Legibility is good) then (Quality is good)
26. If (Accuracy is medium) and (DesignAndImplementation is medium) and (Security is

poor) then (Quality is poor)
27. If (Accuracy is poor) and (Legibility is good) and (Security is good) then (Quality is

very poor)
28. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is

poor) then (Quality is poor)
29. If (Legibility is poor) and (Security is poor) then (Quality is very poor)
30. If (Accuracy is good) and (DesignAndImplementation is poor) and (Security is poor)

then (Quality is medium)
31. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is

poor) and (Security is good) then (Quality is good)
32. If (Accuracy is poor) and (Legibility is poor) and (Security is good) then (Quality is

poor)
33. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is

poor) and (Security is poor) then (Quality is poor)
34. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is

poor) and (Security is medium) then (Quality is medium)
35. If (DesignAndImplementation is poor) and (Security is medium) then (Quality is very

poor)
36. If (Accuracy is good) and (DesignAndImplementation is poor) and (Security is

medium) then (Quality is poor)

Figure A48. Evaluation of the Best-Performing Model with Regard to Maximum Error for Checking Data, with Upper
Bound of 40 Rules.



Mathematics 2021, 9, 2822 50 of 71

Figure A49. Evaluation of the Best-Performing Model with Regard to RMSE Error for Checking Data, with Upper Bound of
40 Rules.

Figure A50. Evaluation of the Best-Performing Model with Regard to Maximum Error for Training Data, with Upper Bound
of 40 Rules.



Mathematics 2021, 9, 2822 51 of 71

Figure A51. Evaluation of the Best-Performing Model with Regard to RMSE Error for Training Data, with Upper Bound of
40 Rules.

Appendix C.9. Maximal Number of Linguistic Rules: 80

1. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is poor) then (Quality is very poor)

2. If (Accuracy is medium) and (DesignAndImplementation is poor) and (Security is
medium) then (Quality is very poor)

3. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is poor) then (Quality is very poor)

4. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)

5. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
then (Quality is poor)

6. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is good) then (Quality is very poor)

7. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very poor)

8. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is poor)

9. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very good)

10. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is poor)

11. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is poor)
and (Security is medium) then (Quality is poor)

12. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is medium)

13. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is very poor)

14. If (Accuracy is poor) and (DesignAndImplementation is poor) and (Security is poor)
then (Quality is very poor)

15. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is poor)

16. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)



Mathematics 2021, 9, 2822 52 of 71

17. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is medium) then (Quality is very poor)

18. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is medium) then (Quality is good)

19. If (Legibility is poor) and (DesignAndImplementation is poor) and (Security is medium)
then (Quality is very poor)

20. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is medium) then (Quality is medium)

21. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is good)

22. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is medium)

23. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is poor)

24. If (Accuracy is poor) and (DesignAndImplementation is good) and (Security is
medium) then (Quality is medium)

25. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is very good)

26. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is poor) then (Quality is good)

27. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is good) and (Security is poor) then (Quality is very poor)

28. If (Accuracy is poor) and (Legibility is good) and (Security is good) then (Quality is
poor)

29. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) then (Quality is medium)

30. If (Legibility is medium) and (DesignAndImplementation is good) and (Security is
medium) then (Quality is very good)

31. If (Accuracy is good) and (Legibility is good) and (DesignAndImplementation is poor)
and (Security is good) then (Quality is medium)

32. If (Accuracy is good) and (Legibility is poor) then (Quality is medium)
33. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation

is poor) and (Security is poor) then (Quality is poor)
34. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is

medium) and (Security is medium) then (Quality is poor)
35. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)

and (Security is medium) then (Quality is very poor)
36. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)

and (Security is good) then (Quality is very poor)
37. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is

medium) and (Security is medium) then (Quality is good)
38. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)

and (Security is poor) then (Quality is medium)



Mathematics 2021, 9, 2822 53 of 71

Figure A52. Evaluation of the Best-Performing Model with Regard to Maximum Error for Checking Data, with Upper
Bound of 80 Rules.

Figure A53. Evaluation of the Best-Performing Model with Regard to RMSE Error for Checking Data, with Upper Bound of
80 Rules.

Figure A54. Evaluation of the Best-Performing Model with Regard to Maximum Error for Training Data, with Upper Bound
of 80 Rules.



Mathematics 2021, 9, 2822 54 of 71

Figure A55. Evaluation of the Best-Performing Model with Regard to RMSE Error for Training Data, with Upper Bound of
80 Rules.

Appendix C.10. Maximal Number of Linguistic Rules: 160

1. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is poor)

2. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very poor)

3. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is medium) then (Quality is poor)

4. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is good) then (Quality is medium)

5. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is very poor)

6. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is poor)

7. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is poor)

8. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is medium) then (Quality is poor)

9. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)

10. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is poor) then (Quality is very poor)

11. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is medium)

12. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
good) and (Security is poor) then (Quality is very poor)

13. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is poor) then (Quality is poor)

14. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is medium)

15. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is medium) then (Quality is very poor)

16. If (Accuracy is poor) and (Legibility is good) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is poor)

17. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is medium) then (Quality is very poor)



Mathematics 2021, 9, 2822 55 of 71

18. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is poor)

19. If (Accuracy is medium) and (Legibility is good) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is very good)

20. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is very poor)

21. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)

22. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is poor) then (Quality is very poor)

23. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is medium) and (Security is medium) then (Quality is medium)

24. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
medium) and (Security is poor) then (Quality is good)

25. If (Accuracy is medium) and (Legibility is medium) and (DesignAndImplementation
is poor) and (Security is poor) then (Quality is poor)

26. If (Accuracy is good) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is poor) then (Quality is very poor)

27. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is poor) then (Quality is very poor)

28. If (Accuracy is poor) and (Legibility is poor) and (DesignAndImplementation is poor)
and (Security is good) then (Quality is very poor)

29. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is medium) then (Quality is poor)

30. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
poor) and (Security is good) then (Quality is poor)

31. If (Accuracy is medium) and (DesignAndImplementation is medium) and (Security is
poor) then (Quality is poor)

32. If (Accuracy is medium) and (Legibility is poor) and (DesignAndImplementation is
medium) and (Security is good) then (Quality is medium)

33. If (Accuracy is good) and (Legibility is poor) and (DesignAndImplementation is good)
and (Security is medium) then (Quality is medium)

34. If (Accuracy is poor) and (Legibility is medium) and (DesignAndImplementation is
poor) and (Security is good) then (Quality is poor)

Figure A56. Evaluation of the Best-Performing Model with Regard to Maximum Error for Checking Data, with Upper
Bound of 160 Rules.



Mathematics 2021, 9, 2822 56 of 71

Figure A57. Evaluation of the Best-Performing Model with Regard to RMSE Error for Checking Data, with Upper Bound of
160 Rules.

Figure A58. Evaluation of the Best-Performing Model with Regard to Maximum Error for Training Data, with Upper Bound
of 160 Rules.

Figure A59. Evaluation of the Best-Performing Model with Regard to RMSE Error for Training Data, with Upper Bound of
160 Rules.



Mathematics 2021, 9, 2822 57 of 71

Appendix D. Evaluation Charts I

The evaluation charts show the pairwise effect of the input variables on the output
before the adjustments of the mini focus group, as reported in Section 4.5.

Figure A60. Effect of the Inputs Accuracy and Legibility on Execution Tracing Quality.

Figure A61. Effect of the Inputs Accuracy and Design and Implementation on Execution Tracing Quality.



Mathematics 2021, 9, 2822 58 of 71

Figure A62. Effect of the Inputs Accuracy and Security on Execution Tracing Quality.

Figure A63. Effect of the Inputs Legibility and Design and Implementation on Execution Tracing Quality.

Figure A64. Effect of the Inputs Legibility and Security on Execution Tracing Quality.



Mathematics 2021, 9, 2822 59 of 71

Figure A65. Effect of the Inputs Design and Implementation and Security on Execution Tracing Quality.

Appendix E. Evaluation Charts II

The evaluation charts show the pairwise effect of the input variables on the output
after carrying out the adjustments in the mini focus group, as reported in Section 4.5.

Figure A66. Effect of the Inputs Accuracy and Legibility on Execution Tracing Quality After Adjustment.

Figure A67. Effect of the Inputs Accuracy and Design and Implementation on Execution Tracing Quality After Adjustment.



Mathematics 2021, 9, 2822 60 of 71

Figure A68. Effect of the Inputs Accuracy and Security on Execution Tracing Quality After Adjustment.

Figure A69. Effect of the Inputs Legibility and Design and Implementation on Execution Tracing Quality After Adjustment.

Figure A70. Effect of the Inputs Legibility and Security on Execution Tracing Quality After Adjustment.



Mathematics 2021, 9, 2822 61 of 71

Figure A71. Effect of the Inputs Design and Implementation and Security on Execution Tracing Quality After Adjustment.

Appendix F. The ANFIS Approach

This section presents the training results of the ANFIS approach performed to verify
the results of the genetic learning illustrated in Section 4.3. In the scope of both the
(1) backpropagation and (2) hybrid approaches, a separate model was trained with one of
the initial step sizes from the set {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. The best-performing
models with regard to the maximal errors and RMSE errors were selected in the course of
100 learning epochs and are demonstrated below in Figures A72–A75.

Appendix F.1. Evaluation of the Checking Data

Figure A72. Best Maximal-Error Model Trained by ANFIS with Backpropagation, with Initial Step Size 2.5.



Mathematics 2021, 9, 2822 62 of 71

Figure A73. Best RMSE-Error Model Trained by ANFIS with Backpropagation, with Initial Step Size 3.

Figure A74. Best Maximal-Error Model Trained by ANFIS with Hybrid Approach, with Initial Step Size 3.5.

Figure A75. Best RMSE-Error Model Trained by ANFIS with Hybrid Approach, with Initial Step Size 5.



Mathematics 2021, 9, 2822 63 of 71

Appendix F.2. The Change of the RMSE Indicator as a Function of the Training Epochs

The changes of the RMSE error indicator are depicted in Figures A76, A78, A80 and A82
to highlight the convergence of the error on the training and checking data. In addi-
tion, the adaptation of the initial step sizes during the learning process is depicted in
Figures A77, A79, A81 and A83.

Figure A76. Best Maximal-Error Model Trained by ANFIS with Backpropagation, with Initial Step Size 2.5.

Figure A77. Best Maximal-Error Model, Adaptation of the Initial Step Size 2.5.



Mathematics 2021, 9, 2822 64 of 71

Figure A78. Best RMSE-Error Model Trained by ANFIS with Backpropagation, with Initial Step Size 3.

Figure A79. Best RMSE-Error Model, Adaptation of the Initial Step Size 3.



Mathematics 2021, 9, 2822 65 of 71

Figure A80. Best Maximal-Error Model Trained by ANFIS with Hybrid Approach, with Initial Step Size 3.5.

Figure A81. Best Maximal-Error Model, Adaptation of the Initial Step Size 3.5.



Mathematics 2021, 9, 2822 66 of 71

Figure A82. Best RMSE-Error Model Trained by ANFIS with Hybrid Approach, with Initial Step Size 5.

Figure A83. Best RMSE-Error Model, Adaptation of the Initial Step Size5.



Mathematics 2021, 9, 2822 67 of 71

References
1. Galli, T.; Chiclana, F.; Siewe, F. Quality Properties of Execution Tracing, an Empirical Study. Appl. Syst. Innov. 2021, 4, 20.

[CrossRef]
2. Galli, T.; Chiclana, F.; Siewe, F. Software Product Quality Models, Developments, Trends and Evaluation. SN Comput. Sci. 2020, 1,

1–24. [CrossRef]
3. Galli, T.; Chiclana, F.; Siewe, F. On the Use of Quality Models to Address Distinct Quality Views. Appl. Syst. Innov. 2021, 4, 41.

[CrossRef]
4. Chen, B.; Jiang, Z.M. Extracting and Studying the Logging-Code-Issue-Introducing Changes in Java-Based Large-Scale Open

Source Software Systems. Empir. Softw. Eng. 2019, 24, 2285–2322. [CrossRef]
5. Chen, B.; Jiang, Z.M.J. Characterizing and Detecting Anti-Patterns in the Logging Code. In Proceedings of the 39th International

Conference on Software Engineering, ICSE ’17, Buenos Aires, Argentina, 20–28 May 2017; IEEE Press: Piscataway, NJ, USA, 2017;
pp. 71–81. [CrossRef]

6. Ding, R.; Zhou, H.; Lou, J.G.; Zhang, H.; Lin, Q.; Fu, Q.; Zhang, D.; Xie, T. Log2: A Cost-Aware Logging Mechanism for
Performance Diagnosis. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC 15), Santa Clara, CA, USA,
8–10 July 2015; USENIX Association: Santa Clara, CA, USA, 2015; pp. 139–150.

7. Fu, Q.; Zhu, J.; Hu, W.; Lou, J.G.; Ding, R.; Lin, Q.; Zhang, D.; Xie, T. Where Do Developers Log? An Empirical Study on Logging
Practices in Industry. In Companion Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May
2014–7 June 2014; Association for Computing Machinery: New York, NY, USA, 2014; ICSE Companion 2014; pp. 24–33. [CrossRef]

8. Li, H.; Chen, T.H.P.; Shang, W.; Hassan, A.E. Studying Software Logging Using Topic Models. Empir. Softw. Eng. 2018,
23, 2655–2694. [CrossRef]

9. Li, H.; Shang, W.; Adams, B.; Sayagh, M.; Hassan, A.E. A Qualitative Study of the Benefits and Costs of Logging from Developers’
Perspectives. IEEE Trans. Softw. Eng. 2020. [CrossRef]

10. Hassani, M.; Shang, W.; Shihab, E.; Tsantalis, N. Studying and Detecting Log-Related Issues. Empir. Softw. Eng. 2018,
23, 3248–3280. [CrossRef]

11. Yao, K.; de Pádua, G.B.; Shang, W.; Sporea, C.; Toma, A.; Sajedi, S. Log4Perf: suggesting and updating logging locations for
web-based systems’ performance monitoring. Empir. Softw. Eng. 2020, 25, 488–531. [CrossRef]

12. Yuan, D.; Zheng, J.; Park, S.; Zhou, Y.; Savage, S. Improving Software Diagnosability via Log Enhancement. In Proceedings of the
Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, Newport
Beach, CA, USA, 5–11 March 2011; ASPLOS XVI; Association for Computing Machinery: New York, NY, USA, 2011; pp. 3–14.
[CrossRef]

13. Yuan, D.; Park, S.; Huang, P.; Liu, Y.; Lee, M.M.; Tang, X.; Zhou, Y.; Savage, S. Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
Hollywood, CA, USA, 8–10 October 2012; USENIX Association: Hollywood, CA, USA, 2012; pp. 293–306.

14. Zhao, X.; Rodrigues, K.; Luo, Y.; Stumm, M.; Yuan, D.; Zhou, Y. Log20: Fully Automated Optimal Placement of Log Printing
Statements under Specified Overhead Threshold. In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, Shanghai, China, 28 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 565–581.
[CrossRef]

15. Zhu, J.; He, P.; Fu, Q.; Zhang, H.; Lyu, M.R.; Zhang, D. Learning to Log: Helping Developers Make Informed Logging Decisions.
In Proceedings of the 37th International Conference on Software Engineering, ICSE ’15, Florence, Italy, 16–24 May 2015; IEEE Press:
Piscataway, NJ, USA, 2015; Volume 1, pp. 415–425.

16. Zadeh, L. Fuzzy Sets. Inf. Control. 1965, 38, 338–353. [CrossRef]
17. Zadeh, L.A. Is There A Need for Fuzzy Logic? In Technical Report, Annual Meeting of the North American Fuzzy Information

Processing Society; Elsevier: Amsterdam, The Netherlands, 2008.
18. Galli, T. Fuzzy Logic Based Software Product Quality Model for Execution Tracing. MPhil. Thesis, Centre for Computational

Intelligence, De Montfort University, Leicester, UK, 2013.
19. Yang, J.B.; Xu, D.L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans.

Syst. Man Cybern. Part Syst. Humans 2002, 32, 289–304. [CrossRef]
20. Walkinshaw, N. Using Evidential Reasoning to Make Qualified Predictions of Software Quality. In Proceedings of the 9th

International Conference on Predictive Models in Software Engineering, PROMISE ’13, Baltimore, MD, USA, 9 October 2013;
Association for Computing Machinery: New York, NY, USA, 2013. [CrossRef]

21. Zadeh, L.A. The Concept of a Linguistic Variable and its Application to Approximate Reasoning-II. Inf. Sci. 1975, 8, 301–357.
[CrossRef]

22. Zadeh, L.A. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 1996, 4, 103–111. [CrossRef]
23. Ross, T. Fuzzy Logic with Engineering Applications; Wiley: Hoboken, NJ, USA, 2010.
24. Jang, J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
25. Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice Hall: Hoboken, NJ, USA, 1997.
26. MathWorks. Tune Fuzzy Rules and Membership Function Parameters. Available online: https://de.mathworks.com/help/

fuzzy/tune-fuzzy-rules-and-membership-function-parameters.html (accessed on 4 June 2021).

http://doi.org/10.3390/asi4010020
http://dx.doi.org/10.1007/s42979-020-00140-z
http://dx.doi.org/10.3390/asi4030041
http://dx.doi.org/10.1007/s10664-019-09690-0
http://dx.doi.org/10.1109/ICSE.2017.15
http://dx.doi.org/10.1145/2591062.2591175
http://dx.doi.org/10.1007/s10664-018-9595-8
http://dx.doi.org/10.1109/TSE.2020.2970422
http://dx.doi.org/10.1007/s10664-018-9603-z
http://dx.doi.org/10.1007/s10664-019-09748-z
http://dx.doi.org/10.1145/1950365.1950369
http://dx.doi.org/10.1145/3132747.3132778
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/TSMCA.2002.802746
http://dx.doi.org/10.1145/2499393.2499402
http://dx.doi.org/10.1016/0020-0255(75)90046-8
http://dx.doi.org/10.1109/91.493904
http://dx.doi.org/10.1109/21.256541
https://de.mathworks.com/help/fuzzy/tune-fuzzy-rules-and-membership-function-parameters.html
https://de.mathworks.com/help/fuzzy/tune-fuzzy-rules-and-membership-function-parameters.html


Mathematics 2021, 9, 2822 68 of 71

27. MatWorks. TuneFIS Options. 2019. Available online: https://de.mathworks.com/help/fuzzy/tunefisoptions.html (accessed on
25 May 2021).

28. Galli, T.; Chiclana, F.; Siewe, F. Genetic Algorithm Based Fuzzy Inference System for Describing Execution Tracing Quality
Collected Data [Data set]. Zenodo 2021. [CrossRef]

29. Li, Z.; Chen, T.H.P.; Yang, J.; Shang, W. Dlfinder: Characterizing and Detecting Duplicate Logging Code Smells. In Proceedings
of the 41st International Conference on Software Engineering, ICSE ’19, Montreal, QC, Canada, 25–31 May 2019; IEEE Press:
Piscataway, NJ, USA, 2019; pp. 152–163. [CrossRef]

30. Apache Software Foundation. Apache Commons Logging, Best Practices. 2014. Available online: http://commons.apache.org/
proper/commons-logging/guide.html#JCL_Best_Practices (accessed on 4 September 2021).

31. Zeng, Y.; Chen, J.; Shang, W.; Chen, T.H. Studying the characteristics of logging practices in mobile apps: A case study on F-Droid.
Empir. Softw. Eng. 2019, 24, 3394–3434. [CrossRef]

32. Yuan, D.; Park, S.; Zhou, Y. Characterizing Logging Practices in Open-Source Software. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, Zurich, Switzerland, 2–9 June 2012; IEEE Press: Piscataway, NJ, USA, 2012;
pp. 102–112.

33. Chen, B.; (Jack) Jiang, Z.M. Characterizing Logging Practices in Java-Based Open Source Software Projects—A Replication Study
in Apache Software Foundation. Empir. Softw. Eng. 2017, 22, 330–374. [CrossRef]

34. Kabinna, S.; Bezemer, C.; Shang, W.; Hassan, A.E. Logging Library Migrations: A Case Study for the Apache Software Foundation
Projects. In Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX,
USA, 14–22 May 2016; pp. 154–164.

35. Zhang, L.; Li, L.; Gao, H. 2-D Software Quality Model and Case Study in Software Flexibility Research. In Proceedings of the 2008
International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA ’08, Vienna, Austria,
10–12 December 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 1147–1152. [CrossRef]

36. Khaddaj, S.; Horgan, G. A Proposed Adaptable Quality Model for Software Quality Assurance. J. Comput. Sci. 2005, 1, 482–487.
[CrossRef]

37. Horgan, G.; Khaddaj, S. Use of an adaptable quality model approach in a production support environment. J. Syst. Softw. 2009,
82, 730–738. [CrossRef]

38. Boehm, B.W.; Brown, J.R.; Lipow, M. Quantitative Evaluation of Software Quality. In Proceedings of the 2nd International
Conference on Software Engineering, San Francisco, CA, USA, 13–15 October 1976; pp. 592–605.

39. Chulani, S.; Boehm, B. Modeling Software Defect Introduction and Removal—COQUALMO (Constructive QUALity Model); Technical
Report, USC-CSE Technical REPORT; CiteSeer: Los Angeles, CA, USA, 1999.

40. Madachy, R.; Boehm, B. Assessing Quality Processes with ODC COQUALMO. In Making Globally Distributed Software Development
a Success Story; Springer: Berlin/Heidelberg, Germany, 2008; Volune 5007, pp. 198–209. [CrossRef]

41. Dromey, R. A Model for Software Product Quality. IEEE Trans. Softw. Eng. 1995, 21, 146–162. [CrossRef]
42. Kothapalli, C.; Ganesh, S.G.; Singh, H.K.; Radhika, D.V.; Rajaram, T.; Ravikanth, K.; Gupta, S.; Rao, K. Continual monitoring of

Code Quality. In Proceedings of the 4th India Software Engineering Conference 2011, ISEC’11, Thiruvananthapuram, Kerala,
India, 24–27 February 2011; pp. 175–184. [CrossRef]

43. Plösch, R.; Gruber, H.; Hentschel, A.; Körner, C.; Pomberger, G.; Schiffer, S.; Saft, M.; Storck, S. The EMISQ method and its tool
support-expert-based evaluation of internal software quality. Innov. Syst. Softw. Eng. 2008, 4, 3–15. [CrossRef]

44. Plösch, R.; Gruber, H.; Körner, C.; Saft, M. A Method for Continuous Code Quality Management Using Static Analysis. In
Proceedings of the Seventh International Conference on the Quality of Information and Communications Technology, Porto,
Portugal, 29 September–2 October 2010; pp. 370–375. [CrossRef]

45. Grady, R.B.; Caswell, D.L. Software Metrics: Establishing a Company-wide Program; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1987.
46. Grady, R.B. Practical Software Metrics for Project Management and Process Improvement; Prentice Hall: Upper Saddle River, NJ, USA, 1992.
47. Eeles, P. Capturing Architectural Requirements. 2005. Available online: https://www.ibm.com/developerworks/rational/

library/4706-pdf.pdf (accessed on 19 April 2018).
48. Georgiadou, E. GEQUAMO—A Generic, Multilayered, Customisable, Software Quality Model. Softw. Qual. J. 2003, 11, 313–323.

[CrossRef]
49. van Solingen, R.; Berghout, E. The Goal/Question/Metric Method a Practical Guide for Quality Improvement of Software Development;

McGraw Hill Publishing: New York, NY, USA, 1999.
50. IEEE Computer Society. IEEE Stdandard 1061–1998: IEEE Standard for a Software Quality Metrics Methodology; IEEE: Piscataway, NJ,

USA, 1998; ISBN 978-0-7381-1510-8.
51. Ouhbi, S.; Idri, A.; Fernández-Alemán, J.L.; Toval, A.; Benjelloun, H. Applying ISO/IEC 25010 on mobile personal health records.

In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2015,
Lisbon, Portugal, 12–15 January 2015; Volume 5, pp. 405–412; [CrossRef]

52. Idri, A.; Bachiri, M.; Fernández-Alemán, J.L. A Framework for Evaluating the Software Product Quality of Pregnancy Monitoring
Mobile Personal Health Records. J. Med. Syst. 2016, 40, 1–17. [CrossRef]

53. Forouzani, S.; Chiam, Y.K.; Forouzani, S. Method for Assessing Software Quality Using Source Code Analysis; ACM International
Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2016; pp. 166–170. [CrossRef]

https://de.mathworks.com/help/fuzzy/tunefisoptions.html
http://dx.doi.org/10.5281/zenodo.5552684
http://dx.doi.org/10.1109/ICSE.2019.00032
http://commons.apache.org/proper/commons-logging/guide.html#JCL_Best_Practices
http://commons.apache.org/proper/commons-logging/guide.html#JCL_Best_Practices
http://dx.doi.org/10.1007/s10664-019-09687-9
http://dx.doi.org/10.1007/s10664-016-9429-5
http://dx.doi.org/10.1109/CIMCA.2008.70
http://dx.doi.org/10.3844/jcssp.2005.482.487
http://dx.doi.org/10.1016/j.jss.2008.10.009
http://dx.doi.org/10.1007/978-3-540-79588-918
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1145/1953355.1953379
http://dx.doi.org/10.1007/s11334-007-0039-7
http://dx.doi.org/10.1109/QUATIC.2010.68
https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
http://dx.doi.org/10.1023/A:1025817312035
http://dx.doi.org/10.5220/0005216604050412
http://dx.doi.org/10.1007/s10916-015-0415-z
http://dx.doi.org/10.1145/3033288.3033316


Mathematics 2021, 9, 2822 69 of 71

54. Domínguez-Mayo, F.J.; Escalona, M.J.; Mejías, M.; Ross, M.; Staples, G. Quality evaluation for Model-Driven Web Engineering
methodologies. Inf. Softw. Technol. 2012, 54, 1265–1282. [CrossRef]

55. Idri, A.; Bachiri, M.; Fernandez-Aleman, J.L.; Toval, A. Experiment Design of Free Pregnancy Monitoring Mobile Personal Health
Records Quality Evaluation; IEEE: Munich, Germany, 2016; pp. 1–6. [CrossRef]

56. International Organization for Standardization. ISO/IEC 25010:2011, Systems and Software Engineering—Systems and Software
Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models; International Organization for Standardization:
Geneva, Switzerland, 2011.

57. Shen, P.; Ding, X.; Ren, W.; Yang, C. Research on Software Quality Assurance Based on Software Quality Standards and
Technology Management. In Proceedings of the 19th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Korea, 27–29 June 2018; pp. 385–390. [CrossRef]

58. Liu, X.; Zhang, Y.; Yu, X.; Liu, Z. A Software Quality Quantifying Method Based on Preference and Benchmark Data. In
Proceedings of the 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), Busan, Korea, 27–29 June 2018; pp. 375–379. [CrossRef]

59. Kanellopoulos, Y.; Tjortjis, C.; Heitlager, I.; Visser, J. Interpretation of source code clusters in terms of the ISO/IEC-9126
maintainability characteristics. In Proceedings of the European Conference on Software Maintenance and Reengineering, CSMR,
Athens, Greece, 4 April 2008; pp. 63–72. [CrossRef]

60. Vetro, A.; Zazworka, N.; Seaman, C.; Shull, F. Using the ISO/IEC 9126 product quality model to classify defects: A controlled
experiment. In Proceedings of the 16th International Conference on Evaluation Assessment in Software Engineering (EASE 2012),
Ciudad Real, Spain, 14–15 May 2012; pp. 187–196. [CrossRef]

61. Parthasarathy, S.; Sharma, S. Impact of customization over software quality in ERP projects: an empirical study. Softw. Qual. J.
2017, 25, 581–598. [CrossRef]

62. Li, Y.; Man, Z. A Fuzzy Comprehensive Quality Evaluation for the Digitizing Software of Ethnic Antiquarian Resources. Int.
Conf. Comput. Sci. Softw. Eng. 2008, 5, 1271–1274. [CrossRef]

63. Hu, W.; Loeffler, T.; Wegener, J. Quality model based on ISO/IEC 9126 for internal quality of MATLAB/Simulink/Stateflow
models. In Proceedings of the IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012;
pp. 325–330. [CrossRef]

64. International Organization for Standardization. ISO/IEC 9126-1:2001, Software Engineering—Product Quality—Part 1: Quality
Model; International Organization for Standardization: Geneva, Switzerland, 2001.

65. Liang, S.K.; Lien, C.T. Selecting the Optimal ERP Software by Combining the ISO 9126 Standard and Fuzzy AHP Approach.
Contemp. Manag. Res. 2006, 3, 23. [CrossRef]

66. Correia, J.; Visser, J. Certification of Technical Quality of Software Products. In Proceedings of the International Workshop on
Foundations and Techniques for Open Source Software Certification, Milan, Italy, 10 September 2008; pp. 35–51.

67. Andreou, A.S.; Tziakouris, M. A quality framework for developing and evaluating original software components. Inf. Softw.
Technol. 2007, 49, 122–141. [CrossRef]

68. Kim, C.; Lee, K. Software Quality Model for Consumer Electronics Product. In Proceedings of the 9th International Conference
on Quality Software, Jeju, Korea, 24–25 August 2009; pp. 390–395.

69. Benedicenti, L.; Wang, V.W.; Paranjape, R. A quality assessment model for Java code. Can. Conf. Electr. Comput. Eng. 2002, 2,
687–690.

70. McCall, J.A.; Richards, P.K.; Walters, G.F. Factors in Software Quality, Concept and Definitions of Software Quality. 1977.
Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf (accessed on 6 March 2018).

71. Franke, D.; Weise, C. Providing a software quality framework for testing of mobile applications. In Proceedings of the 4th IEEE
International Conference on Software Testing, Verification, and Validation, (ICST 2011), Berlin, Germany, 21–25 March 2011;
pp. 431–434. [CrossRef]

72. Gleirscher, M.; Golubitskiy, D.; Irlbeck, M.; Wagner, S. Introduction of static quality analysis in small- and medium-sized software
enterprises: Experiences from technology transfer. Softw. Qual. J. 2014, 22, 499–542. [CrossRef]

73. Wagner, S.; Lochmann, K.; Heinemann, L.; Kläs, M.; Trendowicz, A.; Plösch, R.; Seidl, A.; Goeb, A.; Streit, J. The Quamoco Product
Quality Modelling and Assessment Approach. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, Zurich, Switzerland, 2–9 June 2012; IEEE Press: Piscataway, NJ, USA, 2012; pp. 1133–1142.

74. Wagner, S.; Lochmann, K.; Winter, S.; Deissenboeck, F.; Juergens, E.; Herrmannsdoerfer, M.; Heinemann, L.; Kläs, M.; Trendowicz, A.;
Heidrich, J.; et al. The Quamoco Quality Meta-Model. October 2012. Available online: https://mediatum.ub.tum.de/attfile/11
10600/hd2/incoming/2012-Jul/517198.pdf (accessed on 18 November 2017).

75. Wagner, S.; Goeb, A.; Heinemann, L.; Kläs, M.; Lampasona, C.; Lochmann, K.; Mayr, A.; Plösch, R.; Seidl, A.; Streit, J.; et al.
Operationalised product quality models and assessment: The Quamoco approach. Inf. Softw. Technol. 2015, 62, 101–123.
[CrossRef]

76. Hyatt, L.E.; Rosenberg, L.H. A Software Quality Model and Metrics for Identifying Project Risks and Assessing Software Quality.
In Proceedings of the Product Assurance Symposium and Software Product Assurance Workshop, EAS SP-377, European Space
Agency, Noordwijk, The Netherlands, 19–21 March 1996.

77. Martin, R.A.; Shafer, L.H. Providing a Framework for effective software quality assessment—A first step in automating assessments.
In Proceedings of the first Annual Software Engineering and Economics Conference, McLean, VA, USA, 2–3 April 1996.

http://dx.doi.org/10.1016/j.infsof.2012.06.007
http://dx.doi.org/10.1109/HealthCom.2016.7749501
http://dx.doi.org/10.1109/SNPD.2018.8441142
http://dx.doi.org/10.1109/SNPD.2018.8441145
http://dx.doi.org/10.1109/CSMR.2008.4493301
http://dx.doi.org/10.1049/ic.2012.0025
http://dx.doi.org/10.1007/s11219-016-9314-x
http://dx.doi.org/10.1109/CSSE.2008.304
http://dx.doi.org/10.1109/ICIT.2012.6209958
http://dx.doi.org/10.7903/cmr.10
http://dx.doi.org/10.1016/j.infsof.2006.03.007
http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf
http://dx.doi.org/10.1109/ICST.2011.18
http://dx.doi.org/10.1007/s11219-013-9217-z
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf 
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf 
http://dx.doi.org/10.1016/j.infsof.2015.02.009


Mathematics 2021, 9, 2822 70 of 71

78. Côté, M.A.; Suryn, W.; Martin, R.A.; Laporte, C.Y. Evolving a Corporate Software Quality Assessment Exercise: A Migration Path
to ISO/IEC 9126. Softw. Qual. Prof. 2004, 6, 4–17.

79. Letouzey, J.L.; Coq, T. The SQALE Analysis Model: An Analysis Model Compliant with the Representation Condition for
Assessing the Quality of Software Source Code. In Proceedings of the 2010 Second International Conference on Advances in
System Testing and Validation Lifecycle, Nice, France, 22–27 August 2010; pp. 43–48.

80. Letouzey, J.L. Managing Large Application Portfolio with Technical Debt Related Measures. In Proceedings of the Joint
Conference of the International Workshop on Software Measurement and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), Berlin, Germany, 5–7 October 2016; p. 181. [CrossRef]

81. Letouzey, J.L. The SQALE method for evaluating Technical Debt. In Proceedings of the Third International Workshop on
Managing Technical Debt (MTD), Zurich, Switzerland, 5 June 2012; pp. 31–36. [CrossRef]

82. Letouzey, J.; Coq, T. The SQALE Models for Assessing the Quality of Real Time Source Code. 2010. Available online:
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1
157276278.1497961025 (accessed on 17 July 2017).

83. Letouzey, J.L.; Ilkiewicz, M. Managing Technical Debt with the SQALE Method. IEEE Softw. 2012, 29, 44–51. [CrossRef]
84. Letouzey, J.L.; Coq, T. The SQALE Quality and Analysis Models for Assessing the Quality of Ada Source Code. 2009. Available

online: http://www.adalog.fr/publicat/sqale.pdf (accessed on 17 July 2017).
85. Hegeman, J.H. On the Quality of Quality Models. Master’s Thesis, University Twente, Enschede, The Netherlands, 2011.

Available online: https://essay.utwente.nl/61040/1/MScJHegeman.pdf (accessed on 16 November 2018).
86. Letouzey, J.L. The SQALE Method for Managing Technical Debt, Definition Document V1.1. 2016. Available online: http:

//www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf (accessed on 2 August 2017).
87. Mordal-Manet, K.; Balmas, F.; Denier, S.; Ducasse, S.; Wertz, H.; Laval, J.; Bellingard, F.; Vaillergues, P. The Squale Model—A

Practice-based Industrial Quality Model. 2009. Available online: https://hal.inria.fr/inria-00637364 (accessed on 6 March 2018).
88. Laval, J.; Bergel, A.; Ducasse, S. Assessing the Quality of Your Software with MoQam. 2008. Available online: https:

//hal.inria.fr/inria-00498482 (accessed on 6 March 2018).
89. Balmas, F.; Bellingard, F.; Denier, S.; Ducasse, S.; Franchet, B.; Laval, J.; Mordal-Manet, K.; Vaillergues, P. Practices in the Squale

Quality Model (Squale Deliverable 1.3). October 2010. Available online: http://www.squale.org/quality-models-site/research-
deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf (accessed on 16 November 2017).

90. INRIA RMoD, Paris 8, Qualixo. Technical Model for Remediation (Workpackage 2.2). 2010. Available online: http://www.squale.
org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf (accessed on 16 November 2017).

91. Kitchenham, B.; Linkman, S.; Pasquini, A.; Nanni, V. The SQUID approach to defining a quality model. Softw. Qual. J. 1997,
6, 211–233. [CrossRef]

92. Ulan, M.; Hönel, S.; Martins, R.M.; Ericsson, M.; Löwe, W.; Wingkvist, A.; Kerren, A. Quality Models Inside Out: Interactive
Visualization of Software Metrics by Means of Joint Probabilities. In Proceedings of the IEEE Working Conference on Software
Visualization (VISSOFT), Madrid, Spain, 24–25 September 2018; pp. 65–75. [CrossRef]

93. Lai, Y.C.; Kao, C.C.; Jhan, J.D.; Kuo, F.H.; Chang, C.W.; Shih, T.C. Quality of Service Measurement and Prediction through AI
Technology. In Proceedings of the IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan,
23–25 October 2020; pp. 254–257. [CrossRef]

94. Pandit, M.B.R.; Varma, N. A Deep Introduction to AI Based Software Defect Prediction (SDP) and its Current Challenges. In
Proceedings of the 2019 IEEE Region 10 Conference (TENCON), Kerala, India, 17–20 October 2019; pp. 284–290. [CrossRef]

95. Pradhan, S.; Nanniyur, V.; Vissapragada, P.K. On the Defect Prediction for Large Scale Software Systems – From Defect Density
to Machine Learning. In Proceedings of the IEEE 20th International Conference on Software Quality, Reliability and Security
(QRS), Vilnius, Lithuania, 27–31 July 2020; pp. 374–381. [CrossRef]

96. Madera, M.; Tomoń, R. A case study on machine learning model for code review expert system in software engineering. In
Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6
September 2017; pp. 1357–1363. [CrossRef]

97. Khan, B.; Iqbal, D.; Badshah, S. Cross-Project Software Fault Prediction Using Data Leveraging Technique to Improve Software
Quality. In Proceedings of the Evaluation and Assessment in Software Engineering, EASE ’20, Trondheim, Norway, 15–17 April
2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 434–438. [CrossRef]

98. Blas, M.J. An analysis model to evaluate web applications quality using a discrete-event simulation approach. In Proceedings of
the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 4648–4649. [CrossRef]

99. Xing, F.; Guo, P.; Lyu, M.R. A novel method for early software quality prediction based on support vector machine. In Proceedings
of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05), Chicago, IL, USA, 8–11 November
2005; p. 10.

100. Lafi, M.; Hawashin, B.; AlZu’bi, S. Maintenance Requests Labeling Using Machine Learning Classification. In Proceedings of the
Seventh International Conference on Software Defined Systems (SDS), Paris, France, 20–23 April 2020; pp. 245–249. [CrossRef]

101. Ubayashi, N.; Kamei, Y.; Sato, R. When and Why Do Software Developers Face Uncertainty? In Proceedings of the IEEE
19th International Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria, 26 July 2019; pp. 288–299.
[CrossRef]

http://dx.doi.org/10.1109/IWSM-Mensura.2016.035
http://dx.doi.org/10.1109/MTD.2012.6225997
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1157276278.1497961025
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1157276278.1497961025
http://dx.doi.org/10.1109/MS.2012.129
http://www.adalog.fr/publicat/sqale.pdf
https://essay.utwente.nl/61040/1/MScJHegeman.pdf
http://www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf
http://www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf
https://hal.inria.fr/inria-00637364
https://hal.inria.fr/inria-00498482
https://hal.inria.fr/inria-00498482
http://www.squale.org/quality-models-site/research-deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf
http://dx.doi.org/10.1023/A:1018516103435
http://dx.doi.org/10.1109/VISSOFT.2018.00015
http://dx.doi.org/10.1109/ECICE50847.2020.9302008
http://dx.doi.org/10.1109/TENCON.2019.8929661
http://dx.doi.org/10.1109/QRS51102.2020.00056
http://dx.doi.org/10.15439/2017F536
http://dx.doi.org/10.1145/3383219.3383281
http://dx.doi.org/10.1109/WSC.2017.8248248
http://dx.doi.org/10.1109/SDS49854.2020.9143895
http://dx.doi.org/10.1109/QRS.2019.00045


Mathematics 2021, 9, 2822 71 of 71

102. Singh, P.K.; Sangwan, O.P.; Singh, A.P.; Pratap, A. A framework for assessing the software reusability using fuzzy logic approach
for aspect oriented software. Int. J. Inf. Technol. Comput. Sci. 2015, 7, 12–20. [CrossRef]

103. Aggarwal, K.K.; Singh, Y.; Chandra, P.; Puri, M. Measurement of Software Maintainability Using a Fuzzy Model. J. Comput. Sci.
2005, 541. [CrossRef]

104. Canfora, G.; Cerulo, L.; Troiano, L. Can Fuzzy Mathematics enrich the Assessment of Software Maintainability? In Proceedings
of the ICEISSAM Software Audit and Metrics, Porto, Portugal, 13–14 April 2004.

105. Mittal, H.; Bhatia, P. Software Maintainability Assessment Based on Fuzzy Logic Technique. ACM SIGSOFT Software Eng. Notes
2009, 34, 1–5. [CrossRef]

106. Nerurkar, N.W.; Kumar, A.; Shrivastava, P. Assessment of Reusability in Aspect-Oriented Systems using Fuzzy Logic. ACM
SIGSOFT Software Eng. Notes 2010, 35, 1–5. [CrossRef]

107. Galli, T.; Chiclana, F.; Carter, J.; Janicke, H. Modelling Execution Tracing Quality by Type-1 Fuzzy Logic. Acta Polytech. Hung.
2013, 8, 49–67. [CrossRef]

108. Malhotra, R.; Lata, K. A systematic literature review on empirical studies towards prediction of software maintainability. Soft
Comput. 2020, 24, 16655–16677. [CrossRef]

109. Malhotra, N.H. Marketingkutatas (Translated title: Marketing Research); Akademia Kiado: Budapest, Hungary, 2009.
110. Freedaman, D.; Pisani, R.; Purves, R. Statisztika (Translated Title: Statistics); Typotex: Budapest, Hungary, 2005.
111. Gibbons, J.D.; Chakraborti, S. Non-Parametric Statistical Inference Statistics Textbooks and Monographs; Marcel Dekker: New York,

NY, USA, 2003.
112. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2010.
113. Patino, C.M.; Ferreira, J.C. Internal and external validity: can you apply research study results to your patients? J. Bras. Pneumol.

2018, 44, 183. [CrossRef]
114. Salkind, N.J. Exploring Research; Pearson, Prentice-Hall: Hoboken, NJ, USA, 2009.
115. Park, Y.J.; Cho, H.S.; Cha, D.H. Genetic algorithm-based optimization of fuzzy logic controller using characteristic parameters.

IEEE Int. Conf. Evol. 1995, 2, 831–836. [CrossRef]

http://dx.doi.org/10.5815/ijitcs.2015.02.02
http://dx.doi.org/10.3844/jcssp.2005.538.542
http://dx.doi.org/10.1145/1527202.1527210
http://dx.doi.org/10.1145/1838687.1838706
http://dx.doi.org/10.12700/APH.10.08.2013.8.3
http://dx.doi.org/10.1007/s00500-020-05005-4
http://dx.doi.org/10.1590/s1806-37562018000000164
http://dx.doi.org/10.1109/ICEC.1995.487494

	Introduction
	Research Question
	Research Protocol
	Contributions
	Structure of the Study

	Related Works
	Logging
	Adaptive Methods in Quality Modelling

	Methods
	Data Collection
	Data Processing, Exploratory Data Analysis, and Modelling
	Model Adjustment and Pre-Validation
	Model Validation

	Results
	Data Collection
	Data Processing and Exploratory Data Analysis
	Modelling: Machine Learning
	Modelling: Verification of the Constructed Model by a Different Machine Learning Approach
	Modelling: Adjustments and Pre-Validation
	Modelling: Validity
	Validation by International Experts
	Face Validity by the Authors


	Validation
	Limitations
	Discussions
	Conclusions and Future Work
	Data Processing and Exploratory Data Analysis
	Rating the Input Variables of the Use Cases
	Normality Checks of the Collected Data

	Modelling
	Extracted Rule Sets and Model Performance
	Maximal Number of Linguistic Rules: 1
	Maximal Number of Linguistic Rules: 3
	Maximal Number of Linguistic Rules: 5
	Maximal Number of Linguistic Rules: 8
	Maximal Number of Linguistic Rules: 12
	Maximal Number of Linguistic Rules: 16
	Maximal Number of Linguistic Rules: 20
	Maximal Number of Linguistic Rules: 40
	Maximal Number of Linguistic Rules: 80
	Maximal Number of Linguistic Rules: 160

	Evaluation Charts I
	Evaluation Charts II
	The ANFIS Approach
	Evaluation of the Checking Data
	The Change of the RMSE Indicator as a Function of the Training Epochs

	References

