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Abstract: Hydrogel has a complex network structure with inhomogeneous and random distribution 
of polymer chains. Much effort has been paid to fully understand the relationship between 
mesoscopic network structure and macroscopic mechanical properties of hydrogels. In this paper, we 
develop a deep learning approach to predict the mechanical properties of hydrogels from polymer 
network structures. First, network structural models of hydrogels are constructed from mesoscopic 
scale using self-avoiding walk method. The constructed model is similar to the real hydrogel net-
work. Then, two deep learning models are proposed to capture the nonlinear mapping from 
mesoscopic hydrogel network structural model to its macroscale mechanical property. A deep neural 
network and a 3D convolutional neural network containing the physical information of the network 
structural model are implemented to predict the nominal stress–stretch curves of hydrogels under 
uniaxial tension. Our results show that the end-to-end deep learning framework can effectively pre-
dict the nominal stress–stretch curves of hydrogel within a wide range of mesoscopic network 
structures, which demonstrates that the deep learning models are able to capture the internal rela-
tionship between complex network structures and mechanical properties. We hope this approach can 
provide guidance to structural design and material property design of different soft materials. 

Keywords: deep learning; hydrogel network; mechanical property; convolutional neural network; 
self-avoiding walk 
 

1. Introduction 
With remarkable mechanical properties, hydrogels demonstrate high potential to be 

one of the advanced smart materials in the future [1,2]. Various superior properties of 
hydrogels have been discovered, such as high stretchability [3], biocompatibility [4], 
self-healing [5], and toughness [6]. On the basis of these properties, hydrogels are ex-
pected to pave the way for future applications such as drug delivery [7], flexible elec-
tronics [8,9], tissue engineering [10–12], and optical components [13–15]. Because the 
effect of polymer network structure on the mechanical properties of hydrogel is signifi-
cant, a deeper understanding of polymer network can help us to better utilize the existed 
material and create new material. Therefore, it is imperative to investigate the relation-
ship between the network structures and mechanical properties of hydrogels. 

The mechanical properties of hydrogels are studied from different scales, from mi-
croscopic scale to continuum scale. The constitutive model constructed at the continuum 
scale is widely used and practical [16], however, some of them are lack of physical 
meanings and the parameters of the constitutive model are not universal to hydrogels 
with different ingredients proportion. It is because that the continuum scale model can-
not reflect the real structure of hydrogel network. At the microscopic level, the mechan-
ical properties of hydrogels are usually studied using molecular dynamics methods. 
However, it is difficult to overcome the issues of small size and time-consuming natures 
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of the molecular dynamics simulations. The mesoscopic hydrogel model is expected to 
link the microscopic and the continuum scales and act as an important complement be-
tween them, providing a new theoretical framework for hydrogel research. Recent re-
search on hydrogels at the mesoscopic scale is still in its infancy [17–21]. Obtaining val-
uable information from the mesoscale model can help to better understand the relation-
ship between network structure and mechanical property. Proper hydrogel network 
models are in urgent need to essentially describe multiple mechanical behaviors of hy-
drogels. Therefore, we develop a generating method of mesoscopic hydrogel network 
based on self-avoiding walk (SAW) network model. There are several main advantages 
of mesoscopic hydrogel model, such as discrete systems, the characterization of com-
plexity and stochasticity, and the reflection of mesoscopic structure of hydrogels. In fact, 
the complex physical relationship between the hydrogel network structure and its cor-
responding properties is often difficult to accurately express with current constitutive 
theories. In current studies on hydrogel mechanical property, results of phenomenolog-
ical theory are not accurate enough, and numerical simulations are often 
time-consuming. In order to rapidly describe the mechanical properties of hydrogels, 
machine learning (ML) offers the benefit of extremely fast inference and requires only a 
basic dataset to learn the relationship between hydrogel network structure and mechan-
ical properties. 

With the development of ML, various ML algorithms have been widely applied to 
the field of engineering. Traditional ML algorithms have been used for data-driven solu-
tions to mechanical problems [22–25]. There are also studies on the parameter determi-
nation of hydrogel constitutive model [26] and self-assembly hydrogel design [27]. In 
addition to using ML to establish implicit input-output relationships to solve regression 
problems, recently there is a new paradigm of physical informed neural network [28] that 
extends the learning capability of neural network (NN) to include physical equations and 
boundary conditions. Deep learning (DL) is a class of ML algorithms that uses multiple 
layers to progressively extract higher-level features from the raw input. DL has been 
successful in a wide range of applications, such as semantic segmentation, image classi-
fication, and face recognition [29–32]. The reason why DL significantly outperforms tra-
ditional ML is that the models are no longer limited to the multilayer perceptron (MLP) 
architecture, and are able to learn embedded and aggregated datasets. More specifically, 
DL methods provide a more advanced framework in which explicit feature engineering 
is not required and the trained model typically demonstrates higher generalization and 
robustness. Thereby, DL shows great potential in solving cross-scale prediction problems 
of structure–property relationship in the field of mechanics. Among the applications of 
DL algorithms in mechanics, it is proved that convolutional neural networks (CNNs) are 
significantly superior in damage identification and mechanical property prediction on 
composite materials [33–37]. In addition, Yang et al. [38] demonstrated how a deep re-
sidual network can be used to deduce the dislocation characteristics of a sample using 
only its surface strain profiles at small deformations for crystal plasticity prediction. 
Pandey and Pokharel [39] presented a DL modeling method to predict spatially resolved 
3D crystal orientation evolution of polycrystalline materials under uniaxial tensile load-
ing. Herriott and Spear [40] investigated the ability of deep learning models to predict 
microstructure-sensitive mechanical properties in metal additive manufacturing and 
Choi et al. [41] used artificial intelligence-based methods to investigate the fatigue life of 
the hyperelastic anisotropic elastomer W-CR material. 

The advantages of CNNs for image-like data are mainly in the following aspects: 
firstly, by employing the concepts of receptive fields in the convolutional layer, CNNs 
could be a powerful tool for pattern recognition in computational mechanics and mate-
rial problems that are characterized by local structural interactions [42]. Secondly, CNNs 
are able to effectively learn a certain representation of underlying symmetry and tend to 
be invariant to general affine input transformations such as translations, rotations, and 
small distortions [42]. These properties enable CNNs to characterize structures with 
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heterogeneous and randomness, for instance, hydrogel network at the mesoscopic scale. 
Meanwhile, mesoscopic scale modeling studies often yield a large amount of 
high-dimensional data with corresponding physical information, which can be used to 
establish a modular and efficient mechanical modeling framework. However, there is still 
lack of using DL methods to study the mechanical properties of soft materials. 

In this paper, we utilize deep neural network (DNN) and 3D CNN to reveal the im-
plicit relationship between network structure and mechanical property of hydrogel, so as 
to predict mechanical property from different network structures. First, we propose a 
modeling method for single-network hydrogel network, that is, a self-avoiding walk 
network model, which approximates the real polyacrylamide (PAAm) hydrogel struc-
ture at a mesoscopic scale. Then, we develop a DNN based on MLP and a 3D CNN con-
taining the physical information of the network, and use them to predict the nominal 
stress–stretch curves of hydrogels under uniaxial tension, because the stress–stretch re-
lationship is one of the most important mechanical description that can be used to derive 
typical properties, such as modulus, toughness, and strength. Using a dataset of 2200 
randomly generated network structures of PAAm hydrogel and their corresponding 
stress–stretch curves, we train and evaluate the performance of the two models. Based on 
the results of the error analysis and the performance of the two models on the training 
data, we compare and summarize their generalization capability. 

The paper is organized as follows: in Section 2 we present the derivation of the con-
stitutive model for PAAm hydrogel, the modeling method of hydrogel networks, and the 
basic knowledge of DNN and CNN algorithms. The modeling framework and architec-
ture of the two DL models we developed are detailed in Section 3. Analysis and evalua-
tion of the results for mechanical property prediction of hydrogel are demonstrated in 
Section 4. Finally, concluding remarks are provided in Section 5. 

2. Methodology 
2.1. Derivation of the Constitutive Model of Hydrogel 

For effectively using hydrogel in engineering applications, it is very imperative to 
understand the mechanical properties of hydrogels. Although polymer physics and con-
tinuum mechanics provide a way to study the mechanical properties of hydrogels, uni-
axial loading test is still a common method to test the mechanical property of hydrogel 
materials. In order to accurately predict the nominal stress–stretch relationship of hy-
drogel using DL method, a dataset of stress–stretch curves is needed for the model 
training. However, obtaining stress–stretch curves from experiment tests requires a lot of 
labor work, especially considering different polymer fractions of hydrogel. In this study, 
the relationship of stress and stretch is derived from the constitutive model we have 
proposed, which is used as the ground truth (prediction target) for DL model training. 

In this study, to determine the relationship of stress and stretch whether from testing 
or theoretical prediction, the deformation process of hydrogel is divided into two steps: 
swelling process and loading process. During swelling process, because of the hydro-
philia of polymer chains, the dry polymer can imbibe a large quantity of solvent and 
swell into hydrogel. The volume of hydrogel is the sum of absorbed solvent and dry 
polymer due to the law of conservation of mass. The hydrogel is assumed to be trac-
tion-free and reaches an equilibrium state at the end of the process, which represents the 
chemical potential is the same throughout the whole hydrogel and the external solvent. 
In the loading process, both ends of the dumbbell-shaped specimen are clamped. One 
end is held fixed on the foundation of the tensile testing machine and the other end is 
stretched with the elongation of the moveable clamp. The middle part of dumb-
bell-shaped specimen is under uniaxial tension state since two directions that are per-
pendicular to the loading direction are traction-free. At this state, hydrogel is no longer 
contacted with solvent and mechanical boundary condition is applied. 
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To derive the stress–stretch relationship of hydrogel during uniaxial loading, we 
adopt well-known free energy function due to Flory and Rehner [43,44]: 

𝑊𝑊 =
1
2
𝑁𝑁𝑁𝑁𝑁𝑁[𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖 − 3 − 2 log(det 𝐅𝐅)] −

𝑘𝑘𝑘𝑘
𝜈𝜈
�𝜈𝜈𝜈𝜈log �1 +

1
𝜈𝜈𝜈𝜈
� +

𝜒𝜒
1 + 𝜈𝜈𝜈𝜈

� (1) 

where 𝑊𝑊 is the free energy pure reference volume, 𝑁𝑁 is the number of polymeric chains 
per reference volume, 𝑘𝑘 is the Boltzmann constant, 𝑇𝑇 is the absolute temperature, 𝐅𝐅 is 
the deformation gradient of the current state related to the dry state, 𝐶𝐶 is the concentra-
tion of solvent in the gel, 𝜈𝜈 is the volume per solvent molecule, and 𝜒𝜒 is a dimensionless 
parameter measuring the enthalpy of mixing. The reference state is chosen as the dry 
state before the polymer absorbs any solvent. 

During the swelling process, all molecules in the gel are assumed to be incom-
pressible. Therefore, the volume of the gel is the sum of the volume of the dry network 
and the volume of solvent: 

1 + 𝜈𝜈𝜈𝜈 = det 𝐅𝐅 (2) 

Using Legendre transformation, the free energy density function 𝑊𝑊(𝐅𝐅,𝐶𝐶) can be 
transformed into 𝑊𝑊� = 𝑊𝑊(𝐅𝐅,𝐶𝐶) − 𝜇𝜇𝜇𝜇, which is the function of chemical potential 𝜇𝜇 and 
deformation gradient 𝐅𝐅. Considering the incompressible condition, the new free energy 
density function can be written as: 

𝑊𝑊� (𝐅𝐅, 𝜇𝜇) =
1
2
𝑁𝑁𝑁𝑁𝑁𝑁[𝐼𝐼 − 3 − 2 log 𝐽𝐽] −

𝑘𝑘𝑘𝑘
𝜈𝜈
�(𝐽𝐽 − 1)log �

𝐽𝐽
𝐽𝐽 − 1

� +
𝜒𝜒
𝐽𝐽
� −

𝜇𝜇
𝜈𝜈

(𝐽𝐽 − 1) (3) 

where 𝐼𝐼 = 𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖  and 𝐽𝐽 = det 𝐅𝐅. 
Based on the assumption of two steps during the deformation process, the defor-

mation gradient tensor 𝐅𝐅 can be decomposed as 𝐅𝐅 = 𝐅𝐅𝟎𝟎𝐅𝐅′. 𝐅𝐅𝟎𝟎 is the deformation gradi-
ent of the free-swelling state related to the dry state. 𝐅𝐅′ is the deformation gradient of the 
mechanical loading state related to the free-swelling state. For a free-swelling process, 
when hydrogel reaches the equilibrium, 𝐅𝐅𝟎𝟎 = λ0𝐈𝐈. 

Since we prefer to use the free-swelling state as the reference state during mechanical 
test, the free energy density function with free-swelling state as the reference state is 
𝑊𝑊� ′(𝐅𝐅′, 𝜇𝜇) = 𝜆𝜆0−3𝑊𝑊� (𝐅𝐅, 𝜇𝜇), which can be expanded as: 

𝑊𝑊� ′(𝐅𝐅′, 𝜇𝜇) =
𝜆𝜆0−3

2
𝑁𝑁𝑁𝑁𝑁𝑁�𝜆𝜆02𝐼𝐼′ − 3 − 2log(𝜆𝜆03𝐽𝐽′)�

−
𝑘𝑘𝑘𝑘
𝑣𝑣
�(𝐽𝐽′ − 𝜆𝜆0−3)log

𝐽𝐽′

𝜆𝜆03𝐽𝐽′ − 1
+

𝜒𝜒
𝜆𝜆06𝐽𝐽′

� −
𝜇𝜇
𝑣𝑣

(𝐽𝐽′ − 𝜆𝜆0−3)
 (4) 

where 𝐼𝐼′ = 𝐹𝐹′𝑖𝑖𝑖𝑖𝐹𝐹′𝑖𝑖𝑖𝑖  and 𝐽𝐽′ = det 𝐅𝐅′. Because the volume is incompressible during the 
loading process, 𝐽𝐽′ equals to one and stretch λ0 is a constant. With free-swelling state as 
the reference state, the free energy density function can be written as: 

𝑊𝑊� ′(𝐅𝐅′, 𝜇𝜇) =
𝜆𝜆0−1

2
𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼′ + 𝐴𝐴 (5) 

where 𝐴𝐴 is a constant given as: 

𝐴𝐴 = −
𝜆𝜆0−3

2
𝑁𝑁𝑁𝑁𝑁𝑁�3 + 2log(𝜆𝜆03)� −

𝑘𝑘𝑘𝑘
𝑣𝑣
�(1 − 𝜆𝜆0−3)log

1
𝜆𝜆03 − 1

+
𝜒𝜒
𝜆𝜆06
� −

𝜇𝜇
𝑣𝑣

(1 − 𝜆𝜆0−3) (6) 

During loading process, considering the volume incompressibility condition, we 
add a term 𝑝𝑝(1 − det 𝐅𝐅′) to the free energy function 𝑊𝑊� ′(𝐅𝐅′, 𝜇𝜇), where 𝑝𝑝 is a Lagrange 
multiplier, which can be determined by boundary conditions. Then the nominal stress 
can be calculated by: 

𝑠𝑠𝑖𝑖𝑖𝑖′ =
𝜕𝜕 �𝑊𝑊� ′(𝐅𝐅′, 𝜇𝜇) + 𝑝𝑝�1 − det(𝐅𝐅′)��

𝜕𝜕𝐹𝐹𝑖𝑖𝑖𝑖′
 (7) 
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and we obtain the expression of nominal stress with free-swelling state as the reference 
state: 

𝑠𝑠𝑖𝑖𝑖𝑖′ = 𝜆𝜆0−1𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝑖𝑖𝑖𝑖′ − 𝑝𝑝(𝐹𝐹𝑖𝑖𝑖𝑖′ )−𝑇𝑇 (8) 

For a uniaxial loading process, the deformation gradient tensor 𝐅𝐅′ is: 

𝐅𝐅′ =

⎣
⎢
⎢
⎢
⎢
⎡𝜆𝜆𝑠𝑠 1

�𝜆𝜆𝑠𝑠
1

�𝜆𝜆𝑠𝑠⎦
⎥
⎥
⎥
⎥
⎤

 (9) 

where 𝜆𝜆𝑠𝑠 is the stretch along the uniaxial direction. The nominal stress along with and 
perpendicular to the uniaxial direction is 𝑠𝑠1′ , 𝑠𝑠2′  and 𝑠𝑠3′ , respectively. As the surface 
perpendicular to the uniaxial direction is traction-free, therefore, the expressions of 
nominal stress 𝑠𝑠1′ , 𝑠𝑠2′  and 𝑠𝑠3′  are as follows 

𝑠𝑠1′ = 𝜆𝜆0−1𝑁𝑁𝑁𝑁𝑁𝑁𝜆𝜆𝑠𝑠 − 𝑝𝑝𝜆𝜆𝑠𝑠
−12 (10) 

𝑠𝑠2′ = 𝑠𝑠3′ = 𝜆𝜆0−1𝑁𝑁𝑁𝑁𝑁𝑁𝜆𝜆𝑠𝑠−1 − 𝑝𝑝𝜆𝜆𝑠𝑠
1
2 = 0 (11) 

The Lagrange multiplier is solved from Equation (11), and 𝑝𝑝 = 𝜆𝜆0−1𝑁𝑁𝑁𝑁𝑁𝑁𝜆𝜆𝑠𝑠
−32 . The 

nominal stress along with the uniaxial direction is derived as: 

𝑠𝑠1′ = 𝜆𝜆0−1𝑁𝑁𝑁𝑁𝑁𝑁(𝜆𝜆𝑠𝑠 − 𝜆𝜆𝑠𝑠−2) (12) 

We define the volume fraction of the polymer in the hydrogel as 𝜙𝜙𝑉𝑉, 𝜙𝜙𝑉𝑉 = 1
𝐽𝐽

= 1
𝜆𝜆0
3. 

Under uniaxial loading, the nominal stress with free-swelling state as reference state is 
given as: 

𝑠𝑠1′ = 𝜙𝜙𝑉𝑉
1
3𝑁𝑁𝑁𝑁𝑁𝑁(𝜆𝜆𝑠𝑠 − 𝜆𝜆𝑠𝑠−2) (13) 

After obtaining Equation (13), the nominal stress–stretch curves with different 
polymer fractions could be calculated. This equation reveals the relationship between 
mechanical response and material property of single-network hydrogel and can be used 
as the dataset for DL-based model training. 

2.2. Network Generation Model of Single-Network Hydrogel 
At mesoscopic scale, the hydrogels can be abstracted as polymer chains comprised 

by a large number of points and bond vectors [45,46]. Models at the mesoscopic scale can 
help us extract the commonalities of polymer chains, and make the research focus on the 
responses of structural changes of the chain and network, rather than the specific molec-
ular properties at the microscopic scale or the complex boundary problems at the con-
tinuum scale. In order to describe the network configuration of single-network hydrogels 
at a mesoscopic scale, we develop a mathematical model using SAW to characterize the 
randomness, uniqueness, and heterogeneity of polymer chains. In addition, the model 
potentially reproduces a configuration that is statistically similar to the true structure of 
polymer chains. 

The configuration of molecular chains of single-network hydrogels can be abstracted 
as bond vectors connected end to end, which is geometrically similar to a walking tra-
jectory in space. Random walk (RW) is a mathematical model describing a random pro-
cess in the lattice space. RW describes a series of random steps starting from a point in a 
discrete lattice space. An example of RW in two-dimensional space is shown in Figure 1a. 
Assuming that the end of the chain is the ongoing random walk, then the next step is to 
choose from up, down, left, and right directions (including the direction to the point of 
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the previous step). The probability of each direction is 1/4. After selecting the next direc-
tion, the chain takes one step to the neighboring node, then randomly selects a direction 
again for the next step, and so on. The RW model allows the walking trajectory to re-
peatedly visit the same node. Besides, the SAW model is also a commonly used mathe-
matical model to describe the configuration of polymers. The SAW model is derived from 
the RW model. The main difference between the two models is that the SAW model does 
not allow the walking trajectory to visit the same point repeatedly. Because the SAW 
model does not allow to go back, each node has at most three alternative directions in 
two-dimensional space, as shown in Figure 1b. If some of the three directions have been 
previously visited by this chain or other chains in the same space, the SAW model will 
not select this direction at the next step, as shown in Figure 1c. 

 
Figure 1. Schematics of RW model and SAW model. (The red dot is the starting point, the black arrow represents the 
walking path, and the blue arrow represents the optional direction for the next step.) (a) The RW model. There are four 
optional directions at every moment. (b) The SAW model cannot go back. (c) The SAW model cannot select points that are 
already occupied. 

Figure 2 shows the SAW trajectory with different number of steps 𝑁𝑁. It can be seen 
that with 𝑁𝑁 increase, the configuration of the SAW trajectory is geometrically similar to 
the configuration of the real polymer chain. 

 

Figure 2. The SAW path generated by the computer program. As the number of steps 𝑁𝑁 increases, the configuration of 
the path is similar to the real polymer chain. 

The SAW model is able to generate one long chain, but not multiple paths. In order 
to generate a complex network model reflecting the configuration of the hydrogel net-
work, we propose a SAW-based network generation algorithm (NGA). Because poly-
acrylamide (PAAm) hydrogel basically does not conduct viscoelasticity or damage ac-
cumulation effect during the loading process, and it can be described as nearly elastic 
using hyperelastic constitutive model to its mechanical properties, we take the PAAm 
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hydrogel as an example. The design ideas of the NGA are quite similar to the actual gen-
eration process of hydrogel network. Figure 3 shows the design logic of the NGA. Take 
two-dimensional space as an example, consider that each point in the discrete space can 
only be occupied by one particle, that is, one from monomer particles (gray dots), cross-
linker particles (red dots), or water molecules (void space). Before the NGA starts, it is 
necessary to set the space size 𝑤𝑤, the number of monomer particles 𝑛𝑛𝑚𝑚𝑜𝑜𝑜𝑜 and the number 
of crosslinker particles 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐, so that the polymer volume fraction of the network can be 
determined as: 

𝜙𝜙𝑉𝑉 =
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤3 ≈
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤3  (14) 

where considering 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ≫ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐, Equation (14) gives the polymer volume fraction in the 
NGA. While the NGA is running, a SAW starts to wander from the original point in the 
space. Each step of the SAW represents a certain type of particle assembled into the chain 
and becomes part of the chain. In each step of the SAW, the probability of what kind of 
particles to be inserted depends on the number of remaining monomers and crosslinkers, 
as shown in Figure 3a. Each particle that has not been inserted has the same probability to 
be the next spatial point. Because one crosslinker of the PAAm hydrogels can link four 
monomers, if the nineth position is connected to the crosslinker, the tenth position will be 
branched out to form three new chain ends, as shown in Figure 3b. The SAW will con-
tinue on the basis of these three new chains. There is only one SAW chain at the begin-
ning, then it will gradually bifurcate, and finally form a network structure, as shown in 
Figure 3c. In this study, this network model is called SAW network model, which is able 
to characterize the complex polymer network configuration of single-network hydrogels. 

 
Figure 3. Schematics of SAW network generation model in 2D space. (a) The probability of what 
kind of particles to be inserted depends on the number of remaining monomers and crosslinkers. 
(b) Generation of new chain ends when inserting a crosslinker. (c) More chains walk in space to 
form a network. 

Since the space size 𝑤𝑤 is limited, the SAW network generated by the NGA will 
eventually reach the boundary of the space. Therefore, we adopt periodic boundary 
conditions in this model. When the SAW touches the periodic boundary of the space, it 
will stop right there and no longer connect to any other particles. Instead, the periodic 
boundary condition makes it place a new chain starting point at the corresponding posi-
tion on the other side of the space (a symmetrical position) and the SAW continues. This 
process is similar to a SAW path that goes out from one side of the space and enters from 
the other side of the space at the same time. 

The examples above in 2D space are to make the design logic of the NGA easy to be 
understood. For the real configuration of hydrogel network, the NGA should be imple-
mented in 3D space. In 3D space, each spatial point has 26 neighbors (including six sur-
face neighbors, twelve side neighbors, and eight corner neighbors). Although the dis-
tances from the 26 neighbors to the center point are not all equal, when the size of these 
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27 local points compares with the size of the entire model space, the distance difference 
between neighbors is negligible. 

In practical experiment, polymer mass fraction 𝜙𝜙𝑚𝑚 is used as usual to measure the 
water content of hydrogels due to the ease of measuring the sample mass. For practical 
application of the NGA, polymer mass fraction 𝜙𝜙𝑚𝑚 is adopted in the algorithm. The 
conversion relationship between polymer volume fraction 𝜙𝜙𝑉𝑉 and polymer mass frac-
tion 𝜙𝜙𝑚𝑚 is given by: 

𝜙𝜙𝑚𝑚 =
1

(𝜙𝜙𝑉𝑉−1 − 1) � 𝑀𝑀𝑤𝑤
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

� + 1
 (15) 

where 𝑀𝑀𝑤𝑤 is the molar mass of water. 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 is the molar mass of AAm monomers. They 
are equal to 𝑀𝑀𝑤𝑤 = 18𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 71.08𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚, respectively. 

For the complex network of PAAm hydrogel, the SAW network model generated by 
the NGA in 3D space is shown in Figure 4. The different values of the model determined 
by 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚, 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑤𝑤 result in different polymer mass fractions 𝜙𝜙𝑚𝑚. In Figure 4, the blue 
lines represent polymer chains, and the red dots represent crosslinkers. When 𝜙𝜙𝑚𝑚 is low, 
the distribution of polymer chains in the space is sparse and inhomogeneous. This proves 
the structural randomness, heterogeneity, and uniqueness of the polymer network of 
PAAm hydrogel. With the increase of 𝜙𝜙𝑚𝑚, the PAAm hydrogel network becomes grad-
ually dense and is closer to the homogeneous assumption in continuum mechanics. Thus, 
this model has the potential in characterizing the mesoscopic configuration of sin-
gle-network hydrogels and provides a powerful tool for follow-up research. 

 
Figure 4. Configurations of PAAm hydrogels generated by SAW network model. 

2.3. Deep Learning Algorithms and Approaches 
Machine learning systems can be classified according to the amount and type of su-

pervision they receive during training. There are four major categories: supervised, unsu-
pervised, semi-supervised, and reinforcement learning. In the case of supervised learning, 
the input data set (containing samples and corresponding features) and labels (the correct 
results) are both necessary for training. On the contrary, unsupervised learning, as the 
name suggests, only provides unlabeled training data. For engineering problems, most of 
the applied ML algorithms are supervised learning with the datasets collected from ex-
periments or simulations [47–49]. Artificial neural network (ANN) [50] is comprised of 
multiple interconnected computational elements called neurons. In this study, the algo-
rithms we adopt belong to a subset of ANN. By adjusting parameters, for instance, weights 
and biases in a NN architecture, the algorithms we used can predict the mechanical prop-
erty of hydrogel through an optimization of errors. Both the fully connected MLP and 
CNN belong to the class of ANN, and they differ primarily in their architecture and inter-
connectivity. This section gives a brief introduction to the main ML algorithms used in this 
work. 
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2.3.1. Multilayer Perceptron 
The MLP architecture, generally called feedforward NN, is one of the most popular 

and widely used ML architectures that was proposed initially as a function approximator 
[51]. The aim of a MLP is to approximate a function 𝑓𝑓 between input 𝑥𝑥 and output 𝑦𝑦� 

𝑦𝑦� = 𝑓𝑓(𝑥𝑥) (16) 

In order to approximate strongly non-linear functional relations, MLP adds an ad-
ditional level of hierarchy to linear learning algorithms involving features and learned 
weights by combining activation functions: 

𝑎𝑎𝑗𝑗 = 𝜎𝜎�𝑧𝑧𝑗𝑗� = 𝜎𝜎 ��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑚𝑚

𝑖𝑖=1

� (17) 

where 𝑖𝑖 denotes the 𝑖𝑖th neuron in the previous layer, and 𝑗𝑗 the 𝑗𝑗th neuron in the cur-
rent layer. 𝑎𝑎𝑗𝑗 is the output value of the current neuron. 𝜎𝜎(∙) is the activation function 
that usually takes a non-linear function. 𝑥𝑥𝑖𝑖 represents one feature input of 𝑥𝑥. 𝑤𝑤𝑗𝑗𝑗𝑗  and 𝑏𝑏𝑗𝑗 
are parameters updated during the training, named weight and bias, respectively. 𝑚𝑚 is 
the number of neurons in the previous layer. 𝑧𝑧𝑗𝑗 is the sum of the input values and the 
bias, also the prediction of the linear learning model. This process is demonstrated in 
Figure 5, which is the typical mathematical process of a single neuron. Furthermore, 
matrix form can be written as: 

𝑎𝑎𝐖𝐖,𝐛𝐛(𝐗𝐗) = 𝜎𝜎(𝐗𝐗𝐗𝐗 + 𝐛𝐛) (18) 

where 𝐗𝐗 represents the matrix of input features. It has one row per sample and one 
column per feature. The weight matrix 𝐖𝐖 contains all the connection weights, which has 
one row per input neuron in the previous layer and one column per artificial neuron in 
the current layer. 𝐛𝐛 is the bias vector that has one bias term per artificial neuron. The 
weights of the MLP are usually initialized stochastically, and then subsequently tuned 
during the training. One way to train the MLP is to establish a linkage of its known in-
put–output data and to minimize its loss function from the output by appropriately 
changing the weights. 

 
Figure 5. Process of a single neuron in MLP. 

There are several alternatives to the activation functions. Frequently used activation 
functions in regression tasks include the sigmoid function (Equation (19)) for the outputs 
required between the domain (0,1) and the rectified linear unit (ReLU) as shown in 
Equation (20) for nonzero outputs. The two functions are illustrated in Figure 6. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
 (19) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧) = max(0, 𝑧𝑧) (20) 
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Figure 6. Plot illustrating the sigmoid and ReLU activation functions. 

It is the nonlinear transformation of the activation function that gives the MLP a 
strong nonlinear fitting capability. It should be noted that a feedforward NN can ap-
proximate any continuous functions with arbitrary complexity in the reach of arbitrary 
precision, using only one hidden layer containing enough neurons [52]. MLP is served as 
the beginning of research on more complex DL algorithms. Deep architecture has better 
learning capability by stacking more layers to extend the depth of the NN. 

2.3.2. Convolutional Neural Network 
Convolutional neural network is one of the most widely-used deep neural networks 

that is inspired by the study of the brain’s visual cortex, and CNN is extremely successful 
in the image recognition field. It has been extended to various applications of many other 
disciplines including mechanics. 

There are two main differences between a fully connected MLP and a CNN, i.e., the 
input data structure and data transfer. Input data in a CNN is assumed to be an image or 
can be physically interpreted as an image. The input image contains many pixels and is a 
2D data structure with length and width. Of course, the image can also be a 3D structure 
with three dimensions of length, width, and thickness. The 3D CNN model used in this 
study utilizes three3Dimensional data. Instead, in the case of the MLP, the inputs to the 
neurons in the hidden layer are obtained by a standard matrix multiplication 𝐗𝐗𝐗𝐗 of the 
weight 𝐖𝐖 and the input 𝐗𝐗. Besides, in the case of the data transfer, MLP only feedfor-
wards the input data obeying Equation (18). However, for CNNs, the input data will be 
transformed through a convolutional kernel (or called a filter) into a feature map using a 
convolution operation. This process is symbolically written as 𝐗𝐗 ∗𝐖𝐖 (∗ symbol represents 
convolution operation). 

A typical CNN architecture is mainly comprised of four building blocks, and they 
are referred to as convolutional layers, pooling layers, fully connected layers, and activa-
tion functions. Take a 2D input image as an example: 

It can be seen from Figure 7 that different layers have their corresponding functions. 
The convolutional layer is the core of a CNN model, each convolutional layer has one or 
several convolutional kernels (or filters). The kernels extract the features of the input 
image by scanning pixels (like a camera) in a small rectangle (called receptive field) using 
convolution operations, and repeat until the entire image is scanned. The shift from one 
receptive field to the next is called the stride. By default, stride equals one for convolu-
tional layers and two for pooling layers. Indeed, a convolutional layer can contain mul-
tiple kernels (filters) and output one feature map per kernel. New feature maps (the 
number of newly generated feature maps depends on the number of filters in the con-
volutional layer) are generated with smaller height and width compared to the previous 
image. One pixel is one neuron in each feature map, and all neurons in the same feature 
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map share the same parameters (the same weights and bias). In order to ensure each in-
put image for a layer have the same height and width as the previous layer, it is common 
to add zeros around the inputs (zero padding), as shown in Figure 7a. Neurons in the 
first convolutional layer are not connected to every single pixel but only to pixels in the 
corresponding receptive fields. The role of the kernel allows features to be mapped 
through local interactions. This architecture allows the network only to focus on small 
low-level features in the first layer, then with more convolution layers repeating this 
feature extraction process, larger high-level features are assembled, and so on. That is 
why CNN is more effective than MLP on the input–output relationship learning of 
structures depending on spatial locations. 

 
Figure 7. Computation process of an example architecture of 2D CNN with 3 × 3 kernel (it should be noted that the pro-
cess of bias and activation functions is ignored here for simple illustration). (a) Convolutional operation of the input im-
age. The value in the receptive field is multiplied by the value of the corresponding center symmetric position in the 
kernel and then obtain the summed value in the feature maps. (b) 2 × 2 max-pooling process. Each 2 × 2 block is replaced 
by the maximum value in the receptive field. (c) Flatten last feature maps to one-dimension vector for learning. 

After the pre-activated convolutional operation, results are offset by a bias (one bias 
per convolutional layer). Then the feature maps are passed through nonlinear activation 
functions commonly referred to as ReLU. ReLU has been proven [52] to provide high 
computational efficiency and often achieves sufficient accuracy and performance in prac-
tice. 

The max-pooling layer is usually implemented after one or multiple convolutional 
layers, making a key role in reducing the number of parameters thus resulting in a faster 
training process. Its goal is to subsample the input image for reducing the computational 
load by reducing the number of parameters and preventing the risk of overfitting. On the 
contrary to the convolution layer, a pooling neuron has no weights or bias, all it does is 
aggregate the inputs using an aggregate method, such as max or mean. Figure 7b simply 
shows how the max-pooling layer works. Subsequently, there is usually a fully connected 
layer at the end, which is no different from a typical MLP architecture at most times. 

CNNs explain the topological structure of the input data, that is, allow stacking 
neural layers to extract high-level features. Actually, this hierarchical architecture is 
common in real images, which is one of the structural reasons why CNNs work so well 
on image recognition. Through the optimization process, the CNN model “learns” how 
the spatial arrangement of specific features are related to the outputs. Once trained, the 
CNN model can be used to make predictions with high computational efficiency. Com-
pared with general projects in the DL field, the requirement of the number of datasets 
and features used in mechanical property prediction of hydrogels is much less. There-
fore, the framework of the DL-based models employed in this study could be adjusted 

3 × 3
kernel

Input image Feature maps Feature maps

. . . . . . 
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easily, and the increasing number of weights and biases has an acceptable impact on the 
computational cost. For this reason, DNN and CNN are finally used in this study to pre-
dict the macroscopic mechanical properties of hydrogel. 

3. Deep Learning Modeling Framework for Single-Network Hydrogel 
In this section, in order to explore the application potential of the SAW network 

model and the performance of the 3D CNN model in predicting the mechanical proper-
ties of hydrogels with complex network structures, we firstly design two types of data 
structures extracting structure–property linkages of hydrogels. Furthermore, we imple-
ment two deep learning models that are used to make predictions. For both models, the 
data samples are generated based on the SAW network model. The two datasets include 
training, validation, and testing sets, which reflect the ground truth. In this study, it 
should be noted that the labels are the nominal stress–stretch response of the sin-
gle-network hydrogels under uniaxial tension, as mentioned above. 

3.1. Dataset Generation and Preprocessing 
The two deep learning models we developed are the DNN model and the 3D CNN 

model, respectively. It should be noted that the DNN in this study specifically refers to 
neural networks made up of fully connected layers (as the same architecture as MLP), to 
distinguish from CNN used in this study. For model comparison, we use theoretical reso-
lution instead of experimental results as labels. Therefore, the outputs of the two models 
are not affected by experimental errors, which ensures the fair evaluations of the feasibility 
and performance of the DL models. Because each input data usually needs to maintain the 
same dimension for the DL models, the space size 𝑤𝑤 is fixed at 33, and 2200 simulations 
are conducted using the SAW network model by changing the preset numbers of mono-
mers and crosslinkers. As a result, the polymer mass fraction 𝜙𝜙𝑚𝑚 is distributed from 5% to 
80%, and the corresponding water content is from 95% to 20%. The number of samples and 
the space size have to be large enough to reflect the randomness and heterogeneity of the 
SAW network with different polymer mass fractions, but small enough to prevent exces-
sive computational costs (considering that the input data of the 3D CNN model is 
four-dimensional, the amount of data will grow rapidly with the increase of the space size 
𝑤𝑤). 

In the terms of the DNN model, the input data set is two-dimensional with one row 
per sample and one column per feature. We designed eight features in the DNN model to 
capture key physical information of the network generated by SAW. They are referred to 
as the number of chains, the number of monomers, the number of crosslinkers, the 
number of water molecules, the standard deviation of the number of monomers per 
chain, the number of isolated, branch, and network chains. As a result, the size of the 
input data of the DNN is 2176 × 8. There is a principle of feature design for the traditional 
MLP architecture, that is, each feature is possibly independent of other features, and po-
tentially related to the outputs. Therefore, this is why we choose the standard deviation 
of the number of monomers per chain instead of the mean value (for the fifth feature), the 
latter can be calculated from the number of monomers (the second feature) and chains 
(the first feature). Similarly, the degree of cross-linking is also an important feature of the 
complex network structure of hydrogels, which can be calculated from the total number 
of monomers (the second feature) and the number of crosslinkers (the third feature). 
Therefore, they are no longer independent features. On the other hand, the original 
sample size of the 3D CNN model is 33 × 33 × 33. Through further transformation, the 
SAW network image is represented as a data structure that can train the 3D CNN model, 
as shown in Figure 8. 
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Figure 8. Data representation for model training. 

In order to include the geometric and physical information of the SAW network 
model in input data, we design three sublayers and combine them with the inputs by re-
placing the color channels in the traditional CNN architecture. The 3D CNN model we 
developed incorporates both the geometric and physical features of hydrogel networks for 
mechanical property prediction. More specifically, the geometric features captured by the 
sublayers are referred to as the types of molecules, the degree (the number of edges inci-
dent to the vertex) of each molecule, and the angles of chain connections, as shown in Fig-
ure 9. 

 
Figure 9. Schematics of slices plot illustration of three sublayers incorporating the geometric and 
physical features. (a) Representation of the type of molecules. (b) The degree of each molecule, that 
is, the number of connections per molecule. (c) The angle of chain connections. 

As for the color channels of the input images in a typical CNN, they are generally 
composed of one (grayscale image) or three (colorful image with red, green, and blue, i.e., 
RGB) sublayers. However, the colors of input images in this study are only for repre-
sentation and explanation. They have no specific physical meaning. As for the traditional 
CNN, the original values of a pixel range from 0 to 255, which would be exceedingly 
large for a CNN-based model. Therefore, the RGB values are rescaled into the range (0, 1) 
to speed up the convergence of a training process. This problem also occurs in the dataset 

(a) 3-D SAW network of PAAm hydrogel (b) Input image for 3D-CNN model
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with sublayers used in this study, thus the datasets to be used are normalized into the 
range of (0, 1) before training. 

The proposed sublayers make full use of various data formats of SAW simulation 
outputs. Compared with the DNN model, the local spatial information of SAW network 
model is included in 3D CNN model. Two datasets are eventually constructed, one is 
two-dimensional including 2176 samples and 8 features for the DNN model, the other 
includes 2176 four-dimensional samples with a size of 33 × 33 × 33 × 3 including the three 
feature channels. The corresponding nominal stress–stretch data are generated through 
Equation (13). The general idea of sublayers design described here can be extended to 
any other desired component to obtain effective mechanical properties. 

3.2. Framework of Deep Learning Models 
On the basic paradigm of DL algorithms presented in previous section, we propose 

two architectures of the DL models, one is the DNN model based on MLP, the other is the 
3D CNN model. Figure 10 gives the schematic illustration for the DNN architecture we 
have constructed. While Figure 11 provides a schematic of the 3D CNN architecture, 
where inputs are 3D images and outputs are the stress–stretch relations of single-network 
hydrogels under uniaxial tension. 

 
Figure 10. Architecture schematic of the DNN model. 

 
Figure 11. Three-dimensional convolutional neural network architecture (for simpler schematics, one gray rectangular rep-
resents one 3D input image). C is referred to as convolutional layer, P is max-pooling layer, and FMs denote the feature 
maps. 

The modeling starts from dividing both datasets into three parts, 70% for training, 
10% for validation and 20% for testing. The hyperparameters used for the 3D CNN model 

. . .

5 hidden layers with 15 neurons per layer

Output layer with 22 neurons

Input layer with 8 features

ReLU activations
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are shown in Figure 11 and Table 1. Both models output a subsample of the stress–stretch 
curve, taking the stress values corresponding to 22 fixed stretching values. The dimen-
sions of the output data are both equal to 22. It should be noted that when the stretch is 
small, the stretching points we selected are denser, and vice versa. Because on the one 
hand, nonlinear effect is more obvious at small stretch, and on the other hand, the 
neo-Hookean-based constitutive model has a larger error at large stretch. 

Table 1. Hyperparameters values used in the proposed models. 

Hyperparameters 
Model 

DNN 3D CNN 
Number of epochs 315 30 

Batch size 32 32 
Learning rate 5.6 × 10−3 1 × 10−3 

Optimizer SGD Nadam 
Loss function MSE MSE 

Trainable weights 1477 430,872,6 
Activation functions ReLU ReLU 

The development of the two DL-based models is carried out on Python 3.8 and 
Keras with the Tensorflow backend. The training of 3D CNN is first to determine the 
number of convolutional, max-pooling, fully connected layers, and the hidden neurons in 
each layer (see Figure 11). The prediction of mechanical property is a regression task, so 
mean square error (MSE) is set as the loss function, which is referred as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 (21) 

where 𝑚𝑚 denotes the number of samples. 𝑦𝑦�𝑖𝑖 and 𝑦𝑦𝑖𝑖  are predicted and actual value of 
output, respectively. The optimizer of 3D CNN model takes ‘Nadam’ algorithm with a 
0.001 learning rate. Following the input layer is a combination of the first convolution 
layer and max-pooling layer. There are sixteen convolution filters with a size of five in the 
first convolutional layer. Then two deeper convolutional with filters size of three and one 
max-pooling layer are followed sequentially. Considering the output is always positive 
(nominal stress), ReLU activation function is the best choice to reflect the nonlinear re-
sponse of uniaxial tension test of hydrogel. Subsequently, a fully connected layer leads to 
the output of the network, which is the stress–stretch relationship. Once trained, the 
model is able to predict the relationship with an obviously shorter time (within one sec-
ond) when fed by unseen input image. As for the DNN model, after a process of com-
bining grid search [53] and cross validation in the hyperparameters space, the preferred 
hyperparameters of the model for mechanical property prediction problems are deter-
mined and detailed in Table 1. The stochastic gradient descent method is taken as the 
optimizer of the DNN model with a learning rate of 0.0056. 

4. Results and Discussions 
4.1. Analysis and Comparison of Model Performance 

The configuration of the DNN model is determined using the grid search and cross 
validation, and the details are not mentioned here for simplicity. The configuration is 
shown in Figure 10 and the hyperparameters are listed in Table 1. It is worth mentioning 
that batch normalization is a technique for training deep neural networks that standard-
izes the inputs to a layer for each mini-batch [54]. Owning the effect of stabilizing the 
learning process and significantly reducing the number of training epochs required, 
batch normalization can normalize the prior inputs and ensure the gradients are more 
predictive, thus allow for larger range of learning rates and faster convergence. Figure 12 
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depicts the convergence history of training and testing set for each model. It can be seen 
from Figure 12a that the MSE losses of training set and testing set converge rapidly 
within 160 epochs, then maintain stable in the remaining epochs. One epoch can be ex-
plained as a batch of samples that goes forward from the input layer at the beginning 
then feeds back from the output layer to complete an iteration. When all training samples 
have completed one iteration, the epoch ends. The 3D CNN model is trained using 30 
epochs with batch-size of 32 as shown in Figure 12b. The fluctuation of the loss may be 
caused by the following reasons. The first reason is that the learning rate is unchangeable 
in this model during the training process, whose value can be large enough to converge 
at the beginning, but too large to reach a stable and local minimum. As a result, the loss 
fluctuates around the ‘valley’ of the loss function. Secondly, there may be a reason that 
the loss function is exceedingly complex due to the high dimension and large amount of 
input data, and the optimizer is hard to find a good convergence point. The history of 
training accuracy is shown in Figure 13. Both the models we developed reach an accuracy 
over 90%. 

 
Figure 12. History of loss values. (a) The DNN model with 315 epochs. (b) The 3D CNN model with 
30 epochs (0 to 29). 

 
Figure 13. History of accuracy values. 

By comparing the two figures in Figure 13, it is found that the accuracy of the 3D 
CNN model is more stable than the DNN model and is able to reach a higher value 
within fewer epochs. Because the number of trainable weights in the 3D CNN model is 
much more than the latter. The convolutional layers of our 3D CNN model focus on ex-
tracting the features of each image, while the hierarchical architecture could efficiently 
capture the potential feature maps relating to the outputs. Therefore, the 3D CNN model 
is able to reach a better convergence point on a more complex loss function. 
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It is noted that we employ a dropout layer after each hidden layer in the fully con-
nected layer of the 3D CNN model. The effect of dropout on model’s performance is ac-
tually negative as usual, because lots of specific data are directly dropped. However, it 
can effectively reduce the possibility of model overfitting. By sacrificing some accuracy 
on the training set to obtain better accuracy on the testing set, the model is able to con-
duct better robustness and generalization on new data that was unseen before. 

In order to quantitatively analyze the performance of the DNN and 3D CNN model, 
mean square error (MSE) and mean square percentage error (MSPE) are computed. MSPE 
for a selected set of data represents the percentage error between the predicted values and 
the ground truth calculated from the constitutive model. The MSPE used in this study is 
defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚
��

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦�

�
2𝑚𝑚

𝑖𝑖=1

× 100% (22) 

where 𝑦𝑦� denotes the average nominal stress of all the samples in the dataset. The MSE, 
MSPE and prediction accuracy 𝑅𝑅2 of the two models we proposed are summarized in 
Table 2. It can be seen that the MSPE values of both models are no more than 4% and the 
𝑅𝑅2 values reach highly over 91%, which confirms that the 3D CNN model has more po-
tential for the structure–property linkage problem. Besides, with only 1600 training 
samples, the proposed models can achieve quite gratifying performance. The 3D CNN 
model shows a remarkable ability to extract structural features of the network. The 3D 
CNN provides a direct and reliable method to identify the three-dimensional network 
information of single-network hydrogels at the mesoscopic scale, and has the capability 
to establish a highly accurate structure–property linkage. Our model can be used to pre-
dict the mechanical property based on the basic material structure, which is a universal 
method bridging the mesoscopic network to macroscopic mechanical properties. 

Table 2. Evaluation indicators of the deep learning models. 

Model 
Values of Indicators 

Training Set Testing Set 
MSE MSPE 𝑹𝑹𝟐𝟐 MSE MSPE 𝑹𝑹𝟐𝟐 

DNN 9.3 × 103 kPa 3.61% 92.87% 9.1 × 104 kPa 3.55% 91.00% 
3D CNN 7.1 × 103 kPa 0.30% 99.23% 5.7 × 103 kPa 0.24% 99.65% 

4.2. Evaluation of Model Generalization 
Considering that the nominal stress–stretch curve is usually a comprehensive 

demonstration of mechanical properties, more specific descriptors such as modulus and 
strength can be derived from the relationship. Therefore, we decide to evaluate the model 
based on the mechanical response under uniaxial tension, and explore the potential of the 
proposed model in the issue of predicting mechanical properties. 

Our model architecture is inspired by the recent full convolutional architecture in 
traditional computer vision applications. According to empirical observations, convolu-
tional architecture is an efficient and stable method because it is a local operation, al-
lowing itself to implicitly quantify and learn the local spatial effects of the mesoscopic 
network. Obtaining the performance of the DL-based model on unseen data is essential 
to ensure its compatibility of application. In order to test the generalization ability of the 
models, we utilize the SAW network model to newly generate multiple network models, 
and transform these new samples to input images for 3D CNN model according to the 
process described previously. Then we pass them to the models we proposed to predict 
the stress–stretch relationship. 

To evaluate the generalization ability and robustness of the proposed DL-based 
modeling framework, Figure 14 and Figure 15 provide the comparisons between the 
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predicted results and the actual results, respectively. It can be seen that both the two 
models keep good consistency. Despite the nonlinear behavior of the stress–stretch curve 
for hydrogel, they can fit a favorable nonlinear trend. There are 22 principle stretch val-
ues we firstly determined, and the predicted output could contain 22 corresponding 
nominal stress values. The model can accurately capture the initial nonlinear growth of 
the nominal stress. In the case of the DNN model, one can easily see that the predictions 
tend to be more accurate when the water content is low, which indicates that the DNN 
model has a better performance on the homogenous hydrogel network. With the increase 
of water content, the predictions become unstable and begin to distort. In addition, the 
distortion happens only in the first few data points. Because the weights of hidden layers 
more possibly tend to be close to zeros when labels are close to zeros. The traditional 
DNN extracts the features of the overall structure instead of the local structure, so its 
performance is not good enough in the prediction of heterogeneous polymer network. In 
the case of the 3D CNN model, the fitting accuracy of samples under different water 
content is significantly higher than that of DNN model. It is indicated that the admirable 
learning ability ensures 3D CNN to learn complex behavior patterns from the mesoscopic 
structure. It also has a high fidelity for sparsely heterogeneous and random networks. 
The prediction results of the two models show that the DL-based model can still accu-
rately predict the mechanical property of the unseen samples of hydrogel network. The 
proposed modeling framework has good application prospects for multi-scale modeling. 

 
Figure 14. A randomly generated set of six SAW models and corresponding stress–stretch curves for the DNN model 
prediction compared to the actual results. (The data points in the red circle represent prediction distortion). 

water content = 26% water content = 36% water content = 55%

water content = 72% water content = 78% water content = 93%
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Figure 15. A randomly generated set of six SAW models and corresponding stress–stretch curves for the 3D CNN model 
prediction compared to the actual results. 

To the best of our knowledge, this is the first time that a three-dimensional CNN is 
implemented to establish structure–property linkage of a single-network hydrogel based 
on the SAW model. Therefore, the proposed modeling framework in this study provides 
important insight and guidance, and the proposed model can serve as a pre-trained 
model to accelerate extensive prediction of mechanical properties, especially for the 3D 
complex structure. Besides, the DL-based modeling method described previously in this 
paper expands data-driven strategy to the soft material design and research of material 
property. It allows a more efficient determination of parameters in the mechanical model, 
such as the constitutive models, under the lack of experimental data sets. In addition, the 
ideas of sublayers design we present previously also guide how CNNs could be em-
ployed for problems in mechanics and other engineering disciplines. More mechanical 
properties (components of stiffness) in higher dimensions are required in the field of 
describing the mechanical behavior of materials. Given the success of 3D CNN model in 
our current 3D problem, it would be a promising strategy to identify various mechanical 
properties as different channels in a CNN input sublayer. 

5. Conclusions 
In order to predict the mechanical property of hydrogel, this paper firstly introduces 

the RW model, then develops a modeling method for the mesoscopic network of sin-
gle-network hydrogels based on the SAW model with PAAm hydrogel as an example. 
Secondly, a DL-based modeling strategy is proposed on the basis of this approach. We 
developed two deep learning models, a DNN and a 3D CNN, respectively, for the con-
struction of structure–property linkage of hydrogel. A grid search and cross validation of 
the hyperparameter space of the neural network architecture was employed to find the 
desirable DNN model, and eight features were designed to overall characterize the 
mesoscopic network model. In the 3D CNN model, feature extraction of 3D structure was 
achieved by designing the size of kernels and feature maps of the convolutional layers. It 
should be noted that we redesigned the color channels of the input images of the 3D 
CNN model to incorporate the physical and geometric information. The proposed 3D 
CNN model is able to learn input images that contain sublayers of physical information. 
These two models can quantitatively predict the relationship between mesoscopic net-

water content = 24% water content = 37% water content = 55%

water content = 72% water content = 80% water content = 94%
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work and the macroscopic mechanical properties. We trained the models using stress–
stretch curves generated based on hydrogel theory and Neo-Hookean constitutive mod-
el, and then tested the generalization ability and robustness on the testing set. For the 
new SAW network samples, both DNN and 3D CNN models give accurate predictions, 
especially the 3D CNN shows a promising capability. 

Furthermore, from the results of model evaluation, it can be found that the proposed 
DNN model can provide a good prediction for lower water content hydrogel, but it 
shows a large fluctuation error when water content is high, which indicates the weakness 
of the DNN model for inhomogeneous and sparse network polymer. In contrast, the 3D 
CNN performs more superior than the conventional DNN approach, which reflects the 
potential of the model in 3D polymer structural analysis problems. The 3D CNN can 
capture potential structural features of hydrogel, especially for multiscale material 
problems. The proposed method can be easily extended to study similar problems, such 
as the structural design and the material property design to improve the mechanical 
performance of different soft materials. 
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