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Abstract: The model of a fully available group of servers with a Poisson flow of primary calls and
the possibility of losses before and after occupying a free server is considered. Additionally, a call
can leave the system because of the aging of transmitted information. After each loss, there is
some probability that a customer repeats the call. Such models are seen in the modeling of various
telecommunication systems such as emergency information services, call and contact centers, access
nodes, etc., functioning in overloading situations. The stationary behavior of the system is described
by the infinite-state Markov process. It is shown that stationary characteristics of the model can be
calculated with the help of an auxiliary model of the same class but without call repetitions due
to losses occurring before and after the occupation of a free server and the aging of transmitted
information. The performance measurements of the auxiliary model are calculated by solving a
system of state equations using a recursive algorithm based on the concept of the truncation of
the used state space. This approach allows significant savings of computer resources to be made
by ignoring highly unlikely states in the process of calculation. The error caused by truncation is
estimated. The presented numerical examples illustrate the use of the model for the elimination of
the negative effects of emergency information service overload based on the filtering of the input
flow of calls.

Keywords: emergency services; performance evaluation; repeated calls; Markov process; system of
state equations; recursive algorithms; truncation of state space

1. Introduction

Queueing models that take into account customer behavior after being refused service
provide a powerful tool for performance evaluation and the planning of many resource-
sharing systems functioning in overload conditions. Such tasks often can be witnessed in
the telecommunication industry where, by definition, the volume of resource is restricted,
and input traffic has random characteristics. The proper solution of such a problem has
special significance, especially in emergency situations, which are very common. Modern
telecommunication equipment allows people to ask for assistance at any time and from
almost anywhere. Technically, such types of connection are organized through public-safety
answering points (PSAP) [1,2]. PSAP is the basis of public-safety systems because it allows
a citizen to reach primary emergency services such as police, fire- fighting, ambulance,
etc. and provide the required intervention resources if necessary. Because of this, the
functioning of PSAP should be organized very carefully.

Using PSAP as an example, let us consider the problems related to an overload of calls
and possible solutions. Under normal traffic conditions, it is easy to predict the parameters
for an emergency service such as the intensity of arriving calls for each period of the day,
and estimate the number of operators required to serve the incoming calls. This problem
can be solved by available planning tools based on standard queueing models. However,
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all emergency services are exposed to overloading situations caused by both natural
(earthquakes, floods) and human (fires, terrorist attacks, nuclear accidents) factors [1,2].
The vast majority of citizens seeing or suffering the same incident try to reach emergency
services almost at the same time, creating conditions for overload. This situation leads to
blocking and the subsequent appearance of a large number of repeated attempts, easily
created by modern mobile phones equipped with a call-retrial function.

There are two approaches to overcome the negative consequences of overload. The
choice depends on the origin of overload and the time needed to solve the problem. If
the rising traffic has random characteristics and is caused by some dangerous event, then,
to keep the emergency service in normal order, it is necessary to reduce the number of
expected requests. This can be done by redirecting some calls to another PSAP with similar
functions [1]. After a short period, the intensity of traffic is stabilized. The increase of input
flow can be also caused by the involvement of additional customers. In this situation, it
is necessary to estimate the intensity of primary requests from results of measurements
of total intensity of incoming requests (primary and repeated), and then calculate the
required number of operators. The portion of redirected calls and the number of additional
operators can be calculated with help of corresponding mathematical models, taking into
account the possibility of call repetition due to the nonavailability of required resources.

Moreover, evident interest from researchers dealing with planning and optimizing
the infrastructure of such emergency service models has generated a lot of attention
from analysts dealing with call and contact centers, and other resource-sharing systems
functioning in overload situations. Attracted by the relevance of the issues, specialists
of various expertise work in this area. The level of publications varies from practitioner-
oriented research (see overview in [3]) to works performed at a high mathematical level
(see overview in [4,5]). A survey of the latest research in this field can be found in [6]. The
main point of interest for specialists working on queueing models concerning call centers
is to estimate the number of agents such that the values of SLA (Service Level Agreement)
indicators are met with prescribed values. In the process of model construction, it is
commonly assumed that requests for servicing can be well modeled by nonhomogeneous
Poisson process [4–8]. Additionally, it is also supposed that arrival rates and the number of
agents are stepwise constant functions [6]. It allows the use of stationary queueing models
for each time interval for solving planning problems by so-called SIPP procedure [8].
The M/M/v is very often used in practice, especially as a basis for different forms of
call-center calculators [5]. This model can be generalized by taking into account the user
patience [9,10]. Such models can be written as M/M/v + G, where symbol G denotes the
generally distributed user patience. Analytical results have been obtained for such type of
models that allow us to study the influence of user patience on performance measurements.
Another way to increase the accuracy of the call-center model is to take into account
different aspects of agent stuffing. Often this feature complicates the model and in this case
the only way to calculate the performance measurements is to solve the system of state
equation using the Gauss–Seidel iterative algorithm [11].

A family of Erlang models, integrated into a SIPP procedure, forms the basis of
numerical methods of estimation the required number of agents. Unfortunately, this
approach has several drawbacks. The main among them is the dependence on the intensity
of requests that arrive at the beginning of each interval carried over from the previous
call-center functioning history, the so-called backlog [6,12]. This property violates the
Poisson assumption used for the description of input flow. There are several approaches to
dealing with this problem; see for example [12]. A substantial contribution to the formation
of a backlog, especially in the case of overload, is repeated attempts that reflect the quality
of request servicing has been observed in the past [13].

A major part of the existing research suggests that the reason for call repetition is
strictly connected to occupancy of the servers and does not take into account the possibility
of blocking and subsequent call repetition before and after occupation of the free server.
However, there exist a lot of situations where this peculiarity of input flow formation
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should be taken into account. For example, in an emergency service, a customer can repeat
an attempt after being processed by IVR (Interactive Voice Response) or can be blocked on
route to the emergency service. This happens before the occupation of a free operator. The
operator can refuse to service a call, and become the reason for retrial because of restricted
access to the intervention resources required for proper call servicing. This happens in the
presence of a free operator. The listed sequence of bottlenecks occurs in the emergency
service chain; see Figure 1 taken from [1]. The same types of blocking should be considered
when we model transmission resource occupancy in routes consisting of several links and
take into account the possibility of call repetitions because the called party is busy or there
is no answer.

ClassificationDispatch appropriate 
resources

Classification
Reception of the call

Reach an available call-taker

Bottle 
neck 

2

Network 
access to 112 

available

Data collection

Bottle 
neck 

1

Bottle 
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Device available 
(e.g.phone)

Intervention, rescue 
and care

Knowledge
 of 112User

Figure 1. Bottlenecks in the emergency service chain [1].

Detailed surveys of publications devoted to queueing systems with retrials have been
undertaken, e.g., in [14–17]. By taking into account customer behavior, we can model the
input flow in a way that is close to the real processes happening in telecommunication
systems that is considered in the overload situation. This aspect creates problems with
the theoretical analysis of such models, because time intervals between successive call
arrivals are now dependent random variables. We can avoid this problem by including
the number of repeated customers in the definition of the model’s state. This is done in
most publications devoted to this subject. It allows use of Markov processes for model
description but seriously complicates the numerical analysis. Performance measures can
be found by solving the system of state equations either using the Gauss–Seidel iterative
algorithm [2,18–20] or by matrix-geometric methods, when the corresponding Markov
process has a suitable structure [17,21,22]. The first approach is time-consuming, and the
last is numerically unstable for real values of input parameters because of the necessity
to convert a large matrix. Such a situation seriously complicates the use of models with
retrials as a component of planning tools, because it requires first numerical stability of the
calculation algorithm, and second the possibility to estimate performance measures for any
choice of input parameters for a reasonable time.

A model with such characteristics can be found in the literature (see, for exam-
ple [20]). This is a Markov model of a fully available group of servers with the possi-
bility of call repetition only because all servers are busy. Furthermore, we refer to this
model as a basic model with repeated calls. Performance measures of this model can be
found using a recursive algorithm based on the concept of truncation of the model’s state
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space [2,17,19,20,23]. For this model, the asymptotic formulae for the calculation of charac-
teristics in the case of extreme load can be also found in explicit form [24]. We generalize the
basic model in three directions. First, we will take into account the possibility of the aging
of transmitted information during the process of repetitions. Second, we will consider the
scenario of blocking before occupying a server, and third, the possibility of losses after
occupying a server. In the last two cases a customer can repeat an attempt. The aim of this
paper is to show that performance measures of a generalized model can be calculated with
the help of a basic model with some changes in input parameters.

The closest model with retrials to the model considered in this paper was analyzed
in [2,19]. That model consists of a fully available group of servers with the possibility
of waiting. For this model, asymptotic expressions of performance measures for large
loads are derived. The values of the characteristics are obtained after solving the system of
state equations by the Gauss–Seidel iterative algorithm. The distinguishing features of the
model and results obtained in this paper, compared to [2,19], are as follows:

• Additional features, such as the possibility of blocking and call repetition after occupying
the server, and the possibility of the aging of transmitted information, are considered.

• Performance measures are calculated using a recursive algorithm without construction
of the sequence of approximations such as in the realization of the Gauss–Seidel
procedure. This significantly reduces the counting time.

A short outline of this paper is as follows. In Section 2, the mathematical description of
the basic model with retrials is presented. In Section 3, the same is done for the considered
generalized model with retrials. The possibility of using the basic model for the calculation
of performance measures of the generalized model is shown by the construction of some
number of auxiliary models. That mathematical analysis is presented in Section 4. Section 5
contains the numerical results that show the possibility of using the analyzed model for
the elimination of negative effects from PSAP overload based on filtration of the input flow
of calls. Section 6 concludes the paper. The Appendix A contains a brief description of the
recursive algorithm that allows the estimation of the performance measures of the basic
model using an approach based on the concept of truncated state space.

The novelty of the results obtained in this work is as follows:

• A new model for the functioning of a group of serving devices (servers) has been built
and investigated, in which the user can additionally receive a refusal and repeat the
call before and after seizing the server. It is also possible for transmitted information
to age for the user repeating the call. The model can be used for the elimination of
negative effects of overload in various telecommunication systems such as emergency
information services, call and contact centers, access nodes, etc.

• A procedure for transforming the model under study has been developed, which
makes it possible to exclude the reasons for repeating a call before and after occupation
of the server and the possibility of the aging of transmitted information. Thus, the
calculation of the model is reduced to the calculation of the characteristics of its
particular case, with the only reason for the denial of service being the busyness
of the servers. This problem is much easier to solve using an approach based on
the concept of a truncated state space. This method of performance measurement
estimation allows significant savings of computer resources to be made by ignoring
highly unlikely states in the process of calculation.

2. Basic Model Description

The basic model consists of a fully available group of v servers with incoming Poisson
flow of primary call intensity λ. After being refused servicing, a customer makes another
attempt to obtain the free server in a random time with probability H1 for a primary call
and with probability H2 for a repeated call, exponentially distributed with parameter µ,
and, with additional probability, respectively, 1− H1, and 1− H2, the customer stops their
attempts to obtain a connection and leaves the system. Without loss of generality, we can
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suppose that the service time of a call (primary or repeated) is exponentially distributed
with parameter equal to one, and it does not depend on the type of a call. It should be
noted that the Poisson model is used only for the construction of the flow of primary calls.
The total flow of requests for servicing includes repeated calls, and does not follow the
Poisson model. This flow is quite complicated. It reflects the quality of application service
that has been observed in the past. The possibility of using Poisson model is also discussed
in the Introduction section.

Let us denote by j(t) the number of repeating customers and by i(t) the number of
busy servers at time t. The model’s functioning is described by a two-dimensional Markov
process r(t) = (j(t), i(t)) with an infinite number of states S, (j, i) ∈ S, j = 0, 1, . . . ,
i = 0, 1, . . . , v. Let us denote by P(j, i) the probability of stationary state (j, i) of r(t). Here,
j is the number of repeating customers and i is the number of busy servers. Using the ideas
of [25] it can be proved that stationary distribution for r(t) exists if µ > 0 and H2 < 1. If
H2 = 1, parameters λ and µ should satisfy the inequalities λH1 < v and µ > 0. The values
of P(j, i) can be found after solving of the following system of state equations:

P(j, v)
(

λH1 + jµ(1− H2) + v
)
= P(j, v− 1)λ + P(j− 1, v)λH1+

P(j + 1, v− 1)(j + 1)µ + P(j + 1, v)(j + 1)µ(1− H2),

j = 0, 1, . . . , i = v;

P(j, i)
(

λ + jµ + i
)
= P(j, i− 1)λ + P(j + 1, i− 1)(j + 1)µ+

P(j, i + 1)(i + 1), j = 0, 1, . . . , i = 0, 1, . . . v− 1.

(1)

The normalizing condition is held for P(j, i). Here and beyond, we suppose that in
the system of state equations, the probability of state with negative-integer components is
equal to zero. Let us introduce the following notations:

P(i) =
∞

∑
j=0

P(j, i), J(i) =
∞

∑
j=0

P(j, i)j, i = 0, 1, . . . , v.

In this paper we are using a standard family of performance measures that can be
defined for the model with repeated attempts using stationary probabilities of the Markov
process that describes model functioning. All such, characteristics can be expressed through
P(i) and J(i). For example, the value of I is the mean number of busy servers, the value of
J is the mean number of repeating customers, the value of πc is the ratio of lost calls, the
value of τ is the ratio of repeated attempts in the total flow of incoming calls, and the value
of M is the mean number of retrials per one primary call can be found from expressions

I =
v

∑
i=0

P(i)i, J =
v

∑
i=0

J(i), πc =
λp(v) + J(v)µ

λ + Jµ
,

τ =
Jµ

λ + Jµ
, M =

Jµ

λ
.

(2)

Considering this further we will work only with P(i) and J(i) and call these character-
istics basic. Summing up the system of state Equation (1) over j with i fixes, we obtain the
local conservation laws for macrostate (i)

P(i)λ + J(i)µ = P(i + 1)(i + 1), i = 0, 1, . . . , v− 1. (3)

Summing up the system of state Equation (1) over i with j fixes, we obtain the similar
relationships for macrostate (j)
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P(j, v)λH1 = P(j + 1, v)(j + 1)µ(1− H2) +
v−1

∑
i=0

P(j + 1, i)(j + 1)µ,

j = 0, 1, . . .

(4)

Summing up (3) and (4) over i and j, we obtain the conservation laws that relate main
stationary characteristics of the basic model

λ(1− P(v)) + (J − J(v))µ = I, Jµ = λP(v)H1 + J(v)µH2. (5)

Relationship (5) can be used for the estimation of the error caused by truncation of the
used state space (see Appendix A), for the indirect measurement of the intensity of primary
calls and for solving a variety of other problems arising in the exact and approximate
analysis of the introduced model [2,18–20]. To find P(i) and J(i), it is necessary to solve
the system of state Equation (1). The numerical procedure of doing this is briefly described
in Appendix A. In more detail, this approach is presented in [20] for the particular case
of the studied model, when H1 = H2 = H. An elaborated calculation method is based on
the concept of truncated state space. This approach allows significant savings of computer
resources to be made by ignoring highly unlikely states in the process of calculation. The
numerical procedure includes two steps: first, it is necessary to decrease the number of
unknowns in the system of state equations by not considering the states with negligible
probabilities of existence. Second, it is necessary to find the error of estimation of the
performance measures caused by truncation.

3. Generalized Model Description

We generalize the introduced model in the following three directions.

1. We take into account the possibility of aging transmitted information during the
process of repetitions. This situation can be modeled in the following way. We suppose
that starting the process of repetitions also starts the process of aging. The maximum
allowed time of aging is exponentially distributed with parameter σ. After this time,
the customer stops the process of repetitions and leaves the system, unserved.

2. We also consider the opportunity of losses before occupying the server. This situation
will be modeled in the following way. We suppose that incoming call with probability
bp for primary call and with probability br for repeated call can be blocked before
entering the service system. In this case, with probability H1 for primary call and
with probability H2 for repeated call, the customer repeats the attempt after a random
time, exponentially distributed with parameter µ, and with additional probabilities,
respectively, 1−H1, and 1−H2, the customer stops attempting to obtain a connection
and leaves the system, unserved. The probabilities bp and br can be interpreted as
losses at the stage of obtaining service between customer and the service system.

3. In the same way, we take into account the possibility of losses after the occupation
of the server. The probabilities of this event are ap for a primary call and ar for a
repeated call. Probabilities of repetitions are, respectively, H1 and H2 for primary
and repeated attempts. Time between successive repeated attempts in this case is
also exponentially distributed with parameter µ. The probabilities of losses ap and
ar can be interpreted as losses at the stages of servicing between service system and
additional resources required for proper call servicing.

The basic model is a particular case of the generalized model. We obtain it by choosing
bp = br = ap = ar = σ = 0. To simplify the notation, we will use for performance measures
of the generalized model the same symbols that were used for corresponding characteristics
of the basic model. Different values of probabilities of losses for primary and repeated
calls allow consideration of the following property of functioning of the service systems in
overload conditions. After being refused service with some probability in primary attempt,
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a customer making repeated attempts will obtain a refusal with greater probability. The
functional model of the studied service system is presented in Figure 2.

Retrial

bp

br

Finishing attempts of servicing of primary calls

1–br

1–bp

H1

1–H1

 

H2

1–H2

Blocking
before
servers

Retrial

Blocking
after

servers

ap

ar

1– ar

1–ap

 

H2

1–H2

H2

1–H2

H1

1–H1

H1

1–H1

Finishing attempts of servicing for retrials

Servicing

Figure 2. Functional model of the generalized system with blocked call retrials.

The model’s functioning is described by a two-dimensional Markov process
r(t) = (j(t), i(t)), where j(t) is the number of repeating customers and i(t) is the number of
busy servers at time t defined in infinite state space S, (j, i) ∈ S, j = 0, 1, . . . , i = 0, 1, . . . , v.
To remove out of consideration the exotic cases, we suppose that bp < 1, br < 1, ap < 1,
ar < 1. Let us denote by P(j, i) the probability of the stationary state (j, i) of r(t). Using the
ideas of [25] it can be proved that stationary distribution for r(t) exists if

1. µ > 0, σ > 0;
2. µ > 0, σ = 0 but H2 < 1;
3. µ > 0, σ = 0, H2 = 1 but λH1 < v.

The values of P(j, i) can be found after solving the following system of state equations:

P(j, v)
(

λH1 + j(σ + µ(1− H2)) + v
)
= P(j, v− 1)λ(1− bp)(1− ap)+

P(j− 1, v)λH1 + P(j + 1, v− 1)(j + 1)µ(1− br)(1− ar)+

P(j + 1, v)(j + 1)(σ + µ(1− H2)), j = 0, 1, . . . , i = v;

P(j, i)
(

λ(1− (1− H1)(bp + (1− bp)ap))+

j(σ + µ(1− H2(br + (1− br)ar))) + i
)
=

P(j, i− 1)λ(1− bp)(1− ap) + P(j− 1, i)λH1(bp + (1− bp)ap)+

P(j + 1, i− 1)(j + 1)µ(1− br)(1− ar)+

P(j + 1, i)(j + 1)(σ + µ(1− H2)(br + (1− br)ar))+

P(j, i + 1)(i + 1), j = 0, 1, . . . , i = 0, 1, . . . v− 1.

(6)
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The normalizing condition is held for P(j, i). Let us introduce the notations

P(i) =
∞

∑
j=0

P(j, i), J(i) =
∞

∑
j=0

P(j, i)j, i = 0, 1, . . . , v.

In the same way as was done for the basic model, we can prove that local conservation
laws for macrostates (i) and (j) are looking as follows:

P(i)λ(1− bp)(1− ap) + J(i)µ(1− br)(1− ar) = P(i + 1)(i + 1),

i = 0, 1, . . . , v− 1;
(7)

v

∑
i=0

P(j, i)λH1bp + P(j, v)λH1(1− bp) +
v−1

∑
i=0

P(j, i)λH1(1− bp)ap =

v

∑
i=0

P(j + 1, i)(j + 1)
(
σ + µbr(1− H2)

)
+

P(j + 1, v)(j + 1)µ(1− br)(1− H2)+

v−1

∑
i=0

P(j + 1, i)(j + 1)µ(1− br)(1− ar H2), j = 0, 1, . . .

(8)

If values of P(i) and J(i) are known, we can calculate the main stationary characteris-
tics of the model. For example, the corresponding formulae for I, J, πc, τ and M can be
found from expressions (see (2))

I =
v

∑
i=0

P(i)i, J =
v

∑
i=0

J(i), πc =
λBp + Brµ + Jσ

λ + Jµ
,

τ =
Jµ

λ + Jµ
, M =

Jµ

λ
,

(9)

where

Bp = bp + (1− bp)P(v) + (1− bp)(1− P(v))ap,

Br = Jbr + J(v)(1− br) + (J − J(v))(1− br)ar.

Summing up (7) and (8) over i and j, we obtain the conservation laws that relate to the
main stationary characteristics of the generalized model

λ(1− P(v))(1− bp)(1− ap) + (J − J(v))(1− br)(1− ar)µ = I,

J(µ + σ) = λBpH1 + BrµH2.
(10)

As we can see from the above expressions, all stationary performance measures of
the generalized model can be defined through P(i) and J(i), i = 0, 1, . . . , v. To calculate
the values of P(i) and J(i), it is necessary to solve the system of state Equation (6). We are
not able to find the values of P(j, i) recursively as can be done for the basic model (see
Appendix A), because in the generalized model a customer can repeat an attempt for any
state of busy servers i = 0, 1, . . . , v. In the basic model, this can be done only when i = v.
What remains is the solving of (6) by standard approaches, either by Gauss–Seidel iterative
algorithm or by matrix-geometric methods. The first approach is time-consuming; the last
is numerically unstable for real values of input parameters, because of the necessity to
convert a large matrix. We overcome these difficulties by showing that values of P(i) and
J(i) can be calculated with the help of the corresponding characteristics of the basic model
after a suitable choice of values of its input parameters. We prove it by constructing the
number of auxiliary models using another probabilistic interpretation of input parameters
of the generalized model or by algebraic transformations of the system of state equations.
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All four auxiliary models that will appear later (the last is a basic model) will be
particular cases of the generalized model, so we can use the same symbols to denote its
input parameters and characteristics, differing them only by a superscript. The value
of the digit used in the superscript for performance measures P(i) and J(i) means the
number of auxiliary model. For input parameters, the digit denotes the number, changing
by parameter its value. A parameter without a superscript has the same value as the
generalized model.

4. Auxiliary Models
4.1. First Auxiliary Model

The process of call repetition and the aging of transmitted information can be repre-
sented in the following way. Let us consider some refusal. If such an event happens, a
customer, with probabilities Hx (x = 1, 2, depending on the number of attempt), makes
another call after a random time Tµ with exponential distribution with parameter µ or,
with probabilities 1− Hx, stops attempts to obtain service. If refusal in service was ob-
tained for primary calls, then the random time Tσ of aging of the transmitted information
for the considered customer starts at the moment of call repetition. The value of Tσ has
exponential distribution with parameter σ and does not depend on other exponentially
distributed variables realized in the model. If the refusal in servicing was obtained in
repeated attempts, then, starting from the moment of call repetition, the remaining time of
aging also has exponential distribution with parameter σ and does not depend on other
exponentially distributed variables realized in the model. This result follows from the basic
property of exponentially distributed random variables.

By considering the above-stated argument, we can remodel the process of call repeti-
tion and aging of transmitted information in the following way. After refusal of service, a
customer with probability Hx stays in the system for a random time equal to min(Tµ, Tσ)
with exponential distribution with parameter µ + σ. Then, with probability of event
Tµ > Tσ equal to σ

µ+σ , at the end of this time a customer leaves the system because of
the aging of transmitted information and with the probability of event Tµ < Tσ equal to

µ
µ+σ a customer makes a repeated attempt. The fact that with some known probability the
customer stays in the system without subsequent call repetition and then leaves the system
does not influence the process of server occupation.

Let us construct the first auxiliary model by making the following changes in the
generalized model. We suppose that after being refused, a customer with probability Hxµ

µ+σ

makes another attempt in a time interval with exponential distribution with parameter
µ+ σ, and with additional probability 1− Hxµ

µ+σ the customer immediately leaves the system.
It is easy to notice that the first auxiliary model is a particular case of the generalized model.
We obtain it by choosing in the generalized model the following values of input parameters:

H(1)
1 =

H1µ

µ + σ
, H(1)

2 =
H2µ

µ + σ
, µ(1) = µ + σ, σ(1) = 0. (11)

Other parameters remain the same as in the generalized model. From the above
considerations (7) and (12), we can conclude that the following relations are true:

P(i) = P(1)(i), J(i) = J(1)(i)
µ + σ

µ
, , i = 0, 1, . . . , v, (12)

where

P(1)(i) =
∞

∑
j=0

P(1)(j, i), J(1)(i) =
∞

∑
j=0

P(1)(j, i)j, i = 0, 1, . . . , v
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and P(1)(j, i) are the stationary probabilities of state (j, i) of a Markov process that describes
the functioning of the first auxiliary model. Relationship (12) for particular cases of the
basic model was also proven in [26,27] by algebraic transformations of the system of
state equations. Let us consider the first auxiliary model and continue the process of
its simplification.

4.2. Second Auxiliary Model

All input parameters of this model have the same values as the corresponding pa-
rameters of the first auxiliary model. We only divide the repeating customers into two
groups. In the first group, the number of repeating customers increases by one with
probability H(1)

1 (bp + (1− bp)ap) each time when the primary call appears in the first
auxiliary model. The repeating customer of this group leaves the group with probability
1− H(1)

2 (br + (1− br)ar) after a random time with exponential distribution with parameter
µ and with additional probability of continuing to stay in the first group.

Please note that increasing and decreasing of the number of repeating customers in
the first group happens with the same probabilities for all possible values of busy servers.
We put all other repeating subscribers of first auxiliary model in the second group. After
leaving the first group, a customer can occupy the server, move to the second group of
repeating customers, or stop attempts for service. Otherwise, the functioning of a new
auxiliary model does not change compared to the first auxiliary model. A more detailed
description of the changing of the states of the second auxiliary model can be seen from
the system of state Equation (13) that will appear below.

Let us denote by j1(t) and j2(t) the number of repeating customers at time t in the first
and second groups, respectively, and by i(t) we denote the number of busy servers at time
t. The dynamic of changing the model states is described by a three-dimensional Markov
process of the type r(t) = (j1(t), j2(t), i(t)) with infinite number of states S, (j1, j2, i) ∈ S,
j1 = 0, 1, . . . , j2 = 0, 1, . . . , i = 0, 1, . . . , v. Let us denote by P(2)(j1, j2, i) the probability
of stationary state (j1, j2, i) of r(t). The system of state equations can be written in the
following way

P(2)(j1, j2, v)
(

λH(1)
1 + j1µ(1)(1− H(1)

2 (br + (1− br)ar)) + j2µ(1)(1− H(1)
2 ) + v

)
=

P(2)(j1, j2, v− 1)λ(1− bp)(1− ap)+

P(2)(j1 − 1, j2, v)λH(1)
1 (bp + (1− bp)ap)+

P(2)(j1, j2 − 1, v)λH(1)
1 (1− bp)(1− ap)+

P(2)(j1 + 1, j2, v− 1)(j1 + 1)µ(1)(1− br)(1− ar)+

P(2)(j1 + 1, j2, v)(j1 + 1)µ(1)(1− H(1)
2 )+

P(2)(j1 + 1, j2 − 1, v)(j1 + 1)µ(1)H(1)
2 (1− br)(1− ar)+

P(2)(j1, j2 + 1, v− 1)(j2 + 1)µ(1)(1− br)(1− ar)+

P(2)(j1, j2 + 1, v)(j2 + 1)µ(1)(1− H(1)
2 ),

j1 = 0, 1, . . . , j2 = 0, 1, . . . , i = v;

(13)



Mathematics 2021, 9, 2811 11 of 24

P(2)(j1, j2, i)
(

λ(1− (1− H(1)
1 )(bp + (1− bp)ap)) + j1µ(1)(1− H(1)

2 (br + (1− br)ar))+

j2µ(1)(1− H(1)
2 (br + (1− br)ar)) + i

)
=

P(2)(j1, j2, i− 1)λ(1− bp)(1− ap)+

P(2)(j1 − 1, j2, i)λH(1)
1 (bp + (1− bp)ap)+

P(2)(j1 + 1, j2, i− 1)(j1 + 1)µ(1)(1− br)(1− ar)+

P(2)(j1 + 1, j2, i)(j1 + 1)µ(1)(1− H(1)
2 )(br + (1− br)ar)+

P(2)(j1, j2 + 1, i− 1)(j2 + 1)µ(1)(1− br)(1− ar)+

P(2)(j1, j2 + 1, i)(j2 + 1)µ(1)(1− H(1)
2 )(br + (1− br)ar)+

P(2)(j1, j2, i + 1)(i + 1),

j1 = 0, 1, . . . , j2 = 0, 1, . . . , i = 0, 1, . . . , v− 1.

The normalization condition is held for P(2)(j1, j2, i). The input parameters of the first
and the second auxiliary models are the same. The process of call repetition and server
occupation is the same. We only introduce the rule of separating the repeating customers
into two groups. As result, between the corresponding characteristics of the first and the
second auxiliary models the following relations are valid:

P(1)(i) = P(2)(i), J(1)(i) = J(2)1 (i) + J(2)2 (i) = J(2)(i), i = 0, 1, . . . , v, (14)

where

P(2)(i) =
∞

∑
j1=0

∞

∑
j2=0

P(2)(j1, j2, i), J(2)1 (i) =
∞

∑
j1=0

∞

∑
j2=0

P(2)(j1, j2, i)j1,

J(2)2 (i) =
∞

∑
j1=0

∞

∑
j2=0

P(2)(j1, j2, i)j2, i = 0, 1, . . . , v.

4.3. Third Auxiliary Model

Let us show that the solution of (13) can be represented in the form

P(2)(j1, j2, i) = P(2)(0, j2, i)
Dj1

j1!
, j1 = 0, 1, . . . ,

(j1, j2, i) ∈ S,
(15)

where

D =
λH(1)

1 (bp + (1− bp)ap)

µ(1)
(
1− H(1)

2 (br + (1− br)ar)
) .

After the substitution of (15) into (13) with changing P(2)(0, j2, i) into P(3)(j, i), we
obtain the following system of linear equations

P(3)(j, v)
(

λ(1)H(2)
1 + j(µ(2)(1− H(1)

2 ) + σ(1)) + v
)
= P(3)(j, v− 1)λ(1)+

P(3)(j− 1, v)λ(1)H(2)
1 + P(3)(j + 1, v− 1)(j + 1)µ(2)+

+ P(3)(j + 1, v)(j + 1)(µ(2)(1− H(1)
2 ) + σ(1)),

j = 0, 1, . . . , i = v;

(16)
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P(3)(j, i)
(

λ(1) + j(µ(2) + σ(1)) + i
)
= P(3)(j, i− 1)λ(1) + P(3)(j + 1, i− 1)(j + 1)µ(2)+

P(3)(j + 1, i)(j + 1)σ(1) + P(3)(j, i + 1)(i + 1),

j = 0, 1, . . . , i = 0, 1, . . . v− 1,

where

λ(1) = λ
(
(1− bp)(1− ap) + (1− br)(1− ar)A

)
,

A =
H(1)

1 (bp + (1− bp)ap)

1− H(1)
2 (br + (1− br)ar)

,

µ(2) = µ(1)(1− br)(1− ar),

σ(1) = µ(1)(1− H(1)
2 )(br + (1− br)ar),

H(2)
1 =

(1− bp)(1− ap)H(1)
1 + (1− br)(1− ar)H(1)

2 A
(1− bp)(1− ap) + (1− br)(1− ar)A

.

(17)

Because H(2)
1 ≤ 1 and H(1)

2 ≤ 1 then we can conclude that the system of linear
Equation (16) will be the system of state Equation (6) of a particular case of generalized
model with the choice of blocking probabilities before and after the group of v servers in the
form b(1)p = b(1)r = a(1)p = a(1)r = 0 and other parameters defined by (11) and (17). Provided
that the ergodicity properties hold for Markov process r(t) describing the generalized
model, the system of state Equation (16) has a unique solution and the solution of (13)
has the form (15). Let us call the constructed particular case of generalized model as
the third auxiliary model. From (15) we follow the relationship between corresponding
characteristics of the second and the third auxiliary models

P(2)(i) = P(3)(i), J(2)(i) = J(3)(i) + D P(3)(i), i = 0, 1, . . . , v, (18)

where

P(3)(i) =
∞

∑
j=0

P(3)(j, i), J(3)(i) =
∞

∑
j=0

P(3)(j, i)j, i = 0, 1, . . . , v.

4.4. Fourth Auxiliary Model

The last step in constructing a basic model is to eliminate the event of aging of the
transmitted information from the third auxiliary model. The eliminated event is described
by a random time with an exponential distribution with parameter σ(1). We have already
discovered how to solve this problem when analyzing the first auxiliary model (see,
Section 4.1). According to these results, the fourth auxiliary model is a particular case of
the generalized model with the following choice of input parameters

λ(1) = λ
(
(1− bp)(1− ap) + (1− br)(1− ar)A

)
,

µ(3) = µ(2) + σ(1),

σ(2) = b(1)p = b(1)r = a(1)p = a(1)r = 0,

H(3)
1 = H(2)

1
µ(2)

µ(2) + σ(1)
,

H(2)
2 = H(1)

2
µ(2)

µ(2) + σ(1)
.

(19)

This choice of parameters tells us that the fourth auxiliary model is equivalent to the
basic model. Similar to the (12), we obtain the relationship between basic characteristics of
the third and fourth auxiliary models
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P(3)(i) = P(4)(i), J(3)(i) = J(4)(i)
µ(2) + σ(1)

µ(2)
, i = 0, 1, . . . , v, (20)

where

P(4)(i) =
∞

∑
j=0

P(4)(j, i), J(4)(i) =
∞

∑
j=0

P(4)(j, i)j, i = 0, 1, . . . , v

and P(4)(j, i) are stationary probabilities of states (j, i) of Markov process that describes the
functioning of the fourth auxiliary model that is equivalent to the basic model.

Final expressions for input parameters of the equivalent basic model through parame-
ters of the generalized model are

λ(1) = λ
(
(1− bp)(1− ap) + (1− br)(1− ar)A

)
,

A =
H1µ

(
bp + (1− bp)ap

)
σ + µ

(
1− H2(br + (1− br)ar)

) ,

µ(3) = σ + µ
(
1− H2(br + (1− br)ar)

)
,

H(3)
1 =

(1− bp)(1− ap)H1 + (1− br)(1− ar)H2 A
(1− bp)(1− ap) + (1− br)(1− ar)A

×

µ(1− (br + (1− br)ar))

σ + µ(1− H2(br + (1− br)ar))
,

H(2)
2 =

H2µ
(
1− (br + (1− br)ar)

)
σ + µ(1− H2(br + (1− br)ar))

.

(21)

Using (21) as input parameters of the basic model, we can calculate the characteristics
of the generalized model P(i), J(i), i = 0, 1, . . . , v for a given set of input parameters
λ, bp, br, H1, H2, ap, ar, µ, σ. The final results are as follows:

P(i) = P(4)(i),

J(i) =
σ + µ

(
1− H2(br + (1− br)ar)

)
µ(1− br)(1− ar)

J(4)(i)+

λH1(bp + (1− bp)ap)

σ + µ
(
1− H2(br + (1− br)ar)

) P(4)(i),

i = 0, 1, . . . , v.

(22)

5. Numerical Examples

Let us consider a few numerical examples that illustrate the usage of the constructed
model for practical purposes. We start by showing the influence of blocking before and after
the servers on values of main performance measurements: πc—the ratio of lost calls—and
δ = I

v —the mean value of one server usage. Figure 3 illustrates the dependence of πc and
δ on the probability of primary and repeated calls blocking before servers.

The values of bp are varying in interval from 0 to 0.6. For fixed bp the value of br is
calculated from relationship br = bp × 1.3. Other fixed parameters used for Figure 3 are as
follows: λ = 22; v = 30; µ = 5; H1 = H2 = 0.8; σ = 0.2; ap = ar = 0.

When bp = br = 0 the blocking before servers does not affect the model performance
measurements and πc, δ have acceptable for practical implementation levels πc = 0.0429,
δ = 0.7261. With the increasing of bp and br the ratio of lost calls strongly increases. In
contrast, the mean value of one server usage decreases. The presented numerical results
show the negative aspects of call losses before servers on values of main performance mea-
sures. The situation continues to deteriorate if losses also happen after servers. Additional
reasons for call repetition increase the ratio of lost calls and decrease the mean value of
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server use compared to Figure 3. This result is illustrated in Figure 4 for the same values of
input parameters that was used in Figure 3 only with ap = bp and ar = br.
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Figure 3. Dependence of πc and δ on bp and br.
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Figure 4. Dependence of πc and δ on bp, br, ap and ar.

It is well known that emergency services are an object of overload. The overload
can be caused by many reasons that are discussed in Section 1. To decrease the negative
consequences of overload we can redirect part of the input flow of primary calls to other
emergency services with similar functions. The proportion of redirected calls can be found
with the help of the constructed model. Let us consider a numerical example. The model’s
input parameters are as follows: λ = 45; v = 30; µ = 5; H1 = H2 and takes values
0.7; 0.8; 0.9; 0.99; σ = 0.2; bp = br = ap = ar = 0.

Figure 5 illustrates the dependence of πc on the portion of redirected primary calls r
that varies from 0 (no redirection) to 0.6 for different values of persistence function H1 = H2
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that takes values 0.7; 0.8; 0.9; 0.99. The results of calculations show that by redirecting
some part of primary calls we can decrease the value of losses to the prescribed level (here
the restriction on πc is chosen as πc < 0.05). It is worth mentioning that the required value
of redirected primary calls is weakly dependent on the value of probability of repetitions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

T
h

e
 r

a
ti

o
 o

f 
lo

s
t 

c
al

ls
,  
p c

The portion of redirected primary calls,   r

0.99

0.9

0.8

0.7

0.05

Figure 5. Dependence of πc on the portion of redirected primary calls r for different values of
H1 = H2.

6. Discussion

The model of a fully available group of servers with Poisson flow of primary calls
and possibility of losses before and after occupying the free server is constructed and
analyzed. It is supposed that a call can leave the system because of the aging of transmitted
information. All random variables realized in the model have exponential distribution
and do not depend on each other. After every loss, a customer with some probability
depending on the number of unsuccessful attempt repeats the call. Such models are seen
in the modeling of various telecommunication systems such as emergency information
services, call and contact centers, access nodes, etc., functioning in an overload situation.
The stationary behavior of the system is described by the infinite state Markov process.

A procedure for transforming the model under study has been developed, which
makes it possible to exclude the reasons for repeating a call before and after occupation
of the server and the possibility of the aging of transmitted information. The procedure
consists of four consecutive steps, where each step includes the construction and anal-
ysis of an auxiliary model that simplifies the functioning of the generalized model (see
Sections 4.1–4.4). Thus, the calculation of the model’s performance measures is reduced
to the calculation of the characteristics of its particular case with the only reason for the
denial of service being the busyness of the servers. The process of calculation is based on
constructing and solving the system of state equations. This problem is much easier to
solve using an approach based on the concept of a truncated state space. The error caused
by truncation is estimated.

The positive features of estimation of the performance measurements based on the
concept of a truncated state space lies in the following characteristics:

• The realization of such and approach makes it possible to evaluate characteristics faster,
due to the reduction of the used state space and the ability to evaluate characteristics
with a predetermined accuracy (see, Table A2). The reduction of counting time,
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especially noticeable in the analysis of asymptotic cases when intensity of input flow,
is increasing (overload) [20].

• A suggested approach allows the avoidance of overflow/underflow problems in
computer calculation by taking out of consideration highly unlikely states.

• The values of probabilities are determined from simple recursive relations and do
not require matrix inversion. All these properties are of great importance for the
implementation of the algorithm in planning tools such as network calculators.

The presented numerical examples illustrate the usage of the model for showing
the negative effect of losses before and after occupation of the servers on the model’s
performance measures and for the elimination of PSAP overload based on the filtering of
the input flow of calls.

The limitations of the obtained results can be summed up as follows:

• The usage of exponential distribution with the same parameter for modeling the
service time for all types of incoming requests. This property is necessary for the
estimation of the error caused by truncation of the used state space. It does not mean
that without this specific characteristic of the model we are not able to implement
truncation concept, but in such scenarios finding errors is quite difficult. In most cases
it can be done only empirically [20].

• The absence of waiting room for blocked requests. Because of this property, we are not
able to estimate the distribution function of waiting time and mean value of waiting.

• The usage of Poisson assumption as a model for primary requests. It should be noted
that the Poisson model is used only for constructing the flow of primary calls. The
total flow of requests for servicing includes repeated calls and does not follow the
Poisson model. By doing this, we are reconstructing the input flow closer to reality,
especially when service system is functioning in overload conditions. Retrials are
forming a backlog that reflects the quality of request servicing that has been observed
in the past. Nevertheless,the acceptability of using Poisson assumption for primary
incoming requests needs additional study.

Directions for further research are formulated by taking into consideration above
given limitations:

• Find the error of performance measurement estimation caused by the truncation in
the general case when service times depend on the type of a call and has exponential
distribution with different mean values.

• Generalize the model considered in the paper by taking into account the possibility of
waiting and construct an effective algorithm of performance measurement estimation
including the mean waiting time and waiting time distribution. Another direction of
generalization considers the dependance of probability of call repetition on the type
of refusal.

• Study the acceptability of using Poisson assumption for primary requests.
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Appendix A. Basic Model Analysis Based on the Concept of Truncation

Appendix A.1. Truncated State Space

Here in the example of the basic model taking into account retrials, introduced in
Section 2, we realize the ideas of estimating the performance measures of models with
retrials based on the concept of truncation of the used state space. In more detail the used
approach is presented in [20] for a particular case of the studied model when H1 = H2 = H.
The necessity to truncate the state space follows from the fact that in the model description
the number j of repeated customers is unlimited. For simplicity we suppose here that
max(H1, H2) < 1. The general case is analyzed in the same way but needs to consider
more particular cases.

To have the possibility to use standard procedures of linear algebra for solving the
system of state equations it is necessary to restrict j by some integer number N chosen suf-
ficiently large. The possibility of doing this is based on the fact that stationary probabilities
P(j, i) of the states (j, i), where i is the number of busy servers, strongly decrease when
j increases for i fixed. In the majority of cases, we can also suspect that P(j, i) strongly
decrease when i decreases for j fixed. This property based on the obvious characteristic
of the models with taking into account retrials: the probability of having many repeated
customers and a lot of free servers should be very small. Let us consider a numerical
example that illustrates this property. Figure A1 shows the dependence of −blog10 P(j, i)c
on j and i. Model parameters are as follows: v = 20; λ = 20; µ = 10; H1 = 0.7; H2 = 0.9.
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Figure A1. Dependence of −blog10 P(j, i)c on j and i for v = 20; λ = 20; µ = 10; H1 = 0.7; H2 = 0.9.

The bold line shows the borders of the set of states (j, i), where P(j, i) ≥ 10−4. We
define the truncated state space R as an arbitrary subset of S with exception of S itself. The
border B of R will be defined as subset of R from which r(t) may leave R in one transition.
Numerical experiments point out that set of states (j, i), where P(j, i) ≥ ε has the same
geometrical properties as the truncated state space providing the given relative error ε of
performance measures estimation.
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In the majority of situations, the truncated state space that can be used for the esti-
mation of performance measurements with given relative error of the form presented in
Figure A2.

Arrows indicate the directions in which the initial process r(t) can leave the considered
truncated state space in one transition. The border states are shaded. Exceptions concern
asymptotic cases that have other forms of truncated state space but can be studied in the
same way [20]. Formal definitions of the accepted further truncated state space R are as
follows: (j, i) ∈ R, j = 0, 1, . . . , N; L(j) ≤ i ≤ v. Here, L(j) is a nondecreasing integer
function defined on 0, 1, . . . , N.

i

0

v
0 j

Figure A2. Accepted form of truncated state space. Arrows indicate the directions in which the initial
process r(t) can leave the considered truncated state space. The border states are shaded.

In the process of construction of the calculation procedure based on the concept of
truncation state space, we need to solve two problems: first, it is necessary to decrease
the number of unknowns in the system of state equations by not considering the states
with negligible probabilities of existence, and second, it is necessary to find the error
of estimation of the performance measures caused by truncation. Let us consider two
realizations of the formulated approach: primary and advanced. In the primary version
we truncate only the number of repeating customers (see Appendix A.2). The advanced
version additionally includes the truncation of occupied servers (see Appendix A.3). Both
realizations have the possibility of estimation the relative error caused by truncation in
terms of characteristics of auxiliary process defined only on the truncated state space. The
choice of the borders of truncated state space for proposed relative error of performance
measures estimation will be considered in Appendix A.5.

Appendix A.2. Primary Truncation

Let us denote by RN the truncated state space of rectangular form (j, i) ∈ RN ,
j = 0, 1, . . . , N, i = 0, 1, . . . , v. The state space RN with respect to r(t) has only one
border state (N, v). The process r(t) moves out of RN when primary request comes in the
state (N, v) and customer with probability H1 decides to repeat an attempt. We prevent this
transition if at this moment we take out of the model one repeating customer. Let us denote
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obtained in this way, auxiliary process by symbol rb(t) = (jb(t), ib(t)). Figure A3 illustrates
the results of primary truncation of the used state space S and the definition of rb(t).

Removal of one 
repeating customer

i

0

v
0 j N

Figure A3. Results of primary truncation of the used state space S.

Let us denote the performance measures of truncated model by the same symbols that
used for initial model only with superscript b and find the error caused by truncation. The
analog of (5) for truncated model is looking as follows

λ(1− Pb(v)) + (Jb − Jb(v))µ = Ib; Jbµ = λPb(v)H1 + Jb(v)µH2 − αb, (A1)

where
αb = λPb(N, v)H1. (A2)

Using the basic property of exponentially distributed variables and ideas used in [20]
it can be proved that the following inequalities are true

P(v)− Pb(v) ≥ 0; I − Ib ≥ 0; J(v)− Jb(v) ≥ 0; J − Jb ≥ 0. (A3)

For main performance measures from (A1)–(A3) follow upper estimates of absolute
error caused by truncation as function of αb

0 ≤ P(v)− Pb(v) ≤ αb
λ(1−max(H1, H2))

;

0 ≤ I − Ib ≤ αb;

0 ≤ J(v)− Jb(v) ≤ αb
µ(1− H2)

;

0 ≤ J − Jb ≤ αb
µ(1−max(H1, H2))

.

(A4)
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For other model characteristics that can be expressed as a function of P(v), I, J(v), I
and model’s input parameters the estimation of relative error caused by truncation can be
obtained with help of (A4). For example, for πc the following inequality is true

δ(πc) =

∣∣∣∣∣πc − πb
c

πb
c

∣∣∣∣∣ ≤ αb
1−max(H1, H2)

(
1

λPb(v) + Jb(v)µ
+

1
λ + Jbµ

)
. (A5)

Appendix A.3. Advanced Truncation

At this step we pass from state space RN to R defined as follows: (j, i) ∈ R, j = 0, 1, . . . , N;
L(j) ≤ i ≤ v. Here, L(j) is a nondecreasing integer function defined by 0, 1, . . . , N. The
state space R with respect to rb(t) has the set of border states B, defined as (j, i) ∈ B,
j = 0, 1, . . . , N; i = L(j). The process rb(t) moves out of R when one of i occupied servers
in state (j, i) ∈ B completes servicing. We prevent the transition of rb(t) out of R by causing
at this moment the servicing of some additional fictitious call. Let us denote, obtained
in this way, auxiliary process by symbol rba(t) = (jba(t), iba(t)). Figure A4 illustrates the
procedure of construction of rba(t).

i

0

v
0 j

Addition of extra 
request  for  servicing

N

Figure A4. The procedure of construction of rba(t) on R.

Let us denote performance measures of rba(t) by the same symbols that are used for
rb(t) only with superscript ba and find the error of estimation of characteristics rb(t) by
corresponding characteristics of rba(t) caused by truncation. The analog of (A1) for rba(t)
is as follows

λ(1− Pba(v)) + (Jba − Jba(v))µ = Iba − βba;

Jbaµ = λPba(v)H1 + Jba(v)µH2 − αba,
(A6)
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where
βba = ∑

(j,i)∈B
Pba(j, i)i; αba = λPba(N, v)H1. (A7)

Using the basic property of exponentially distributed variables and ideas used in [20]
it can be proved that the following inequalities are true:

Pba(v)− Pb(v) ≥ 0; Iba − Ib ≥ 0;

Jba(v)− Jb(v) ≥ 0; Jba − Jb ≥ 0;

Pba(N, v)− Pb(N, v) ≥ 0.

(A8)

For main performance measures from (A6)–(A8) follow upper estimates of error
caused by truncation as function of βba

0 ≤ Pba(v)− Pb(v) ≤ βba
λ(1−max(H1, H2))

;

0 ≤ Iba − Ib ≤ βba;

0 ≤ Jba(v)− Jb(v) ≤ βba
µ(1− H2)

;

0 ≤ Jba − Jb ≤ βba
µ(1−max(H1, H2))

.

(A9)

Combining (A4) and (A9) we obtain upper bounds for absolute error of estimation
P(v), I, J(v), J with help of Pba(v), Iba, Jba(v), Jba

|Pba(v)− P(v)| ≤ max(βba, αba)

λ(1−max(H1, H2))
;

|Iba − I| ≤ max(βba, αba);

|Jba(v)− J(v)| ≤ max(βba, αba)

µ(1− H2)
;

|Jba − J| ≤ max(βba, αba)max(H1, H2)

µ(1−max(H1, H2))
.

(A10)

For other model characteristics that can be expressed as a function of P(v), I, J(v), I
and model input parameters the estimation of relative error caused by truncation can be
obtained with help of (A10) in the same way as it was done for πc by relation (A5).

Appendix A.4. Calculation of Estimates

Both auxiliary processes rb(t) and rba(t) are defined in finite state space (see
Figures A3 and A4). The stationary probabilities are found after solving the system of state
equations. A formal description of algorithm for solving the system of state equations
for both auxiliary processes rb(t) and rba(t) is quite simple and follows in main steps to
algorithm described in [20]. In both cases it can be done recursively. The order of doing
recursions can be easily seen from Table A1 where for the case v = 5, N = 2, L(0) = 1,
L(1) = 2, L(2) = 4 is shown as the block structure of nonzero elements (marked by ∗) of
the system of state equations for rba(t). It is easily found that for the ordering of unknown
probabilities used in Table A1, the solution of system of state equations split to the solution
of (N + 1) tridiagonal subsystems of size (v + 1− L(j))(v + 1− L(j)), j = N, N − 1, . . . , 0
that are solved in the following order: j = N, N − 1, . . . , 0. By doing this we can easily
express all probabilities Pba(j, i) through Pba(N, L(N)) and afterwards find true values of
Pba(j, i) from normalizing condition.
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Table A1. Block structure of nonzero elements (marked by ∗) of the system of state equations of rba(t)
for the case v = 5, N = 2, L(0) = 1, L(1) = 2, L(2) = 4.

(j, i) 0, 1 0, 2 0, 3 0, 4 0, 5 1, 2 1, 3 1, 4 1, 5 2, 4 2, 5

0, 1 ∗ ∗
0, 2 ∗ ∗ ∗
0, 3 ∗ ∗ ∗ ∗
0, 4 ∗ ∗ ∗ ∗
0, 5 ∗ ∗ ∗ ∗
1, 2 ∗ ∗
1, 3 ∗ ∗ ∗
1, 4 ∗ ∗ ∗ ∗
1, 5 ∗ ∗ ∗ ∗ ∗
2, 4 ∗ ∗
2, 5 ∗ ∗ ∗

Appendix A.5. Borders of Truncated State Space

Formulae (A4) and (A10) allow us to find the error caused using the truncated state
space through values of model’s input parameters and probabilities of the auxiliary process
to be in the border states. These relationships can be also used for solving the reverse
problem: determination of the borders of the truncated state space providing a given
relative error of performance measures estimation. To realize this idea, it is necessary to
find a simple procedure for estimation of stationary probabilities P(j, i) of random process
r(t) describing the functioning of basic model with retrials. Let us suggest approach based
on simplified equations of states [20]. They are easily derived if we suppose that local
conservation laws (3) and (4) that are valid for macrostates (i) and (j) consequently are
also valid in each microstate (j, i). Let us denote by Pj,i the estimation of P(j, i) obtained in
this way. The formulated assumptions give us recurrence for estimation of Pj,i. They are
looking in the following way

Pj,i(λ + jµ) = Pj,i+1(i + 1); j = 0, 1, . . . , i = 0, 1, . . . , v− 1;

Pj,vλH1 + Pj+1,v(j + 1)µH2 =
v

∑
i=0

Pj+1,i(j + 1)µ; j = 0, 1, . . .
(A11)

The last relation in (A11) can be easily transformed in recurrence

Pj+1,v = Pj,v
λH1E(v, λ + (j + 1)µ)

(j + 1)µ(1− H2E(v, λ + (j + 1)µ))
, j = 0, 1, . . . , (A12)

where E(v, a) is an Erlang formula

E(v, a) =
av

v !

1 + a + a2

2 ! + . . . + av

v !

.

Let us consider a numerical example that illustrates the advantages of suggested
approach. Table A2 shows values of Jba, found for proposed relative error ε by advanced
truncation of state space (see, Appendix A.3); exact values of the relative error |Jba − J|/J;
the upper estimates of |Jba − J|/J calculated from inequalities (A10). Model input param-
eters are as follows: v = 50; λ = 50; H1 = 0.7; H2 = 0.9; µ = 10. Proposed relative error
varies from 10−1 to 10−10. The borders of R are obtained with help of relations (A10)–(A12).
The effect of truncation is estimated by the ratio of the number of states in the system of
state equations obtained after advanced truncation to the number of states in the state
space used in realization of the traditional approach. For definiteness, the last number is
the number of states obtained by primary truncation for relative error at the level 10−12.
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Table A2. Numerical analysis of estimation the performance measures of basic model with retrials
based on the truncation of state space.

ε Jba |Jba−J|
J Estimation |J

ba−J|
J Effect of Truncation

10−1 1.4166969791 1.5× 10−2 2.4× 10−2 0.085
10−2 1.4350225264 1.8× 10−3 2.7× 10−3 0.113
10−3 1.4371620706 3.0× 10−4 4.5× 10−4 0.138
10−4 1.4375365971 4.4× 10−5 6.2× 10−5 0.166
10−5 1.4375920789 5.5× 10−6 7.5× 10−6 0.196
10−6 1.4375991299 6.0× 10−7 8.0× 10−7 0.224
10−7 1.4375999046 5.7× 10−8 7.4× 10−8 0.253
10−8 1.4375999792 4.8× 10−9 6.1× 10−9 0.282
10−9 1.4375999848 8.6× 10−10 1.1× 10−9 0.311
10−10 1.4375999860 5.9× 10−11 7.4× 10−11 0.342

Numerical results presented in Table A2 show the correctness of the suggested ap-
proach of choosing the borders of truncated state space providing the given a priory relative
error of performance measurement estimation. These properties are very important in the
design of different kinds of calculators used as network planning tools. Calculation based
on truncation of state space allows the performance of correct mathematical analysis of
asymptotic cases when some of the input parameters tend to their limit values [20]. For
such cases, traditional calculation approaches meet difficulties due to underflow/overflow
problems. It should be noted that ideas based on the concept of truncated state space and
illustrated here on the example of the basic model with retrials are very clear, and can be
generalized to other types of models with heterogeneous properties in the distribution of
stationary probabilities [20].
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