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Abstract: Positively skewed data sets are common in different areas, and data sets such as material
fatigue, reaction time, neuronal reaction time, agricultural engineering, and spatial data, among
others, need to be fitted according to their features and maintain a good quality of fit. Skewness and
bimodality are two of the features that data sets like this could present simultaneously. So, flexible
statistical models should be proposed in this sense. In this paper, a general extended class of the
sinh-normal distribution is presented. Additionally, the asymmetric distribution family is extended,
and as a natural extension of this model, the extended Birnbaum–Saunders distribution is studied as
well. The proposed model presents a better goodness of fit compared to the other studied models.

Keywords: bimodality; Birnbaum–Saunders; maximum likelihood estimation; moments; positively
skewed model; sinh-normal distribution

1. Introduction

When materials are exposed to pressure or stress levels, material structural damage
could occur. This is known as material fatigue, and a statistical model to fit random
variables to model the failure time of fatigue for material was proposed by Birnbaum
and Saunders (1969) [1], known in the literature as Birnbaum–Saunders distribution and
generally denoted by BS(α, β), where α > 0 represents a shape parameter and β > 0 is a
scale parameter and the median of the distribution. Later, Desmond (1985) [2] showed that
the BS distribution describes the time failure that occurs when some kind of damage is
accumulated after a given time.

A distribution associated with that of Birnbaum and Saunders (BS) is the sinh-normal
(SHN) distribution. This distribution, introduced by Rieck and Nederman (1991) [3],
is based on a nonlinear transformation of a normal distribution. Therefore, let Z =
2
α sinh

(
Y−ξ

σ

)
∼ N(0, 1), where ξ and σ are location and scale parameters, respectively, and

α is a shape parameter. Then, random variable (r.v.) Y follows a sinh-normal distribution
denoted by SHN(α, ξ, σ). A probability density function (pdf) of a random variable with a
SHN distribution is given by

f (z) = b′yφ(by), (1)

where by = b(y, α, ξ, σ) = 2
α sinh

(
y−ξ

σ

)
, b′y = 2

ασ cosh
(

y−ξ
σ

)
is a derivative of by with

respect to y, and φ(.) is the pdf of the normal distribution. It can be shown that the s-th
moment of a random variable with a SHN distribution is given by

µs = E(Ys) =
s

∑
k=0

(
s
k

)
σkξs−kck(α), (2)
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where

ck(α) =
∫ ∞

−∞

(
sinh−1

(α

2
w
))k

φ(w)dw. (3)

From this result, we obtain that µ1 = E(Y) = ξ, µ2 = ξ2 + σ2c2(α) and var(Y) =
σ2c2(α). It can also be shown, from the two central moments, that E(Y − ξ)3 = 0 is a
symmetric distribution with respect to ξ. In general, we find that

E(Y− ξ)s = σscs(α). (4)

Asymmetric extensions of the SHN model have been considered, for instance, by
Leiva et al. (2010) ([4]) and Lemonte et al. (2011) ([5]), who studied the skewed SHN model,
as well as by Martínez-Flórez et al. (2017) [6], who investigated the power SHN model, and
Moreno-Arenas et al. (2016) [7], who presented the Proportional Hazard BS model (PHBS).

The SHN distribution is also known as the log-Birnbaum–Saunders (LBS) distribution
because Y ∼ SHN(α, ξ, σ = 2), then T = exp(Y) follows a BS distribution, with parameters
α and β = exp(ξ).

The pdf of a random variable T ∼ BS(α, β) is given by

f (t) = φ(at)a′t t > 0, (5)

where

at = at(α, β) =
1
α

(√
t
β
−
√

β

t

)
, and a′t = a′t(α, β) =

dat
dt

=
t−3/2(t + β)

2αβ1/2 . (6)

An important feature of this distribution is its robustness concerning the estimation
of its parameters—an aspect that was analyzed by Barros, Paula, and Leiva (2010) [8].
Moreover, extensions of this distribution to an elliptical family and to a skew elliptical
family (this latter is known as the double generalized BS distribution) have been studied by
Díaz-García et al. (2005) [9] and by Vilca-Labra and Leiva-Sánchez (2006) [10], respectively.
Martínez-Flórez et al. [11] present an extension to a power-skew-elliptical family. Other
types of extensions have also been considered by authors such as Castillo et al. (2011) [12],
Cordeiro and Lemonte. (2014) [13], and Reyes et al. (2018) [14].

All these extensions are particularly characterized by fitting skew unimodal data
while not being appropriate to fit bimodal data. However, Martinez-Florez et al. (2017) [6]
and Olmos et al. (2017) [15] recently presented BS models to fit positive bimodal data.
Likewise, Bolfarine et al. (2011) [16] introduced another model to fit positive bimodal data
generated by the log-skew-normal distribution.

Cortés et al. (2018) [17] presented a class of extended distribution, generated by the
pdf, g(x), of the bimodal-normal distribution. They specifically defined a general class of
distributions with a pdf given by

f (x) =
(

1 + εh(x)
1 + εκ

)
g(x), (7)

where g(x) is a pdf, ε ≥ 0 is a shape parameter, and h is a continuous positive function
such that κ = Eg(h(X)) < ∞. This distribution is called the “general class of distributions”.
Further, the authors study the normal, t-student, Laplace, and BS distributions as special
cases. As special cases of this family, from Elal-Olivero et al. (2010) [18] and the bimodal log-
skew-normal of Bolfarine et al. (2011) [16], the class of bimodal skew-elliptical distributions
can be found in the literature.

In this study, we analyze and study a general extended class of the SHN distributions,
which has an extra parameter to the SHN model and introduces flexibility to the SHN
distribution. Additionally, an extension of the BS model is presented. We highlight that
this kind of model could be applied to data sets related to material fatigue [2], reaction
and neuronal reaction time [19], agricultural engineering [20], and spatial data (see [21,22],
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among others). Note that this distribution can fit bimodal data sets, which could be present
in problems where the population is divided by groups such as gender or different levels
of HIV-RNA.

This paper unfolds as follows: Section 2 presents the extended sinh-normal distribu-
tion (ESHN) model. Section 3 provides the statistical approximation of the moments of
an ESHN random variable. Section 4 outlines the properties of the extended generalized
sinh-normal (EGSHN) distribution. Section 5 shows the features of the extended sinh-
normal regression model. Section 6 presents the results of a simulation study to analyze the
properties of the EGSHN model. Section 7 develops two numerical illustrations to evaluate
the relevance of the EGSHN. Section 8 discusses the statistical and practical implications of
the proposed distribution.

2. Extended Sinh-Normal Distribution

We now propose an extension of the SHN case introduced by Rieck and Nederman
(1991) [3] to a general class of distributions. Then, taking h(y) = b2

y and g(y) = b′yφ(by) in
equation (7), where by and b′y are defined as in (1), the extended class of SHN distribution
is defined through the pdf given by

f (y) =
1 + γb2

y

1 + γ
b′yφ
(
by)
)
, (8)

with ξ ∈ R and α, σ > 0 defined as the SHN distribution of Rieck and Nederman (1991) [3],
and γ ∈ R+ as a shape parameter. This distribution is denoted by ESHN(α, ξ, σ, γ), which,
for some values of the γ parameter, could be bimodal. In this context, γ could be considered
as a bimodality parameter. It can be easily deduced that for γ = 0, the SHN distribution is
obtained, and if γ→ ∞, then f (y)→ b2

yb′yφ(by), which is a new family of distributions. It
can be also shown that a random variable

bY =
2
α

sinh
(

Y− ξ

σ

)
∼ EN,

where EN is the extended normal distribution, as studied by Cortés et al. (2018) [17].
Denoting Z = 2

α
Y−ξ

σ , then, we find that Y−ξ
σ = α

2 Z; thus, when α → 0, then by → z,

b′y → 1 and b′yφ(by)
D∼ φ(z), where φ(z) ≡ N(0, 1) (see Rieck et al. [3]). Next, it is possible

to conclude that when α→ 0, then f (y) ∼ EN.
Figure 1 shows the pdf for an extended sinh-normal (ESHN) distribution with two

parameters, respectively, where it can be seen that the distribution, for γ = 0, is symmetric
and unimodal in cases (b) and (c), and for the other cases, it is strongly bimodal.

Denoting p = 1
1+γ and 1− p = γ

1+γ , then, the pdf of ESHN(α, ξ, σ, γ) could be written
as a mixture of two distributions:

f (y) = pb′yφ(by) + (1− p)b2
yb′yφ(by). (9)

From (9) and remembering that a cumulative distribution function (cdf) of SHN(α, ξ, σ)
is given by Φ(by), then it can be shown that the cdf of the ESHN(α, ξ, σ, γ) distribution is
given by

F(y) =
1

1 + γ
Φ(by) +

γ

1 + γ

∫ by

−∞
z2φ(z)dz = Φ(by)−

γ

1 + γ
byφ(by). (10)

Thus, the survival, risk (or hazard), and inverse risk functions of this distribution are,
respectively, given by

S(t) = SSHN(t) +
γ

1 + γ
btφ(bt),
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and

h(t) =
(1 + γb2

t )hSHN(t)
(1 + γ) + σγ tanh(z)hSHN(t)

and R(t) =
(1 + γb2

t )RSHN(t)
(1 + γ)− σγ tanh(z)RSHN(t)

,

where z = t−ξ
σ , bt is defined as by, with SSHN , hSHN(t), and RSHN(t) being the survival,

hazard and inverse risk functions of the model SHN(α, ξ, σ).
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Figure 1. Distribution (a) ESHN(2.75, 0, 1, γ) for γ = 3.5 (solid line), γ = 2.5 (dashed line), γ = 1.5 (dotted line) y γ = 0
(dash-dotted line), (b) ESHN(1.75, 0, 1, γ) for γ = 3.5 (solid line), γ = 2.5 (dashed line), γ = 1.5 (dotted line) and γ = 0
(dash-dotted line) and (c) ESHN(0.75, 0, 1, γ) for γ = 3.5 (solid line), γ = 2.5 (dashed line), γ = 1.5 (dotted line) and γ = 0
(dash-dotted line).

Another important result of this distribution is presented as follows:
Let Y ∼ ESHN(α, ξ, 2, γ); then, the random variable T = exp(Y) follows an EBS(α, β, γ)

distribution, and where β = exp(ξ) and EBS is related to the extended BS distribu-
tion, whose properties and moments are studied in Cortés et al. (2018) [17]. So, if
T ∼ EBS(α, β, γ), then i) aT ∼ EBS(α, aβ, γ) with a > 0 and ii) T−1 ∼ EBS(α, β−1, γ).

3. Moments of an Extended Sinh-Normal Random Variable

For a random variable Y ∼ ESHN(α, ξ, σ, γ), the r-th moment is given by:

E(Yr) =
1

1 + γ

r

∑
k=0

(
r
k

)
σkξr−k(ck0(α) + γck2(α)), (11)

where

ckl(α) =
∫ ∞

−∞

(
sinh−1

(α

2
w
))k

wlφ(w)dw. (12)

From (9), it can be shown that the k-th moment of the ESHN(α, 0, 1, γ) distribution is

E(Zk) =
1

1 + γ

∫ ∞

−∞
zkb

′
zφ(bz)dz +

γ

1 + γ

∫ ∞

−∞
zkb2

z b
′
zφ(bz)dz

=
1

1 + γ

∫ ∞

−∞
sinh−1

(αw
2

)k
φ(w)dw +

γ

1 + γ

∫ ∞

−∞
sinh−1

(αw
2

)k
w2φ(w)dw,

where the second step is obtained using the w = (2/α sinh(z)), transformation. Then, denoting

ckl(α) =
∫ ∞

−∞
sinh−1

(αw
2

)k
w2φ(w)dw, (13)
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we find that
E(Zk) =

1
1 + γ

ck0(α) +
γ

1 + γ
ck2(α). (14)

The location case of the ESHN(α, ξ, σ, γ) model can be obtained using the binomial
theorem and the previous result in the expression

E(Yr) = E(ξ + σZ)r =
r

∑
k=0

(
r
k

)
ξr−kσkZk (15)

=
1

1 + γ

r

∑
k=0

(
r
k

)
ξr−kσk(ck0(α) + γck2(α)). (16)

From this result, and given that c10(α) = 0, it is obtained that E(Y) = ξ and var(Y) =
σ2

1+γ (c20(α) + γc22(α)). It can also be shown, from the central moments, that E(Y− ξ)3 = 0,

which is a symmetric distribution with respect to ξ and E(Y− ξ)4 = σ4

1+γ (c40(α) + γc42(α)).

4. Extended Generalized Sinh-Normal Distribution

The ESHN distribution studied in the previous section has the main feature of bimodal
symmetric data fitting, for which it is necessary to extend this model to asymmetric
data; this asymmetric extension comes from the results found by Azzalini and Capitanio
(2003) [23] and Azzalini (2005) [24], who showed that if g is a pdf symmetric around zero,
and H is a cdf so that its density h is symmetric around zero as well, then for any odd
function w(x), we find that f (x) = 2g(x)H(w(x)), for −∞ < x < ∞, is a pdf in R.

Then, since the pdf ( f (y)) of the standard distribution, ESHN(α, 0, 1, γ), is continuous
and symmetric around zero; H(·) = Φ(·) is an absolutely continuous distribution function
that is symmetric around zero and whose density, φ(·), is also symmetric around zero;
and w(y) = by = by(α, 0, 1, γ) = γ 2

α sinh(y), for constant values α, γ, is an odd function,
then 2 f (y)Φ(λby) is a pdf for any λ ∈ R. Thus, the location-scale-extended generalized
sinh-normal (EGSN) distribution is defined through the pdf given by

g(y) = 2
1 + γb2

y

1 + γ
b′yφ
(
by
)
Φ
(
λby
)
, (17)

where λ is a skewness parameter. So, in this work, this model is denoted by EGSHN
(α, ξ, σ, γ, λ).

Figure 2 shows the pdf of the EGSHN distribution for different values of the pa-
rameters. As observed, the distribution could be unimodal or bimodal depending on
such values.

Likewise, for γ = 0, we obtain the asymmetric SHN distribution based on the model
considered by Leiva et al. (2010) [4]. In addition, if γ→ ∞, analogously to the ESHN case,
we have the new family of distributions g(y) → 2b2

yb′yφ(by)Φ(λby). Now, for γ = λ = 0,
an SHN model is followed. It can also be shown that a random variable

bY =
2
α

sinh
(

Y− ξ

σ

)
∼ ESN,

where ESN is the extended skew-normal distribution, which was introduced by Elal-
Olivero et al. (2009) [25]. As in the ESHN model, it can be shown that when α→ 0, then
g(y) ∼ ESN.

For p, as in the case of the ESHN model, the pdf of the EGSHN(α, ξ, σ, γ, λ) distribu-
tion could be written as

f (y) = 2pb′yφ(by)Φ(λby) + 2(1− p)b2
yb′yφ(by)Φ(λby). (18)

From (18), it follows that the cdf of EGSHN(α, ξ, σ, γ, λ) is given by
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F(y) = ΦSN(by; λ)− γ

1 + γ
byφSN(by; λ), (19)

where Φ(·; λ) and φ(·; λ) denote the cdf and pdf of the skew-normal distribution, respec-
tively, with a location parameter of 0 and a scale parameter of 1.
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Figure 2. EGSHN distribution (a) ESHN(0.75, 0, 1, 3.5,−0.75) (solid line), ESHN(0.75, 0, 1, 2.5,−0.5) (dashed line),
ESHN(0.75, 0, 1, 0.5, 1.5) (dotted line) and ESHN(0.75, 0, 1, 1.5, 0.75) (dash-dotted line), (b) ESHN(1.5, 0, 1, 3.5,−2.5) (solid
line), ESHN(1.5, 0, 1, 2.5,−1.5) (dashed line), ESHN(1.5, 0, 1, 1.5, 2.5) (dotted line) and ESHN(1.5, 0, 1, 0.5, 1.5) (dash-dotted
line) and (c) ESHN(2.5, 0, 1, 3.5,−0.25) (solid line), ESHN(2.5, 0, 1, 3.5,−0.75) (dashed line), ESHN(2.5, 0, 1, 2.5, 0.75) (dot-
ted line) and ESHN(2.5, 0, 1, 0.75, 0.25) (dash-dotted line).

Then, the survival, risk (or hazard), and inverse risk functions of this distribution are,
respectively, given by

hG(t) =
(1 + γb2

t )hSSHN(t)
(1 + γ) + σγ tanh(z)hSSHN(t)

, and RG(t) =
(1 + γb2

t )RSSHN(t)
(1 + γ)− σγ tanh(z)RSSHN(t)

,

where SSSHN , hSSHN(t), and RSSHN(t) are the survival, hazard, and inverse risk functions
of the skew-SHN function, SSHN(α, ξ, σ, λ), respectively.

4.1. Stochastic Representation

The stochastic representation of the EGSHN model is based on Elal-Olivero (2010) [18]
and Elal-Olivero, et al. (2009) [25]. This is presented below.

Definition 1. If the random variable X has a pdf given by

r(x) = x2φ(x),

then we say that X follows a bimodal-normal distribution, and it is denoted as X ∼ NB (see [18]).

Remark 1. Let W and U independent random variables with W ∼ χ2
(3), a chi-square distribution

with three degrees of freedom, and U a pdf, such that P(U = −1) = P(U = 1) = 1
2 . If Y =

√
WU

then Y ∼ NB.

Remark 2. Let Y ∼ NB and considers the random variable X2 which is defined as

X2 = arcsinh(αY/2),
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then,

FX2(x) = P(X2 ≤ x) = P(arcsinh(αY/2) ≤ x)

= P
(

Y ≤ 2
α

sinh(x)
)

= FY

(
2
α

sinh(x)
)

.

Then,

fX2(x) = r
(

2
α

sinh(x)
)

2
α

cosh(x)

=

(
2
α

sinh(x)
)2

φ

(
2
α

sinh(x)
)

2
α

cosh(x),

which is denoted as X2 ∼
( 2

α sinh(x)
)2

φ
( 2

α sinh(x)
) 2

α cosh(x).

Proposition 1. Let X1 ∼ SHN(α, 0, 1) = SHN(α) and X2 ∼
( 2

α sinh(x)
)2

φ
( 2

α sinh(x)
)

2
α cosh(x), and say that U ∼ U(0, 1) is a uniform random variable, independent of X1 and X2. If

X =

{
X1, if U < 1

1+γ ,

X2, if U ≥ γ
1+γ ,

with γ > 0, then X ∼ ESHN(α, γ).

Proof.

FX(x) = P(X ≤ x)

= P
(

X ≤ x|U <
1

1 + γ

)
P
(

U <
1

1 + γ

)
+ P

(
X ≤ x|U ≥ 1

1 + γ

)
P
(

U ≥ γ

1 + γ

)
= P(X ≤ x)

1
1 + γ

+ P(X ≤ x)
γ

1 + γ

=
1

1 + γ
FX1(x) +

γ

1 + γ
FX2(x),

so

fX(x) =
1

1 + γ
fX1(x) +

γ

1 + γ
fX2(x)

=
1 + γ

( 2
α sinh(x)

)2

1 + γ
φ

(
2
α

sinh(x)
)

2
α

cosh(x).

Definition 2. If the random variable W has a pdf

m(x) = 2 f (x)Φ
(

λ
2
α

sinh(x)
)

, x ∈ R,

with λ ∈ R, then W follows a EGSHN(α, γ, λ) and this is denoted as W ∼ EGSHN(α, γ, λ).

Proposition 2. Let Z and X be independent random variables with Z ∼ N(0, 1) and X ∼ ESHN
(α, γ).
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If

W =

{
X, if Z < λ 2

α sinh(x),
−X, if Z ≥ λ 2

α sinh(x),

then W ∼ GESHN(α, γ, λ).

Proof. Note that W(X) = λ 2
α sinh(X) is an odd function and the density of both the

random variables −X and the distribution function of Z are symmetric around zero; thus,
applying Lemma 1 as in [24], the result follows.

Location-Scale Extension

Let W ∼ EGSHN(α, γ, λ) and let V = µ + σW, then

FV(v) = P(V ≤ v) = P
(

v− µ

σ

)
= FW

(
v− µ

σ

)
.

Then, the pdf of V is given by

fV(v) =
1
σ

fW

(
v− µ

σ

)
=

2
σ

f
(

v− µ

σ

)
Φ
(

λ
2
α

sinh
(

v− µ

σ

))
,

which is denoted by V ∼ EGSHN(α, µ, σ, γ, λ).

4.2. Moments of an Extended Generalized Sinh-Normal Random Variable

For a random variable Y ∼ EGSHN(α, ξ, σ, γ, λ), the r-th moment is given by

E(Yr) =
1

1 + γ

r

∑
k=0

(
r
k

)
σkξr−k(dk0(α, λ) + γdk2(α, λ)), (20)

where

dkl(α) = 2
∫ ∞

−∞

(
sinh−1

(α

2
w
))k

wlφ(w)Φ(λw)dw. (21)

4.3. Extended Generalized Birnbaum–Saunders Distribution

Let Y ∼ EGSHN(α, ξ, 2, γ, λ). Then, the distribution of a random variable T = exp(Y)
follows an extended generalized BS distribution, which is denoted by EGBS(α, β, γ, λ),
where β = exp(ξ). The proof of this result is obtained from the transformation theorem of
random variables. The pdf of an EGBS(α, β, γ, λ) random variable is given by

ϕ(t) = 2
1 + γa2

t
1 + γ

a′tφ(at)Φ(λat), (22)

where at = at(α, β) and a′t = a′t(α, β) are defined as in (6).
Note that, for γ = 0, we have the doubly generalized BS distribution developed by

Vilca et al. (2006) [10] for the special case of the skew-normal distribution introduced by
Azzalini (1985) [26], BSSN. If γ → ∞, then g(y) → 2a2

t a′tφ(at)Φ(λat); if λ = 0, then ϕ(t)
follows the extended BS distribution class studied by Cortés et al. (2018) [17], and for
γ = λ = 0, ϕ(t) follows a BS model. Likewise, it can be shown that a random variable
aT ∼ ESN.

As in the EGSHN model, it can be shown that the cdf of the EGBS(α, β, γ, λ) distribu-
tion is given by

F(y) = ΦSN(at; λ)− γ

1 + γ
atφSN(at; λ). (23)

Then, the survival, risk, or hazard, and inverse risk functions of this distribution are
given, respectively, by
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SEGBS(t) = SBSSN(t) +
γ

1 + γ
atφSN(at; λ),

and

hEGBS(t) =
(1 + γa2

t )(t + β)hBSSN(t)
(1 + γ)(t + β) + β1/2γt(t− β)hBSSN(t)

and

REGBS(t) =
(1 + γa2

t )(t + β)RBSSN(t)
(1 + γ)(t + β)− β1/2γt(t− β)RBSSN(t)

,

where SBSSN , hBSSN(t) e RBSSN(t) are the survival, hazard, and inverse risk functions of
the BS skew-normal model, BSSN(α, β, λ). For the BSSN model, limt→∞hBSSN(t) = 1+λ2

2α2β
;

then, for the EGBS model, it follows that limt→∞hEGBS(t) = 0.
Some properties of the BS model remain true for the EGBS model. Thus, if T ∼

EGBS(α, β, γ, λ), then (i) aT ∼ EGBS(α, aβ, γ, λ), with a > 0, and (ii) T−1 ∼ EGBS(α, β−1,
γ,−λ).

The moments of an EGBS random variable with parameters α, β, γ, and λ can be
obtained by means of the following expression:

E(Tr) =
1

α2β(1 + γ)

[
γβ2EBSSN(Tr−1) + (α2 − 2γ)EBSSN(Tr) + γEBSSN(Tr+1)

]
, (24)

where EBSSN(·) is the expectation operator of the Birnbaum–Saunders skew-normal distri-
bution (BSSN). To calculate the mean, variance, and the skewness and kurtosis coefficients
of the EGBS model, the expressions of the corollaries 2.1 and 2.2 of Vilca et al. [10] could
be used.

For (α, β, γ, λ), the log-likelihood function corresponding to the random sample
t1, t2, . . . , tn is

`(α, β, γ, λ) =
n

∑
i=1

log
(

1 + γa2
ti

)
− n log(1 + γ) +

n

∑
i=1

log(Ati )− (25)

1
2

n

∑
i=1

a2
ti
+

n

∑
i=1

log(Φ(λati )).

The score function is composed of the following elements:

U(α) =− 2γ

α

n

∑
i=1

a2
ti

1 + γa2
ti

− 1
α

n

∑
i=1

[
1− a2

ti
+ λati ζi

]
= 0,

U(β) =
γ

α2

n

∑
i=1

1
ti
− ti

β2

1 + γa2
ti

− n
2β

+
n

∑
i=1

1
β + ti

− 1
2α2

n

∑
i=1

[
1
ti
− ti

β2

]
− λ

2αβ
3
2

n

∑
i=1

ti + β

t
1
2
i

ζi = 0,

U(γ) = − n
1 + γ

+
n

∑
i=1

a2
ti

1 + γa2
ti

= 0, and U(λ) =
n

∑
i=1

ati ζi = 0,

where ζi =
φ(λati )

Φ(λati )
, with i = 1, . . . , n. Iterative numerical methods must be used to solve

this system of nonlinear equations.

5. Extended Sinh-Normal Regression Model

One of our main goals is to develop a log-BS regression model based on the ESHN(α, ξ,
σ, γ, λ) model. This regression model will be an optimal alternative to the log-BS model
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introduced by Rieck et al. (1991) [3] in order to fit bimodal or survival asymmetric data.
Now, the extended generalized log-linear BS regression model is defined following the
considerations given by Rieck et al. (1991) [3] and considering that Yi is a dependent
variable; that a set (p) of explanatory variables, denoted by xi = (xi1, xi2, · · · , xip)

>, is
given; and that θ = (θ1, θ2, · · · , θp) is a p-dimensional vector of unknown parameters,
where a linear predictor, ξi = x>i θ, is obtained for i = 1, 2, . . . , n.

Then, let us suppose that T1, T2, ...Tn are independent and identically distributed
random variables (i.i.d. r.v.) such that Ti ∼ EGBS(αi, βi, γi, λi). Now, let us suppose that the
distribution of Ti is independent of the set of explanatory variables, xi = (xi1, xi2, ..., xip)

′,
where

1. βi = exp(x′iθ), for i = 1, 2, ..., n, with θ′ = (θ1, θ2, ..., θp), being a p-dimensional
vector of unknown parameters.

2. The shape, bimodality, and skew parameters do not consider xi; i.e., αi = α, γi =
γ, and λi = λ for i = 1, 2, ..., n.

Let us suppose that Yi = log(Ti). Then, the extended generalized log-linear BS regres-
sion model is defined as

yi = x>i θ+ εi, i = 1, . . . , n, (26)

where εi ∼ EGSHN(α, 0, 2, γ, λ), for i = 1, . . . , n and yi is the log-survival for the i-th
individual. This model is denoted by MRESHN(α, θ, 2, γ, λ). When γ = λ = 0 it follows
the log-BS regression model, LBS(α, θ, 2), of Rieck et al. [3]; i.e., the MRESHN model is
more flexible than the log-BS model in terms of skewness and kurtosis.

When λ = 0, it follows that εi ∼ ESHN(α, 0, 2, γ), for i = 1, . . . , n; then, important re-
sults are obtained. Thus, we find that E(εi) = 0 and Var(εi) = 4c20(α); additionally, as the
errors are independent random variables, then for i 6= i′, it follows that Cov(εi, εi′) = 0. Fur-
thermore, considering that the explanatory variables are independent of the shape parame-
ter, from the above results, it is therefore possible to conclude that Yi ∼ ESHN(α, x>i θ, 2, γ)
for i = 1, . . . , n; furthermore, like ε = 0, it can be shown that E(Yi) = ξi = x>i θ, so the
linear estimators for θ can be derived from the ordinary least squares method, whose
solution is given by

θ̂
∗
= (X>X)−1X>Y,

with covariance matrix
Cov(θ̂∗) = 4c20(α)(X>X)−1.

So, a biased estimator for c2(α) could be

ĉ20(α) =
1

4(n− p)

n

∑
i=1

(yi − x>i θ̂).

Now, the model provided in (26) is a linear regression model similar to the models of
the theory of linear models, with the characteristic that the random component follows a
EGSHN(α, 0, 2, γ, λ) distribution; that is, assume that these parameters are located around
zero and have a scale parameter equal to 2. Then, the interpretation of their parameters,
with relation to the observed variable Y, is given in the same manner as the linear regression
model.

For the vector (α, θ>, γ, λ)>, we find that the log-likelihood function corresponding
to the random sample y1, y2, . . . , yn is

`(α, `>, γ, λ) =
n

∑
i=1

log
(

1 + γξ2
i2

)
− n log(1 + γ) +

n

∑
i=1

log(ξi1)− (27)

1
2

n

∑
i=1

ξ2
i2 +

n

∑
i=1

log(Φ(λξi2)),
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where ξi1 = 2α−1 cosh(zi) and ξi2 = 2α−1 sinh(zi) with zi =
yi − x>i θ

2
, for i = 1, 2, . . . , n.

The elements of the score function are given by

U(α) = −2γ

α

n

∑
i=1

ξ2
i2

1 + γξ2
i2
− n

α
+

1
α

n

∑
i=1

ξ2
i2 −

λ

α

n

∑
i=1

wiξi2,

U(θj) =− γ
n

∑
i=1

xij
ξi1ξi2

1 + γξ2
i2
+

1
2

n

∑
i=1

xij

(
ξi1ξi2 −

ξi2
ξi1

)
−

λ

2

n

∑
i=1

xijξi1wi, j = 1, 2, . . . , p,

U(γ) = − n
1 + γ

+
n

∑
i=1

ξ2
i2

1 + γξ2
i2

, and U(λ) =
n

∑
i=1

ξi2wi,

where wi =
φ(λξi2)
Φ(λξi2)

, for i = 1, . . . , n.
The maximum likelihood estimator of θ1, θ2, . . . , θp; α; γ; and λ is the solution to

equations U(θj) = 0, for j = 1, 2, . . . , p; U(α) = 0; U(γ) = 0; and U(λ) = 0, respectively,
which require iterative numerical methods.

The least squares estimator (θ̂∗) may be used to initialize the iterative numerical pro-

cess for θ, and with these initial values, we can calculate α̂∗ =

√
4
n ∑n

i=1

[
sinh2

(
yi−x′i θ̂∗

2

)]
.

The elements of the observed information matrix, defined as minus the second deriva-
tive of the log-likelihood function, are denoted by Iαα, Iαθ , Iαγ, Iαλ Iθjθk , Iθjγ, Iθjλ, Iγγ, and
Iλλ, and are, respectively, given by

Iαα =− n
α2 −

2γ

α2

n

∑
i=1

3ξ2
i2 + γξ4

i2
(1 + γξ2

i2)
2
+

3
α2

n

∑
i=1

ξ2
i2+

λ

α2

n

∑
i=1

wiξi2[−2 + λξi2(λξi2 + wi)],

Iαθj =−
γ

α

n

∑
i=1

xij
ξi1ξi2

(1 + γξ2
i2)

2
+

1
α

n

∑
i=1

xijξi1ξi2+

λ

2α

n

∑
i=1

xijwiξi1[−1 + λξi2(λξi2 + wi)],

Iαγ =
2
α

n

∑
i=1

ξ2
i2

(1 + γξ2
i2)

2
, Iαλ =

1
α

n

∑
i=1

wiξi2[1− λξi2(λξi2 + wi)],

Iθjθk =
1
4

n

∑
i=1

xijxik

{
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

}

+
2γ

α2

n

∑
i=1

xijxik

 1
1 + γξ2

i2
+

2γ α2

4 ξ2
i2

(
4
α2 + ξ2

i2

)
(1 + γξ2

i2)
2


+

λ

4

n

∑
i=1

xijxikwi

[
−ξi2 + λξ2

i1(λξi2 + wi)
]
,
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Iθjγ =
n

∑
i=1

xij
ξi1ξi2

(1 + γξ2
i2)

2
, Iθjλ =

1
2

n

∑
i=1

xijwiξi1[1− λξi2(λξi2 + wi)],

Iγλ = 0, and Iλλ =
n

∑
i=1

ξ2
i2wi(λξi2 + wi).

The information matrix (Ψ) could be estimated as the expected value of the elements of
the observed information matrix, which must be calculated using numerical approximation
methods. For λ = 0, the sub-matrix of vector (α, θ, γ) of the information matrix has the
following elements:

ψαα =
2n
α2

1 + 4γ

1 + γ
− 2n

α2
γq2(γ)

1 + γ
, ψαβ j = −

4γa1

α

n

∑
i=1

xij, ψαγ =
2n
γα

q1(γ),

ψβ j βl =
1

α2(1 + γ)

[
γ +

1
2

α2(1 + 3γ) +

(
4γ

α2 − 1
)

m(α)

] n

∑
i=1

xijxil

+
γ

α2(1 + γ)

[
2 + α2

(
1 +

1
γ

(
4γ

α2 − 1
)

q1(γ)

)] n

∑
i=1

xijxil ,

ψβ jγ = 2a1

n

∑
i=1

xij, ψγγ = − n
(1 + γ)2 +

n
1 + γ

q3(γ),

where a1 =
∫ ∞
−∞

z
√

1+ 4
α2 z2

1+γz2
φ(z)dz, q1(γ) = 1−

(
π
2γ

)1/2
{

1− er f
(

1
2γ

)1/2
}

exp
(

1
2γ

)
, q2(γ)

= 1 + 2
γ q1, q3(γ) = 1− 1

γ q1(γ) and m(α) =
(

πα2

8

)1/2
{

1− er f
(

2
α2

)1/2
}

exp
(

2
α2

)
, with

er f (·) the error function (see Prudnikov et al. [27]).
For γ > 0, the determinant of the information sub-matrix is not equal to zero; that is,

|Ψ(α, θ, γ)| 6= 0. Thus, it is possible to conclude that the information matrix of the ESHN
model is nonsingular. Likewise, for λ = 0, we find that

ψθjλ =
1

α
√

8π

[
(2γ)1/2EG( 3

2 , 1
2γ )

(4γ + α2U) +EG( 1
2 , 1

2γ )
(4γ + α2U)

] n

∑
i=1

xij,

ψλγ = 0, and ψλλ = n

√
2
π

1 + 3γ

1 + γ
,

where E(·) denotes the expected value function, and G(a, b) is the gamma distribution
with parameters a and b, respectively. The rows or columns of the information matrix of
the parameters vector (α, θ>, γ, λ) of the regression model MRESHN in the case of λ = 0
are linearly independent, Therefore, the information matrix of this model is nonsingular,
and its inverse is the variance–covariance matrix, Σ

(
α̂, θ̂, γ̂, λ̂

)
, of the estimator vector of

maximum likelihood of the parameters vector; then, the estimated standard errors of the
estimators are the square root of the matrix Σ̂

(
α̂, θ̂, γ̂, λ̂

)
.

Then, when n → ∞, the approximation Np+4

(
(α, θ, γ, λ), 1

n Σ(α, θ, γ, λ)
)

might be
used to obtain a confidence interval for the parameter θr, for r = 1, 2, · · · , p, which is given

by θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r), where σ̂(.) corresponds to the r-th element of the diagonal of the

sub-matrix Σ̂(θ̂) and z1−δ/2 is quartile 100(δ/2) of the standard normal distribution.
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6. Simulation Study

A simulation study is presented to analyze the performance of the maximum like-
lihood estimation of the parameters of the EGSHN(α, β0, β1, γ, λ) regression model. In
general, m = 5000 simulations with n = 30, 60, 90, 120, and 500 were generated for different
scenarios. So, the following model, with β0 = 2.25 and β1 = 0.75, is studied.

yi = β0 + β1xi + εi, i = 1, 2, · · · , n.

Note that, for i = 1, 2, · · · , n, xi takes values of a uniform random variable (0, 1), X ∼
U(0, 1), and ε ∼ EGSHN(α, 0, 2, γ, λ). The statistics of the empirical standard deviation
(sd), relative bias (RB) and

√
MSE for the EGSHN model are calculated.

The results for each studied scenario are described as follows.
Scenario 1 (Varying α): In this scenario, the used alpha values are 0.75, 1.75, and 2.75,

keeping γ = 1.5 and λ = 1 fixed. For each studied case of the EGSHN(α, 2.25, 0.75, 1.5, 1)
model (see Figure 3 and Table 1), it can be seen that for the parameters β0 and β1, the
relative biases are small, especially for the parameter β1. Note that the statistics RB, sd, and√

MSE decrease when the sample size is increased.
Additionally, it can also be observed that the relative bias of the parameter α is not

very important (not very large). Something similar is observed for the parameter λ. On the
other hand, the relative bias and the root of the mean square error of the parameter γ are
not very small, especially when the sample size is small (30 or 60).

The statistics RB, sd, and
√

MSE for the parameters α, γ, λ decrease when the sample
size increases. These results guarantee a lack of bias and the asymptotic consistency of the
estimates of the parameters α, β0, β1, γ, λ.

Scenario 2 (Varying γ): Here, the used gamma values are 1, 2.5, and 4, keeping α = 1.75
and λ = 1 fixed. Similar to scenario 1, we can see that the parameters β0 and β1 present
small relative biases (see Figure 4 and Table 2). The statistics RB, sd, and

√
MSE of the

EGSHN(1.75, 2.25, 0.75, γ, 1) model decrease when the sample size is increased.
The parameters α and λ show very small relative biases, but the parameter γ presents

large relative biases and
√

MSE. This behavior of the gamma parameter is more striking
for small sample sizes.

The asymptotic consistency of the estimates of the parameters α, β0, β1, γ, λ can be
guaranteed because the calculated statistics for α, γ, λ decrease when sample size increases.

Scenario 3 (Varying λ): In scenario 3, where the EGSHN(1.75, 2.25, 0.75, 2, λ) model is
considered, the used lambda values are 0.5, 1.5, and 3, keeping α = 1.75 and γ = 2 fixed
(see Figure 5 and Table 3). As in the previous simulation scenarios, the relative biases for
the parameters β0 and β1 are small, especially for the parameter β1. It is possible to see
that the statistics RB, sd, and

√
MSE tend to decrease when the sample size increase.

The RB and
√

MSE of the parameter γ are large for small sample sizes. The parameter
α presents small relative biases, but the parameter λ shows a large sd and

√
MSE when

λ = 3. In general, we can see that the asymptotic consistency of the estimates of the
parameters α, β0, β1, γ, λ is satisfied.
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Figure 3. Empirical sd, relative bias, and
√

MSE for the estimators of the EGSHN(α, 2.25, 0.75, 1.5, 1)
model parameters with sample sizes of 30, 60, 90, 120 and 500.
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Figure 4. Empirical sd, relative bias, and
√

MSE for the estimators of the EGSHN(1.75, 2.25, 0.75, γ, 1)
model parameters with sample sizes of 30, 60, 90, 120 and 500.
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Figure 5. Empirical sd, relative bias, and
√

MSE for the estimators of the EGSHN (1.75, 2.25, 0.75, 2.0, λ) model parameters with
sample sizes of 30, 60, 90, 120 and 500.
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Table 1. Empirical sd, relative bias, and
√

MSE for the EGSHN(α, 2.25, 0.75, 1.5, 1) model.

α̂ γ̂ λ̂ β̂0 β̂1

α n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

30 0.1600 0.0903 0.1737 3.4599 1.1505 3.8661 0.6997 0.0677 0.7029 0.3332 0.0386 0.3443 0.4105 0.0177 0.4107
60 0.1339 0.0502 0.1390 2.5812 0.7354 2.8067 0.4756 0.0380 0.4770 0.2737 0.0226 0.2784 0.2818 0.0145 0.2819

0.75 90 0.1194 0.0311 0.1216 1.9235 0.5013 2.0651 0.4127 0.0216 0.4132 0.2396 0.0117 0.241 0.2252 0.0046 0.2252
120 0.1087 0.0187 0.1096 1.2017 0.3818 1.3311 0.3681 0.0028 0.3681 0.2147 0.0040 0.2148 0.1897 0.0034 0.1897
500 0.0541 0.0038 0.0542 0.3686 0.0705 0.3834 0.1759 0.0002 0.1759 0.1069 0.0017 0.1069 0.0913 0.0026 0.0913
30 0.4831 0.0640 0.4958 6.4445 1.1316 6.6637 0.5962 0.0201 0.5965 0.5550 0.0531 0.5677 0.6102 0.0124 0.6102
60 0.4162 0.0263 0.4187 1.9279 0.5686 2.1079 0.5113 0.0198 0.5116 0.4404 0.0211 0.4429 0.4255 0.0093 0.4255

1.75 90 0.3661 0.0135 0.3669 1.2541 0.3858 1.3811 0.4518 0.0292 0.4527 0.3657 0.0086 0.3662 0.3324 0.0137 0.3325
120 0.3354 0.0063 0.3356 0.8840 0.2594 0.9657 0.4098 0.0267 0.4107 0.3303 0.0072 0.3307 0.2839 0.0040 0.2839
500 0.1476 0.0012 0.1476 0.3285 0.0486 0.3364 0.1646 0.0101 0.1649 0.1568 0.0001 0.1568 0.1379 0.0036 0.1379
30 0.8355 0.0578 0.8504 5.0777 1.0509 5.3163 0.6025 0.0095 0.6025 0.6021 0.0555 0.6149 0.6722 0.0149 0.6722
60 0.7030 0.0225 0.7056 2.2156 0.5590 2.3687 0.5214 0.0280 0.5221 0.4612 0.0257 0.4648 0.4591 0.0102 0.4591

2.75 90 0.6090 0.0079 0.6094 1.2718 0.3672 1.3858 0.4443 0.0301 0.4452 0.3931 0.0139 0.3943 0.3725 0.0151 0.3727
120 0.5096 0.0104 0.5104 0.9270 0.2499 0.9998 0.3758 0.0157 0.3761 0.3296 0.0127 0.3308 0.3076 0.0022 0.3075
500 0.2182 0.0033 0.2184 0.3371 0.0563 0.3475 0.1417 0.0027 0.1417 0.1525 0.0022 0.1525 0.1496 0.0000 0.1496
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Table 2. Empirical sd, relative bias, and
√

MSE for the EGSHN(1.75, 2.25, 0.75, γ, 1) model.

α̂ γ̂ λ̂ β̂0 β̂1

γ n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

30 0.5060 0.0784 0.5242 2.6997 1.3552 3.0205 0.6351 0.0473 0.6368 0.5845 0.0553 0.5975 0.6630 0.0204 0.6631
60 0.4768 0.0359 0.4809 1.4215 0.6769 1.5743 0.6234 0.0014 0.6233 0.4910 0.0272 0.4948 0.4506 0.0130 0.4507

1.0 90 0.4368 0.0159 0.4376 0.7941 0.4384 0.9071 0.5594 0.0290 0.5601 0.4321 0.0130 0.4330 0.3520 0.0017 0.3520
120 0.3930 0.0121 0.3935 0.5962 0.2952 0.6652 0.5107 0.0281 0.5115 0.3900 0.0113 0.3908 0.3088 0.0100 0.3088
500 0.1957 0.0000 0.1957 0.2305 0.0703 0.2409 0.2402 0.0121 0.2404 0.1977 0.0005 0.1977 0.1493 0.0026 0.1493
30 0.4612 0.0446 0.4677 6.0222 0.7279 6.2906 0.5485 0.0185 0.5487 0.5092 0.0417 0.5178 0.5756 0.0272 0.5759
60 0.3695 0.0123 0.3701 4.8084 0.6148 5.0476 0.4371 0.0360 0.4386 0.3835 0.0093 0.3841 0.3859 0.0084 0.3859

2.5 90 0.3035 0.0089 0.3039 2.7667 0.3974 2.9394 0.3429 0.0270 0.3439 0.3177 0.0083 0.3182 0.3121 0.0062 0.3121
120 0.2655 0.0026 0.2655 1.9695 0.2684 2.0805 0.3056 0.0274 0.3068 0.2768 0.0029 0.2768 0.2694 0.0026 0.2690
500 0.1129 0.0007 0.1129 0.5670 0.0575 0.5849 0.1213 0.0049 0.1214 0.1257 0.0008 0.1257 0.1270 0.0014 0.1270
30 0.4246 0.0245 0.4267 13.3364 0.6570 13.5521 0.5613 0.0693 0.5655 0.4786 0.0269 0.4824 0.5404 0.0179 0.5406
60 0.3298 0.0048 0.3298 11.4564 0.5569 11.7093 0.4094 0.0631 0.4142 0.3450 0.0060 0.3452 0.3628 0.0054 0.3628

4.0 90 0.2629 0.0015 0.2629 5.9366 0.4821 6.2414 0.2938 0.0363 0.2960 0.2792 0.0002 0.2792 0.2922 0.0103 0.2922
120 0.2210 0.0018 0.2210 5.6103 0.3773 5.8091 0.2506 0.0218 0.2515 0.2328 0.0005 0.2328 0.2498 0.0027 0.2498
500 0.0982 0.0007 0.0982 1.0651 0.0704 1.1016 0.1075 0.0057 0.1076 0.1111 0.0001 0.1111 0.1218 0.0018 0.1218
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Table 3. Empirical sd, relative bias, and
√

MSE for the EGSHN(1.75, 2.25, 0.75, 2.0, λ) model.

α̂ γ̂ λ̂ β̂0 β̂1

λ n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

30 0.3354 0.0083 0.3357 5.5409 0.7808 5.7563 0.3244 0.0541 0.3255 0.4508 0.0048 0.4509 0.6493 0.0215 0.6494
60 0.2278 0.0042 0.2279 3.0014 0.5044 3.1661 0.2077 0.0389 0.2086 0.2991 0.0020 0.2991 0.4186 0.0087 0.4186

0.50 90 0.1779 0.0055 0.1782 2.2964 0.3269 2.3874 0.1637 0.0189 0.1640 0.2386 0.0014 0.2386 0.3376 0.0011 0.3376
120 0.1570 0.0008 0.1570 1.2968 0.2010 1.3575 0.1412 0.0246 0.1417 0.2094 0.0011 0.2094 0.2892 0.0046 0.2890
500 0.0711 0.0018 0.0711 0.4458 0.0465 0.4554 0.0639 0.0035 0.0639 0.0955 0.0000 0.0955 0.1374 0.0053 0.1374
30 0.4651 0.1093 0.5029 4.9920 0.8175 5.2525 0.9968 0.0428 0.9988 0.5470 0.0949 0.5872 0.5720 0.0377 0.5727
60 0.4308 0.0552 0.4414 3.8817 0.6443 4.0896 0.7276 0.0189 0.7276 0.4703 0.0479 0.4824 0.3853 0.0162 0.3855

1.5 90 0.4041 0.0385 0.4096 2.7730 0.4517 2.9162 0.6860 0.0133 0.6860 0.4268 0.0335 0.4333 0.3179 0.0066 0.3179
120 0.3746 0.0211 0.3764 1.5575 0.3195 1.6834 0.6473 0.0097 0.6475 0.3894 0.0179 0.3915 0.2758 0.0123 0.2760
500 0.2312 0.0024 0.2312 0.5188 0.0785 0.5420 0.3727 0.0013 0.3738 0.2313 0.0004 0.2313 0.1314 0.0037 0.1314
30 0.3930 0.1271 0.4515 3.4510 0.3915 3.5384 17.0967 0.1390 17.0977 0.4872 0.1168 0.5535 0.5789 0.0631 0.5808
60 0.3635 0.0677 0.3823 3.1596 0.3342 3.2292 8.0921 0.1382 8.0979 0.4215 0.0661 0.4469 0.3792 0.0234 0.3796

3.0 90 0.3421 0.0446 0.3508 3.0435 0.2479 3.0834 2.4923 0.1378 2.5170 0.4013 0.0493 0.4163 0.3132 0.0092 0.3133
120 0.3237 0.0240 0.3264 2.0577 0.2166 2.1026 2.0773 0.1180 2.1181 0.3781 0.0313 0.3846 0.2592 0.0039 0.2592
500 0.2590 0.0113 0.2597 1.1857 0.1159 1.208 1.6695 0.1095 1.7197 0.2996 0.0019 0.2996 0.1298 0.0018 0.1290
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7. Numerical Illustrations
7.1. Illustration 1

In this paper, we employed the dataset studied by Hirose (1993) [28] to show the
relevance of the EGSHN model. This dataset contains the results of an accelerated life
test on polyethylene terephthalate (PET) (used in electrical isolation) in SF6 gas-insulated
transformers. Such an accelerated life test was performed at four voltage levels (5, 7, 10,
and 15), with 7, 15, 10, and 9 observations per level, respectively. The main purpose of the
study was to analyze the resistance times (t) of the insulating films at different voltages (v).
Hence, we here consider the following regression model:

yi = log(t) = β0 + β1 ∗ vi + εi,

where yi follows an EGSHN(α, β0 + β1 ∗ vi, σ, γ, λ) distribution.
In this work, the SHN and ESHN models are fitted (see Ortega et al. [29]). To compare

these models, the Akaike (AIC) information criterion (Akaike, [30]) and the corrected
Akaike (AICC) criterion (Cavanaugh, [31]) are implemented. These measures are defined
as follows:

AIC = −2`(θ̂) + 2p and AICC = −2`(θ̂) +
2n(p + 1)
n− p− 2

,

where p is the number of parameters and ˆ̀(·) is the log-likelihood function evaluated for
the MLEs of parameters. The best model is that with the smallest AIC or AICC value. To fit
the bivariate model, we used the optim function of the statistical package R Core Team.

The estimated parameters of these models, accompanied by their standard errors
in parentheses, are obtained using the maximum likelihood method. Table 4, shows the
results. Note that according to the AIC and AICC, the EGSHN and ESHN models present
the best fits.

Table 4. Estimated parameters, with their standard errors for the SHN, ESHN, and EGSHN models.

Estimator SHN ESHN EGSHN

α̂ 245.9799 66.9952 7.9489
(230.85) (48.8845) (2.6274)

β̂0 9.2750 9.3422 9.3456
(0.1595) (0.1666) (0.1616)

β̂1 −0.4217 −0.4077 −0.4144
(0.0190) (0.0165) (0.0189)

σ̂ 0.3572 0.4306 0.7539
(0.0536) (0.0585) (0.0903)

γ̂ 0.3070 6.1671
(0.1166) (3.3568)

λ̂ −0.6493
(0.1965)

AIC 89.59 74.42 73.1924
AICC 93.30 78.89 78.58

In order to identify atypical observations and/or the misspecifications of models, we
analyzed the transformation of the martingale residual, rMTi , proposed by Barros et al. [8].
These residuals are defined by

rMTi = sgn(rMi)
√
−2[rMi + αi log(αi − rMi)]; for i = 1, 2, 3, · · · , n,

where rMi = αi + log(S(ei, θ̂)) is the martingale residual proposed by Ortega et al. [32],
where αi = 0, 1 indicates whether the i-th observation is censored or not, respectively;
sgn(rMi) denotes the sign of rMi; and S(ei; θ̂) represents the survival function evaluated
in ei, where θ̂ are the MLE for θ.

The plots of rMTi with generated confidence envelopes is presented in Figure 6. From
this figure, we can see clearly that the EGSHN model fits better to the data than the
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SHN and ESHN models, since, in these cases, there are no observations that lie outside
the envelopes.
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Figure 6. Normal probability plots for rMTi with envelopes of Q-qplots for the scaled residuals, from
the fitted models. (a) ESHN and (b) EGSHN.

In Figure 6b, we observe two points: one in the border and the other outside it. There is
also a point far from the set of observations. Since these points could be values influencing
the estimates of the parameters, we calculated the generalized Cook’s distance (GCD) and
showed the residual components of the deviation plot. Figure 7 illustrates the behavior
of these two statistics. As can be seen in this figure, observations 8, 23, and 34 could be
possible influential values. Thus, to calculate their impact on the estimates, we computed
the estimates by eliminating each of these observations or groups of them.

The relative change (RC), in percentage, of each parameter estimate is used to evaluate
the effect of the potentially influential case. The RC is given by RC(θ(i)) = 100× |(θ̂ −
θ̂(i))/θ̂|, where θ̂(i) denotes the MLE of θ after removing the i-th observation. Table 5
lists the obtained RC values. According to this table, the relative changes of the MLE of
parameter λ are excessively pronounced in all the models, mainly for observation 8 and the
{8, 23} set. Thus, after deleting observations 8 and 23, the new estimates of the parameter
are α̂ = 8.5382(2.7109), β̂0 = 9.4767(0.1500), β̂1 = −0.4311(0.0184), σ̂ = 0.6937(0.0833),
γ̂ = 5.8458(3.0420), and λ̂ = −0.6106(0.1838), with AIC = 59.30 and AICC = 64.91, as
illustrated in Figure 7c.

Table 5. Relative change of the estimates of the EGSHN model.

Observation α̂ β̂0 β̂1 σ̂ γ̂ λ̂

8 0.0752 1.0751 3.6291 4.4136 0.2496 9.5977
23 0.1942 0.0200 0.2091 1.2090 0.0877 2.5542
34 0.2357 1.5518 4.3536 1.0540 0.3764 7.9936

8, 23 0.0839 0.8594 2.8812 5.7076 0.3233 13.8282
8, 34 0.0253 0.6924 2.0139 3.4098 0.1873 10.0372

23, 34 0.0731 0.9189 3.0378 0.6211 0.2350 8.8319
8, 23, 34 0.0326 0.6332 1.7068 5.2954 0.2438 14.2785
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Figure 7. Influence measures for the EGSHN model (a) Cook’s distance, (b) rMTi, (c) envelope picture of EGSHN model.

7.2. Illustration 2

We used the dataset reported by the Center for Applied Statistics of the Institute of
Mathematics and Statistics at the University of São Paulo to illustrate the relevance of the
EGBSSN model. This dataset contains data on the amount of DNA within the nucleus
(ploidy) of mammary cells (250 samples) from women with breast cancer. The ploidy
variable exhibits a bimodal asymmetric performance, with D = 0.0399 and p-value = 0.0059
after performing the Hartigan and Hartigan (1985) [33] bimodality test. In addition,
according to its descriptive statistics (presented in Table 6), this variable has a considerable
positive skewness and high kurtosis. Additionally, Figure 8a shows a bimodal distribution
of the data, which is why the EGBSSN model becomes an alternative to fit this kind of data.

Table 6. Descriptive statistics of the ploidy dataset

y s2
y

√
b1 b2

3.636 1.432 0.452 0.865

In this study, the Birnbaum–Saunders (BS) and Birnbaum–Saunders skew-normal
models were fitted. We also considered the following bimodal models: the log-skew-normal
model developed by Bolfarine et al. (2011) [16], the extended class (EBN) introduced by
Cortez et al. (2018) [17], and the EGBS model.

Table 7 presents the maximum likelihood estimates and AIC and AICC values of five
models. As observed in this table, the BS and BSSN models provide a poor fit to the DNA
dataset. Conversely, the EGBS model shows the best fit among the fitted models, which is
explained by its flexibility to fit asymmetric bimodal data.

Table 7. Estimated parameters (standard errors) for the fitted models

Estimators BS BSSN BLSN EBS EGBS

α̂ (0.3145) 0.5254 1.3564 0.2033 0.2136
(0.0140) (0.0263) (0.0169) (0.0066) (0.0082)

β̂ 3.5194 2.3042 0.2066 3.7995 4.0200
(0.0698) (0.032) (0.0070) (0.0551) (0.0643)

γ̂1 3.9845 4.4899 5.6760
(1.2161) (1.7541) (2.5460)

λ̂ 7.7814 −0.2874 −0.3724
(1.2943) (0.0677) (0.0701)

AIC 745.58 698.51 671.95 668.41 637.8484
AICC 747.68 700.68 674.20 670.58 640.09

Figures 8a,b shows the estimated densities of the models with the best fit (BSSN, BLSN,
EBS, and EGBS); the empirical cumulative distribution functions of the BLSN, EBS, and



Mathematics 2021, 9, 2793 22 of 24

EGBS models; and the parameter estimates. Note that the EGBS model provides the best fit
when compared to the BSSN, BLSN, EBN, and BS models.
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Figure 8. (a) Histogram of the variable (amount of DNA in cancer cells) for the EGBS (solid line),
EBS (dashed line), BLSN (dotted line), and BSSN (dash-dotted line) adjusted distributions; and
(b) empirical cumulative distribution (solid line) and for the EGBS (dashed line), EBS (dotted line),
and BLSN (dash-dotted line) models.

8. Discussion

Bimodality and skewness are two common features that may be present in data from
engineering, geo-spatial, medicine, and other areas. The natural complexity of data from
these areas needs to be fitted using models that offer great flexibility and goodness of fit. In
some cases, the data only present positive skewness, or in other cases, the distribution is
only bimodal, but these two features could be present simultaneously. Thus, in this paper,
a distribution capable of fitting bimodal and positively skewed data sets was proposed. In
addition, the extended Birnbaum–Saunders distribution was studied as well.

Although there are proposals in the literature such as those cited in the previous
sections, which allow the fitting of asymmetric or bimodal data, our model has the charac-
teristic of modeling data that simultaneously have these two characteristics and has great
flexibility and goodness of fit for data with these conditions. It is a new, promising, and
user-friendly option to consider in statistical analysis.

To conclude, the EGBS model was proposed as a new statistical distribution suitable to
fit real data sets with positive skewness and bimodality that presents a great performance
compared with models available in the literature and that aim to achieve the same objective.
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