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Abstract: Since the discovery that machine learning can be used to effectively detect Android mal-
ware, many studies on machine learning-based malware detection techniques have been conducted.
Several methods based on feature selection, particularly genetic algorithms, have been proposed
to increase the performance and reduce costs. However, because they have yet to be compared
with other methods and their many features have not been sufficiently verified, such methods have
certain limitations. This study investigates whether genetic algorithm-based feature selection helps
Android malware detection. We applied nine machine learning algorithms with genetic algorithm-
based feature selection for 1104 static features through 5000 benign applications and 2500 malwares
included in the Andro-AutoPsy dataset. Comparative experimental results show that the genetic
algorithm performed better than the information gain-based method, which is generally used as a
feature selection method. Moreover, machine learning using the proposed genetic algorithm-based
feature selection has an absolute advantage in terms of time compared to machine learning without
feature selection. The results indicate that incorporating genetic algorithms into Android malware
detection is a valuable approach. Furthermore, to improve malware detection performance, it is
useful to apply genetic algorithm-based feature selection to machine learning.

Keywords: android malware detection; machine learning; genetic algorithm; feature selection;
static analysis

1. Introduction

Since AndroidOS.DrioidSMS.A, the first malicious Android application was discov-
ered in August 2010 [1], the discovery of additional Android malware has steadily increased.
Based on this, the anti-malware software company Kaspersky [2] reported 5,683,694 ma-
licious applications in 2020, the highest figure during the last 3 years. With the expected
increase in the growth of malicious applications, along with the influence of Android OS,
which boasted a 72.72% share globally as of May 2021 [3], it is necessary to develop a
solution that can protect users by detecting malicious applications and blocking access
before the damage becomes critical.

To solve this problem, techniques for Android malware detection using static/dynamic
analysis have emerged. As outlined by P. D. Sawle and A. B. Gadichi [4], several studies
have proposed various types of methods for Android malware detection, and many differ-
ent analysis tools have been suggested and utilized. Owing to the limitations of traditional
analytical techniques, detection using machine learning with static/dynamic features, and
further detection through deep learning techniques, are spreading.

As a result, related studies on finding the best techniques have been conducted. K.
Liu et al. [5] presented research on machine learning-based Android malware detection
conducted up to the year 2020. In addition, Z. Wang et al. [6] published a review of Android
malware detection applying deep learning. Rana et al. [7] also found an algorithm that best

Mathematics 2021, 9, 2813. https://doi.org/10.3390/math9212813 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5875-0275
https://doi.org/10.3390/math9212813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212813
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212813?type=check_update&version=1


Mathematics 2021, 9, 2813 2 of 20

classifies malware through experiments, aiming to find the most effective malware detector
among 12 different machine learning algorithms. Based on these results, anti-malware
software and frameworks for the detection of real-world malicious applications have also
been released. For example, M. Ahmedi et al. [8] proposed an IntelliAV system that detects
malicious applications based on machine learning. They developed an anti-malware
application that reported a better performance than commercial products and released it
to the Google Play store (https://play.google.com/store/apps/details?id=com.intelliav
(accessed on 8 May 2021)). A. Mahindru and A.L. Sangal [9] presented a framework named
MLDroid. This showed a high detection rate of 98.8% through experiments with more than
500,000 applications based on several machine learning algorithms.

According to K. Liu et al. [5], many studies have applied feature selection with
information gain, along with various methods for reducing the features used in machine
learning, with the expectation of increasing the normalization performance and operational
efficiency. These attempts are meaningful, because D. Ö. Şahin et al. [10] confirmed that
feature selection could be successfully applied to detect Android malware based on the
comparative experiments with various feature selection methods. However, S. Lei [11]
indicated that all of these feature selection methods have certain limitations. Thus, research
on applying feature selection using genetic algorithms, which are advanced in comparison
to traditional methods, has emerged.

Since A. Firdaus et al. [12] first introduced Android malware detection with genetic
selection based on the use of a genetic algorithm, A. Fatima et al. [13] conducted a study
validating its performance by building a support vector machine and neural networks
with 33∼40 features selected from among 99 features by applying genetic algorithms. O.
Yildiz and I. A. Doğru [14] presented the experimental results of selecting 152 features from
information of Android permission, choosing 16 features by applying genetic algorithm-
based feature selection, and verified the performance using a decision tree, naïve Bayes,
and a support vector machine. A. Meimandi et al. [15] showed a performance improvement
by combining genetic algorithm and the simulated annealing with classification algorithm.
J. Wang et al. [16] introduced SEdroid, an Android malware detector based on a genetic
algorithm and ensemble learning. L. Wang et al. [17] introduced a new algorithm based on
the genetic algorithm for applications of Android malware classification problems.

However, none of the studies mentioned proved that genetic algorithm-based feature
selection is more effective than other methods. The authors did not show any comparisons
with traditional experiments of feature selection. Moreover, A. Fatima et al. [13] demon-
strated a decrease in accuracy when applying genetic algorithms. This result indicates that
the challenge of verifying whether detection methods using genetic algorithms are effica-
cious compared to other methods was left for future studies. Furthermore, because most
studies set the numbers of features to less than 200, it is necessary to verify whether perfor-
mance improvements can be achieved even in feature sets in which the numbers of features
are sufficiently large (approximately 1000 or more) when applying a genetic algorithm.

This study discusses whether it is efficient and valuable to apply machine learning us-
ing feature selection with genetic algorithms for Android malware detection as alternatives
to existing methods. Based on the structure and analysis methods of Android applications
and the contents of existing machine learning approaches to malicious application detec-
tion, we compare the performances of existing methods herein, reveal whether genetic
algorithms help improve performance, and show which genetic algorithms can achieve
enhancements. Furthermore, we experimentally examined whether feature selection based
on a genetic algorithm is a competitive approach compared to other methods.

The remainder of this paper is organized as follows: Section 2 describes the structure
and analysis method of Android applications. Section 3 introduces the machine learning
techniques used in this study, with feature selection at the forefront. Section 4 describes
the progress of the experiment, confirming the claims of this study. The results are then
presented in Section 5. Finally, Section 6 presents the conclusions of the experiment.

https://play.google.com/store/apps/details?id=com.intelliav
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2. Android Malware Analysis
2.1. Structure of Android Application

Android application files generally have an extension called APK, which is short for
Android Package. The APK is a file that runs applications compressed in zip format and
installed on the Android OS. The package ties up several files needed to run the program,
and one can see a unique structure to the APK file after decompressing it. Figure 1 shows a
schematic structure of the APK package.

Manifest

Signatures Assets

Compiled resources Native libraries

Dalvik bytecode Resources

Figure 1. The main structure of an APK file [18].

Numerous studies describe the structure in the following manner [6,19,20]:

• Manifest: This area contains basic information regarding the application and is located
at the root of all APK files under the name AndroidManifest.xml, a binary XML file
containing the declarations of important information regarding the application, such
as the package name, component, application permissions, and device compatibility.

• Signatures: This is the area containing the signature of the application. The META-INF
directory, where the application signature files are located, is found in this area.

• Assets: Assets are used to store static files used in an application and are implemented
as an asset directory, which requires invoking the AssetManager class to access files in
the area when real-operating applications are used.

• Compiled Resources: It contains pre-compiled resource information, which exists
as a resources.arsc file. This file is responsible for matching the resource files and
resource IDs to record them such that resources can be found, accessed, and used
within an application.

• Native libraries: These make up the area for the libraries used in an application.
Library files tailored to the CPU instruction set of the target device are located at the
lib directory, primarily written in C/C++.

• Dalvik bytecode: This area contains JAVA’s byte code. Within the application, it is
implemented in the classes.dex file, and contains source code content compiled into
bytecodes that Dalvik virtual machines can compile. Each application contains one
DEX file as a default, but there are applications with multiple DEX files [21].

• Resources: This is the collection of resources used in an application. The resources of
the Android application are saved in the res directory.

The areas to be looked at when detecting Android malware are the Manifest and
Dalvik bytecode. The Manifest is a critical area within an APK file, where one can extract
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and analyze information such as the version number, permission, and functionality that
the application requires [22]. Dalvik bytecode contains the main code of the application
as bytecode compiled by the virtual machine. By analyzing it through decompile files,
the analyzer can check which class and methods are used by the applications and where
harmful codes are called. After all, these domains can be extracted from the features
used for machine learning and directly affect the execution of the application. Therefore,
Android application analysis focuses on the Manifest and Dalvik bytecode areas.

2.2. Static and Dynamic Analysis

Static analysis is an automatic method of reasoning regarding the runtime attributes
of a program code without executing the program directly [23]. It relies on the source code
and resources of the program for analysis without execution. This type of analysis can
be divided into signature-based analysis, permission-based analysis, and virtual machine
analysis. It is based on the reliance of analyzing the source code [24]. A static analysis of
Android malware detection is applied using AndroidManifest.xml, smali files, and a set
of static features including permissions, API calls, Dalvik opcode, and other components,
which can be obtained by decompiling the APK files, the main objective for analysis [5].
It has an advantage in that it takes less time and does not have a higher computational
load than a dynamic analysis. Moreover, it can analyze the entire code regardless of
time, enabling efficient analysis, such as analyzing only the necessary parts. However,
there are also disadvantages, in that an analysis is impossible if static elements cannot be
appropriately extracted from the malware, and it is challenging to handle malicious code
that has been processed complexly owing to obfuscations.

A dynamic analysis involves analyzing the properties of a running program [25]. To
describe this in more detail, it is a method of running applications directly on an actual
device or sandbox environment, monitoring to understand the behavior, and analyzing
logs and the traffic obtained from them. All input traces generated by the user are collected
through data collector applications, crowdsourcing, and data collection scripts [4]. The
analyzer logs both the collected inputs and their results by collecting dynamic objects.
The objects include system calls, API calls, network traffic, and CPU data from Android
applications [5]. A dynamic analysis has the advantage of being able to detect malicious
behavior that a static analysis cannot detect, handle malicious code using obfuscation
technology, and analyze whether the application is running even when important content
such as a signature is missing. Nevertheless, it takes more time for analysis and detection
than static procedures and requires numerous resources. Furthermore, as M. Y. Wong
and D. Lie noted [26], codes implementing a behavior can be used to detect malicious
operations only if executed during analysis, resulting in the dynamic analysis wasting
many computational cycles by analyzing irrelevant parts of the application.

As shown in Table 1, static and dynamic analyses have a complementary relationship.
The shortcomings of a static analysis can be solved by introducing a dynamic analysis, and
the defects of a dynamic analysis can be supplemented with a static analysis. It is therefore
impossible to determine which of these two analyses is better, and it is necessary to use
appropriate methods depending on the detection purpose and environment. Of course,
choosing features for machine learning should also be selected when considering these
points. The flaws in the dynamic analysis are highlighted in this regard. As previously
mentioned, it is necessary to obtain the results from running the application process directly
during the dynamic analysis. However, it is crucial to run all data in the dataset, and this
problem becomes more challenging as the dataset grows. Therefore, we conducted machine
learning with features obtained through static analysis in this study.
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Table 1. A summary of static and dynamic analysis.

Analysis Method Static Analysis Dynamic Analysis

Target of analysis Source code and program components Logs, traffic obtained by program execution

Pros
– Requires less time
– Consumes fewer resources
– Enables an effective analysis

– Is able to detect hidden malicious
operations

– Can handle obfuscated malware
– Can be analyzed if the runnable

Cons

– Cannot be used for malicious codes that are
unable to extract static elements

– Has difficulty analyzing complex processed
malware such as obfuscations

– Takes a significant amount of time
– Consumes more resources
– Can analyze only executed content, which

is inefficient when executing unrelated
parts

3. Machine Learning Techniques
3.1. Feature Selection

Feature selection is a technique applied in machine learning, which refers to selecting
features relevant to predictive data and using them for learning. According to I. Guyon
and A. Elisseeff [27], there are many potential benefits of variable and feature selection,
including facilitating data visualization and data understanding, reducing the measure-
ment and storage requirements, reducing the training and utilization times, and defying
the curse of dimensionality to improve the prediction performance. This process differs
from feature extraction, which has the same effect as feature selection. Feature extraction
directly selects the feature associated with the model configuration, which projects the
original high-dimensional feature into a low-feature dimension [28], which is different
from a feature selection.

Feature selection is primarily classified into filter, wrapper, and embedded methods.
A filter method consists of three main steps: feature set generation, measurement, and
learning algorithms. It repeats the information measurements of a new set generation-
feature set process until the termination conditions are satisfied [29]. Unlike a filter method,
the wrapper method applies to select features through a black box that relies on a learning
algorithm. When a feature set enters the black box, the most highly evaluated features
are produced based on the results of the learning algorithm [30]. The embedded method
conducts a feature selection during a training process and is usually specific to the given
learning machines [27].

As it consumes fewer resources than when learning the original dataset, the machine
learning performance will be improved if feature selection is appropriately applied even
on the dataset specified in this study. However, according to A. Firdaus et al. [12], feature
selection significantly affects the experimental results in malware detection. For greater
effectiveness, it is therefore necessary to choose an excellent feature. When applying feature
selection techniques in general, it is more effective for the chosen features to maximize
the relationship between a selected feature set and the label to be predicted. By contrast,
the relationship between the selected features must be minimized to avoid redundant
information [31]. In this study, a genetic algorithm was used to select the optimal features
that best meet the stated conditions.

3.2. Genetic Algorithm

A genetic algorithm is based on biological evolution, as presented by Holland in
1975 [32]. Just as genes in nature partially crossover, mutate to create new genes that
differ from existing ones, and evolve into an environment, genetic algorithms evolve
objects through crossover and mutation procedures to find the optimized solutions. The
solution found using a genetic algorithm converges in specific ways as the generations
pass. The algorithm has disadvantages that cannot guarantee the required solution owing
to the lack of standard rules governing it. In addition, the algorithm cannot guarantee
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the best solution because the solution only converges and does not progress, resulting
in the solutions being poorly optimized [33]. However, it has the advantages of helping
secure and explore potentially substantial search spaces, finding optimal combinations, and
finding solutions that are difficult to achieve. Thus, it is suitable for finding an answer to
an NP-hard problem, such as feature selection [34,35]. That means, it was also appropriate
to apply a genetic algorithm in this study.

According to D. Whitley [36], a genetic algorithm usually begins with randomly
generated gene populations. They evaluated the genes that were constructed and allo-
cated opportunities for the next generation of each gene, such that the genes that met the
problem’s criteria provided more chances of reproduction than those that did not. Subse-
quently, new genes were created by taking only the selected genes according to specific
criteria and recombining them in many different ways. After creating new genes through a
crossover, mutations can be created with specific probabilities. This process is repeated
until the termination criteria of the algorithm are met. Figure 2 shows these procedures in
a simplified flowchart.

No Yes

Start

Create initial genes

by random choice

Rate genes

Does meet

Termination criteria?

Selection

Crossover

Mutation Finish

Figure 2. Simplified flowchart of the genetic algorithm’s progression.

3.3. Machine Learning Algorithm

Machine learning refers to computer programming used to optimize the performance
criteria using example data or experience [37]. T. M. Mitchell [38] described machine
learning as inherently a multidisciplinary field used in various real-world applications.
Machine learning is conducted by introducing several algorithms to solve problems in
various fields. This is the reason why machine learning must be evaluated through various
algorithms. Thus, we selected nine algorithms to evaluate the performance of feature
selection. The following descriptions are for the machine-learning algorithms used in
this study.

• Decision Tree: A decision tree is a machine learning technique that classifies or
regresses the data by creating classification rules for the trees. A decision tree is
guided by a training case in which information is represented by a tuple and the class
label of the attribute values is written down. Owing to the vast space to be retrieved,
a tree is typically guided by training data and empty trees and into greedy, top-down,
and recursive processes. The tree is created using processes that best partition the
training data as the root splitting attribute. The training data are then partitioned
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into disjoint subsets that satisfy the values of the splitting attribute [39]. Owing to the
disadvantage of easily overfitting the trees, pruning may be applied while executing
the algorithm, or some trees might be removed to form generalized results.

• Random Forest: A random forest is a classifier consisting of a collection of uncorrelated
tree structure classifiers designed by L. Breiman [40]. Each tree has the characteristic
of finding solutions while voting for the most generalized class for input values. A
supervised learning algorithm trained using the bagging method builds multiple
decision trees and merges them to obtain a more accurate and stable prediction [7].

• Decision Table: A decision table is a simple means of documenting different decisions
or actions taken under different sets of conditions [41]. The decision table allows
the creation of a classifier, which summarizes the dataset into a decision table that
contains the same number of attributes as the original dataset [42] and applies the
classification of new incoming data using the table.

• Naïve Bayes: Naïve Bayes is a classification model based on the conditional probability
of a Bayes rule. The independent naïve Bayes model is based on estimating and
comparing probabilities; the larger significant probability points out that the actual
label is more likely to be the class label value of the larger probability [14]. As the
algorithm assumes that the predictive attributes are conditionally independent given
the class, and it posits that no hidden or latent attributes influence the prediction
process [43], it is difficult to apply to data dependent on different classes through
specific attributes.

• MLP: A multi-layer perceptron (MLP) uses omnidirectional artificial neural networks
for learning [44]. The neural network structure is presented in three parts: the input
layer, hidden layer, and output layer. The input layer obtains the data, the hidden
layer is calculated through an activation function, and the output layer shows the
results of classification/regression. Although the input/output layers of the model
exist individually, the hidden layer can be stacked as multiple layers. It is also known
that the deeper a model is, the more generalized it can be in comparison to a shallowly
stacked model [45].

• SVM: A support vector machine (SVM), also known as a support vector network
(SVN), is a learning model for binary classification that embodies the idea that input
vectors map non-linearly to high-dimensional feature spaces. In this feature space, a
linear decision surface is constructed to ensure the high generalization ability of the
learning machine owing to the unique properties of the decision surface [46].

• Logistic Regression: Logic regression is a machine learning technique that explains
how variables with two or more categories are associated with a set of continuous
or categorical predictors through probability functions [47]. Unlike ordinary linear
regression using straight lines for classification, logistic regression is suitable for binary

classification, using a logistic function in the shape of
ex

(1 + ex)
when fitting the data.

• AdaBoost: AdaBoost is a boosting algorithm that combines multiple weak classifiers to
create a robust classifier that increases the performance. Unlike previously proposed
boosting algorithms, a weak classifier is characterized by errors returned by the
weak classifier [48], which affects the focus of the weak classifier on the problematic
examples of the training set [49], allowing it to better classify the attributes.

• K-NN: As the fundamental principle of a K-nearest neighbor (K-NN), if most of the
samples around the data on a point in a particular space belong to a specific category,
the data on that point can be judged to fall into that category [50]. The K-NN algorithm
operates by checking the label of the appropriate numbers of samples closest to the
data being classified and subsequently labeling the data as the most aggregated of
the samples.
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4. Experimental Methodology

In this section, the experiment conducted based on the flowchart in Figure 3 is de-
scribed. During the experimental process, we used Androguard [51], a python-based
Android application analysis tool for feature extraction; and WEKA [52], machine learning
software provided by Waikato University for feature selection (information gain only), ma-
chine learning, and evaluation. In addition, the generation of a dataset for machine learning
and the implementation of a genetic algorithm-based feature selection was conducted using
Python scripts.

Benign Malware

Dataset

Feature Extraction

Androguard

Permission API Method

Feature Selection

Information Gain Genetic AlgorithmNon-selection

Machine Learning

J48 DecisionTable RandomForest

MultilayerPerceptron SMO IBk

NaiveBayes Logistic AdaBoostM1

WEKA

Evaluation

Figure 3. Flowchart of experiment progression.

4.1. Dataset Selection and Modification

The dataset used in this experiment was modified from the Andro-AutoPsy Dataset
(https://ocslab.hksecurity.net/andro-autopsy (accessed on 11 May 2021)) [53] provided by
the Hacking and Countermeasure Research Lab (HCRL), Korea University. The dataset
consists of 9990 malicious and 109,193 benign applications collected between January 2013
and April 2014. We randomly selected and edited the attributes of this dataset to reduce
the size of the dataset and divided them into training and test sets for machine learning.
Table 2 shows the distribution of attributes of the final modification of the dataset.

Table 2. Distribution of attributes of datasets used in the experiment.

Class Training Test

Benign 4000 1000
Malware 2000 500

4.2. Initial Feature Extraction

A review by K. Liu et al. [5] confirms that 66 machine learning studies with static
features mostly used application permissions or API calls. Many studies have combined
multiple features to construct the learning data. Most studies used combination of per-
missions and API calls information. Therefore, we also decided on features based on
combination of Android permissions and API calls and used them for machine learning
during this experiment. Specifically, we obtained the permission information defined in
the AndroidManifest.xml file and the API class method called in the application and used it
as a feature. The application permissions and API class methods were extracted to obtain

https://ocslab.hksecurity.net/andro-autopsy
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these features, including information on 104 permissions and 1000 methods used most
frequently in malicious applications found in the training dataset.

We also used binary encoding to apply selected feature information to the dataset and
encoded it as 1 if the feature information could be found in the corresponding attribute,
and as 0 otherwise. Malware information was encoded using binary encoding, with a
1 encoded for malware and 0 encoded for benign application.

4.3. Feature Selection

The algorithm generated the initial 30 genes randomly selected from the 100 of the
total features when applying the genetic algorithm-based feature selection. The fitness
function evaluated each gene, and the gene survived on a rank-based basis. The expression
of the fitness function [31] used to evaluate each feature was:

p× |p(X, Y)|+ |p′(X, M)|−1 (1)

A constant p is the weight that can change depending on the problem, and a value
of 0.2 was used in this experiment. Here, p(X, Y) represents the correlation coefficient
between the features X, Y, and p′(X, M) represents the correlation coefficient between
the features X and M for malicious applications. As the ranges of two commonly used
correlations, the Pearson and Spearman correlations, are [−1, 1], in the presented function,
the correlation between features was increasingly lowered, and the correlation between
features and target labels was highly valued over a single generation. Naturally, each
feature was chosen by a low correlation with each other feature and a high correlation
between the target label and the feature.

Subsequently, a crossover operation was applied on the surviving genes using a
uniform-crossover [54], designed to generate random probabilities at all locations of the
gene and determine what is inherited according to a threshold probability of P0 = 0.6;
in addition, the mutation operation also progressed. We applied a non-operation to the
selected content with a 5% opportunity for all items of the newly created gene set. This
process was repeated several times, resulting in a dataset with 101 features. Algorithm 1
represents the detailed process of the genetic algorithm in pseudo-code.

Algorithm 1: Pseudo-code of the genetic algorithm used in the experiment.
Input : Training dataset
Output : List of selected features

Get feature data from training set
Gene number N = 30
Generate initial genes array G
while Repeated epoch ≤ 50 do

for g in G do
Calc Score(g)

end
Select N

2 From G
Threshold probability P0 = 0.6
while Number of G ≤ N do

Uniform crossover(P0)
end
Mutate probability P1 = 0.05
for g in G do

Mutate operation(P1)
end

end
Return Output
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In Algorithm 1, we set the number of generations to 50. The reasonableness of the
number can be explained through Figure 4. We plotted the best result in the population
according to the number of generations and the graph is shown in Figure 4. It shows that
the best result obtained from the 23rd generation went to the 200th generation. This means
that there was no improvement after 23rd generation. Even if the number of generations
was larger than 50, no improvement would have been made compared to the result when
the number of generations was 50. Thus, the result shows that the number of generations
of 50 is proper because the performance convergence occurred with smaller numbers
of generations.

By contrast, we also created a dataset that contains 100 features selected through
an information gain (IG) methos, which is the most frequently applied method reported by
K. Liu et al. [5] to compare the performance of feature selection via genetic algorithm (GA)
and that of a full feature set (non-selection).

2.5063510969715000E+16

2.5063510969715500E+16

2.5063510969716000E+16

2.5063510969716500E+16

2.5063510969717000E+16

2.5063510969717500E+16

2.5063510969718000E+16

1 21 41 61 81 101 121 141 161 181

M
e
a
s
u
r
e

Genera ons

Figure 4. The performance of the genetic algorithm in Section 4.3 according to the number of generations.

4.4. Machine Learning

We conducted machine learning using an edited dataset to apply the feature selec-
tion using a genetic algorithm. To verify the performance of the feature selection, we
also conducted machine learning using the dataset selected through non-selection and
information gain and compared the results. We used the J48 (decision tree), Random-
Forest, DecisionTable, NaiveBayes, MultilayerPerceptron, SMO (SVM), logistic (logistic
regression), AdaBoostM1, and IBk (K-NN) libraries provided by WEKA [52].

4.5. Measurement Metrics

Like this experiment, binary classification machine learning results can be classified
through a confusion matrix, as shown in Table 3. The confusion matrix includes infor-
mation based on the classification results predicted by machine learning and the actual
classification results.

Table 3. Confusion matrix.

Predicted
Actual Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)
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Indicators evaluating classification problems in machine learning are typically used
as follows:

• Accuracy describes how accurate the overall prediction is.
• Precision describes how much is actual true among the predicted true.
• Recall describes how much is predicted true among the actual true.
• F1 Score reflects both precision and recall.

Accuracy Ac, precision Pr, recall Rc, and F1 score F can be calculated using the
following definitions:

Ac =
TP + TN

Total
(2)

Pr =
TP

TP + FP
(3)

Rc =
TP

TP + FN
(4)

F =
2(PR× Rc)

Pr + Rc
(5)

During this experiment, we assume that the positive situation in Table 3 is malware
detection. Accordingly, we define that Pr describes the accuracy of classifying malware
that has been predicted as malware, and Rc is a well-predicted indicator of a malware case
as actual malware in this experiment.

4.6. Statistical Analysis

We conducted a t-test to investigate whether the differences between the results of
two different methods were statistically significant. A t-test is a type of statistical test that
is used to compare the means of two groups [55]. Depending on the value of p-value
resulting from the t-test, it can be determined whether the difference in mean between
the two independent groups is statistically valuable. Therefore, it is also possible to check
whether the differences in the results between two groups is statistically similar or not
using the results of the t-test.

In the t-test of this study, the general significance level was set to be 0.05. This was
used to accept or reject the null hypothesis that the two results would be statistically
identical. When the p-value was above 0.05, we could conclude that the difference in the
results between the two groups was not statistically significant, giving strong evidence for
the null hypothesis. Otherwise, the difference in results could be considered significant.

5. Experimental Results
5.1. Accuracy/F1 Score Performance by Algorithm

The accuracy/F1 score results of the experiment described in Section 4 are sum-
marized in Table 4. Table 4 shows the classification performances of three methods—
classification without feature selection, i.e., non-selection (using full feature set), classifica-
tion with feature selection by information gain, and classification with feature selection by
genetic algorithm.
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Table 4. Accuracy/F1 score performance results using the various feature selection methods.

Algorithm
Non-Selection Information Gain Genetic Algorithm

Acc. F1 Score Acc. F1 Score Acc. F1 Score

J48 0.979 0.968 0.959 0.938 0.968 0.952
RandomForest 0.98 0.969 0.968 0.95 0.978 0.966
DecisionTable 0.968 0.951 0.932 0.891 0.946 0.916
NaiveBayes 0.71 0.59 0.763 0.644 0.691 0.61
MultilayerPerceptron 0.991 0.987 0.967 0.95 0.981 0.971
SMO 0.992 0.988 0.952 0.927 0.964 0.946
Logistic 0.947 0.921 0.954 0.93 0.963 0.944
AdaBoostM1 0.965 0.946 0.923 0.878 0.884 0.817
IBk 0.979 0.969 0.97 0.954 0.972 0.957

The experimental results show that the best algorithm for detecting malicious ap-
plications varies based on the method of feature selection—SMO for non-selection, IBk
for information gain, and MultilayerPerceptron for a genetic algorithm. By contrast, the
performance of NaiveBayes’s was shown to be the lowest for all three cases.

Based on the results shown in Table 4, to check the performance of the feature selection
algorithm, we made charts to compare the accuracy and F1 score obtained by each method
of feature selection. Figures 5 and 6 show graphs of the accuracy and F1 score indicator.

J48 RF DT NB MLP SMO Logistic ABM1 IBk

Non-Selection 0.979 0.98 0.968 0.71 0.991 0.992 0.947 0.965 0.979

IG 0.959 0.968 0.932 0.763 0.967 0.952 0.954 0.923 0.97

GA 0.968 0.978 0.946 0.691 0.981 0.964 0.963 0.884 0.972

0.5

0.6

0.7

0.8

0.9

1

Results of Indicators of Accuracy

J48 LogisticJ48 classifier for decision tree method

RandomForest classifier

DecisionTable classifier

RF

DT

NB

MLP

SMO

NaiveBayes classifier

MultilayerPerceptron classifier

SMO classifier for SVM method

ABM1

IBk

Non-selection

IG

GA

Logistic classifier for logistic regression method

AdaBoostM1 classifier

IBk classifier for K-NN method

Full feature set

Feature selection with information gain

Feature selection with genetic algorithm

Abbreviations in Figure

Figure 5. A graph comparing accuracy among feature selection methods.
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J48 RF DT NB MLP SMO Logistic ABM1 IBk

Non-Selection 0.968 0.969 0.951 0.59 0.987 0.988 0.921 0.946 0.969

IG 0.938 0.95 0.891 0.644 0.95 0.927 0.93 0.878 0.954

GA 0.952 0.966 0.916 0.61 0.971 0.946 0.944 0.817 0.957
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Abbreviations in Figure

Figure 6. A graph comparing F1 scores among feature selection methods.

The performance of method without a feature selection(non-selection) generally out-
performed the one with a feature selection(IG, GA). However, non-selection results show
small differences of less than 0.04 from those of IG and GA for all machine learning algo-
rithms except the AdaBoostM1 (see Figure 5). This result can be analyzed that a feature
selection may eliminate over a thousand features, however the degradation of performance
is only 4%p. In particular, the degradation of performance of GA was only 3%p (excluding
AdaBoostM1). Moreover, the logistic algorithm achieved an increase in accuracy when the
feature selection was applied. As shown in Figure 6, we can confirm that the F1 scores
also exhibit similar results with those of accuracy. The F1 scores of the NaiveBayes al-
gorithm with a feature selection(IG, GA) was higher than the method without a feature
selection(non-selection).

We conducted a t-test to compare the accuracy of the non-selection and genetic al-
gorithms. The results have a significance level of 7.5× 10−2; that is, the performance of
non-selection was significantly similar to that of the genetic algorithm. We also conducted
a t-test to compare the F1 score. The result has a significance level of 1.5× 10−1, which also
shows that the performance was significantly similar to that of the genetic algorithm.

Comparing the feature selection performance of the genetic algorithm to that of
information gain, we can confirm that all indicators of the genetic algorithms are superior
except for the results of NaiveBayes, by which the information gain achieved a better
performance over a non-selection and AdaBoostM1. Although it is not easy to generalize
the result because it was impossible to conduct experiments on all algorithms, we can
confirm that selecting a genetic algorithm can yield better results than information gain.

5.2. Time Cost for Model Building

The accuracy and F1 scores show that it is advantageous not to proceed with feature
selection. However, the machine learning process should also consider the time required
to build a model. Therefore, it is also necessary to compare time cost for model building.
Machine learning with all features is not always beneficial because it requires much more
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time to learn many different features’ information. Table 5 shows how long it took to build
a model for each algorithm.

Other previous works that conducted experiments on malware detection using fea-
ture selection similar to this study, such as researches by A. Firdaus et al. [12] and
A. Fatima et al. [13], did not mention the time required for feature selection. However,
the time used for the feature selection by a genetic algorithm is also the important indicator
which should be considered by developers. GA-based feature selection in this study took
approximately 54,000 s, about 15 h, with c2-standard-8 virtual machine instance provided
by Google Cloud Platform Compute Engine. This is a long time compared to the training
time; however, feature selection proceeds not often in general, and it is done only once or
performed only when upgrading applications or services. In addition, the feature selection
only needs to be performed once for different machine learning models. So about 15 h of
feature selection process is available in practice.

Table 5 summarizes that it takes more time to learn the data that have not been
selected. In particular, with certain exceptions, datasets that have been selected through
genetic algorithms have an advantage over data that have not been selected. Furthermore,
except for the result of DecisionTable and MultilayerPerceptron, comparing the two feature
selection methods also shows that the genetic algorithm takes less time.

Table 5. The time cost for building a model for each algorithm.

Algorithm
Time Costs (s)

Non-Selection Information Gain Genetic Algorithm

J48 3.92 0.18 0.12
RandomForest 3.32 0.68 0.56
DecisionTable 100.85 7.48 7.63
NaiveBayes 0.05 0.01 0.01
MultilayerPerceptron 31705.55 150.19 207.93
SMO 11.18 13.44 7.93
Logistic 13.56 0.95 0.89
AdaBoostM1 2.74 0.14 0.11
IBk 0 0.01 0

By contrast, as shown in Figures 5 and 6, the performance of the genetic algorithm
was better, which means that a genetic algorithm is superior to most algorithms in terms of
time or evaluation thereby increasing the expectations of achieving better results.

5.3. Hyperpatameter Optimization

The experimental results in the above sections, it was shown that genetic algorithm
is a competitive method compared to other feature selection methods. However, there
is still a possibility to improve the performances of the machine learning methods. To
investigate how much of the performance of the proposed method can be improved,
hyperperparameter optimization was applied on the MultilayerPerceptron classifier, which
showed the best performance among the machine learning methods used in this study.

MultilayerPerceptron is a classifier provided by WEKA that classifies data through
establishing a multilayer neural network. This classifier basically has as many input layer
nodes as the number of features, and it has as many output layer nodes as the number of
classes. The hidden layer can be set up freely. We tried to build an optimal neural network
by adjusting the number of nodes of hidden layer.

The MultilayerPerceptron classifier used in the above experiment had one interme-
diate layer, and the number of nodes in the intermediate layer was determined by the
following formula:

b attribute + class
2

c (6)
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In this experiment, there are 102 attributes and 2 classes in the dataset. Thus, there
are 52 nodes in hidden layer. We compared the performance of classifiers by changing the
number of nodes. The results are summarized in Table 6 and Figure 7.

Table 6. The hyperparameter optimization result for a single hidden layer.

# Nodes Accuracy F1 Score Time Costs (s)

1 0.968 0.951 6.54
5 0.968 0.951 24.24
10 0.977 0.966 43.71
25 0.979 0.969 101
52 0.981 0.971 207.93
75 0.982 0.973 296.95

104 0.98 0.97 387.1
200 0.984 0.976 771.83
300 0.982 0.973 1208.84
400 0.981 0.971 1553.27
500 0.983 0.974 2182.71
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Figure 7. Schematization of a hyperparameter optimization result for a single hidden layer.

As shown in Table 6 and Figure 7, the classifier showed the best performance when the
hidden layer had 200 nodes. With 200 nodes, the accuracy of the classifier was 0.984, which
is a better result than that of previous experiment with 52 nodes, 0.981. By adjusting the
parameter values of the MultilayerPerceptron classifier, we could obtain the performance
improvement. However, we also observed that increasing the number of nodes in the
hidden layer did not necessarily improve the performance. In addition, as the number
of nodes increased, the time cost also increased. It is necessary to find an appropriate
parameter that can balance performance improvement and time consumption.

To find such a parameter, we also conducted an experiment with double hidden layers.
We inserted a new hidden layer with multiple nodes into the existing neural network. The
results are summarized in Table 7 and Figure 8.

Through Table 7 and Figure 8, we can observe that adding a new hidden layer to the
neural network can also improve the performance of the classifier. In addition, the best
case in this experiment showed the same accuracy as the best MultilayerPerceptron with
200 nodes in a single hidden layer presented in Table 6, while having less time cost than
the case before optimization. This means that, adjusting the number of nodes in double
hidden layers can be more efficient than that in a single hidden layer.
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Table 7. The hyperparameter optimization result for double hidden layers.

Location of New Layer # Nodes Accuracy F1 Score Time Costs (s)

Before existing layer

1 0.968 0.951 17.88
25 0.984 0.976 154.59
52 0.982 0.972 332.12

104 0.982 0.972 602.83

After existing layer

1 0.982 0.972 162.01
25 0.981 0.971 243.97
52 0.982 0.972 332.12

104 0.98 0.97 530.98

Before existing layer
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Figure 8. Schematization for the hyperparameter optimization result for double hidden layers.

Through the experiment, we could observe that the performance could be improved
by properly manipulating the parameter of the classifier. Through this hyperparameter
optimization experiments, we could find the improved parameter combination, which
showed the increased accuracy while having the reduced time cost.

5.4. Total Results

In summary, we can conclude that using data without feature selection is the best
choice in terms of the evaluation metrics. However, considering the time required, it is
better to proceed with feature selection through genetic algorithms, with which we can
expect better results than applying information gain. These results can be visualized as
Figures 9 and 10.

The results suggest that although feature selection through the genetic algorithm
did not result in a performance improvement, applying genetic algorithm can achieve a
significant performance as a learning model with much less time and can be superior to
a conventional feature selection. It also shows that the performance of machine learning
with feature selection based on genetic algorithm can be increased through the result
of hyperparameter optimization experiment. In addition, the result from this study is
not far behind even when compared to the results of other existing studies. Table 8
summarized a comparison with previous works. There was only one result to show better
performance than ours, the work by [14], and this work used also genetic algorithm-based
feature selection. Although Table 8 shows that our method did not produce the best result
among the compared other studies, the results also demonstrate the effectiveness of feature
selection based on genetic algorithm in Android malware detection.
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Figure 9. A comparison of machine learning performances between non-selection and genetic algorithm-based feature se-
lection.
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Figure 10. A comparison of machine learning performances between information gain-based and genetic algorithm-based
feature selection.

Table 8. Comparison with previous work.

Reference Dataset Set Size Feature Feature Selection
Method Classifier Accuracy F1 Score

[7] Drebin 5560 assembly,
API calls none Random Forest 0.9433 0.94

[10] VirusShare,
APKPure 6000 permission RFFS+

Acc2+M2 Random Forest undetermined 0.952

[12] Drebin,
Play store 6105

permission,
code-based,

directory path

Genetic
Selection Functional Tree (FT) 0.95 0.972

[13] undetermined 40,000 app component,
permission

Genetic
Algorithm SVM 0.95 0.95

[14] AMGP,
Play store 1740 permission Genetic

Algorithm SVM 0.985 0.981

The best result
in this study Andro-AutoPsy 7500 permission,

API method
Genetic

Algorithm MultilayerPerceptron 0.984 0.976

6. Conclusions

Detecting Android malware in a quick and accurate manner is essential for Android
OS users. To solve this problem, many studies have introduced machine learning for the
detection of malicious applications, and feature selection has also been employed to speed
up the process. In this study, experiments were conducted to select permission and API
method information features to apply machine learning based on existing research, and the
results indicate that genetic algorithm-based feature selection was also useful compared to



Mathematics 2021, 9, 2813 18 of 20

a commonly applied information gain. Although the feature selection performance using
the genetic algorithm was reduced less than 3%p in general, it also has an advantage over
non-selection because it drastically reduces the model’s building time.

The ultimate goal of machine learning is to be able to supply time and space budgets
to machine-learning systems in addition to accuracy requirements, with the system finding
an operating point that allows such requirements to be realized [56]. Considering this, the
experiment results indicate that using genetic algorithms for Android malware detection
is also useful compared to other approaches. The experiment also shows that it may be
helpful to proceed with feature selection using a genetic algorithm, although the feature
selection was applied on a dataset with more than a thousand features.

However, further studies are required to resolve the following issues. In this study,
static features were determined using the permission and API method information. As this
cannot prove whether feature selection using genetic algorithms is helpful when selecting
features using other static and dynamic elements, further discussion of this problem is
required. In addition, because this dataset consists of applications collected from January
2013 to April 2014, the results of this study may not be evaluated appropriately in current
Android applications owing to the many changes from the current environment during
the year 2021. It is necessary to conduct a validation using a dataset consisting of recently
released applications.

Although further research and discussion are needed, this study confirmed that
genetic algorithms can help machine learning for Android malware detection. If further
research results are available in the future, we will note genetic algorithms as a solution for
malware detection to achieve higher accuracy with lesser time costs.
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