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Abstract: An illustrative sketch style expresses important shapes and regions of objects and scenes
with salient lines and dark tones, while abstracting less important shapes and regions as vacant
spaces. We present a framework that produces illustrative sketch styles from various photographs.
Our framework is designed using a generative adversarial network (GAN), which comprised four
modules: a style extraction module, a generator module, a discriminator module and RCCL module.
We devise two key ideas to effectively extract illustrative sketch styles from sample artworks and to
apply them to input photographs. The first idea is using an attention map that extracts the required
style features from important shapes and regions of sample illustrative sketch styles. This attention
map is used in the generator module of our framework for the effective production of illustrative
sketch styles. The second idea is using a relaxed cycle consistency loss that evaluates the quality of
the produced illustrative sketch styles by comparing images that are reconstructed from the produced
illustrative sketch styles and the input photographs. This relaxed cycle consistency loss focuses on
the comparison of important shapes and regions for an effective evaluation of the quality of the
produced illustrative sketch styles. Our GAN-based framework with an attention map and a relaxed
cycle consistency loss effectively produces illustrative sketch styles on various target photographs,
including portraits, landscapes, and still lifes. We demonstrate the effectiveness of our framework
through a human study, ablation study, and Frechet Inception Distance evaluation.

Keywords: deep learning; GAN; attention map; stylization; illustrative sketch

1. Introduction

The illustrative sketch art style has been expressed by many artists for a long time.
Artists express salient objects in a scene through a series of lines and dark tones and
omit unimportant details as vacant spaces. Many artists apply this style to draw various
artworks, such as portraits, landscapes and still lifes. In computer graphics and computer
vision, many researchers have developed computational models of various backgrounds
that produce illustrative sketch styles. Early approaches apply explicit computational
models that produce lines and tonal expressions from an input photograph [1–5]. Many
recent approaches apply rapidly progressing deep learning (DL) techniques [6–10].

Early approaches produce illustrative sketch styles on an input photograph by extract-
ing salient features from the input photograph. They produce thick and solid lines on the
features that mimic the strokes of artistic media. Several schemes, including line integral
convolution (LIC) [2], bilateral filters [3], the difference of Gaussian (DoG) [4], and spline
curves [1] are applied to extract and produce lines. The less important regions are filled
with smooth and less salient stroke or texture patterns [5]. Although they produce visually
convincing illustrative sketch styles, they have several limitations. These approaches rely
on the robust extraction of salient features, which is a challenge in several cases. The pro-
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duced lines and tones frequently reveal serious artifacts. The produced styles cannot cover
diverse artistic illustrative sketch styles.

Recent DL-based approaches have applied feature maps extracted from convolutional
neural network (CNN) models. Since feature maps possess many clues to recognizing
objects in a scene, they can play a key role in recognizing salient features to produce
illustrative sketch styles. Many DL models for style transfer can produce illustrative
sketch styles [6–8]. These models, however, have limitations in the clear expression of
salient edges, smooth tones, and vacant spaces, because they produce styles using texture
transfer. Some dedicated models produce illustrative sketch styles from portraits [9,10].
Although they successfully produce visually convincing illustrative sketch images, they
have limitations in the production of illustrative styles for photographs, which are not
included in their training dataset.

We present a generative adversarial network (GAN)-based framework that produces
illustrative sketch styles of various photographs. Our framework comprised four modules:
a style extraction module, a generator module, a discriminator module and RCCL module.

Our first idea is to apply an attention map to extract the style features from illustrative
sketch samples and to apply them to the input photographs. Since an illustrative sketch
style expresses salient features using strokes and dark tones, concentrating on salient
features enriches illustrative sketch styles. Therefore, an attention map that effectively
extracts salient features is applied in the style extraction module. We apply the attention
map approach in our generator to more effectively produce illustrative sketch styles. Since
our model employs the style features that were extracted from sample images using an
attention map, our approach is very effective for illustrative sketch styles that apply thick
stroke patterns and dark tones in important regions.

Our second idea is to apply a relaxed cycle consistency loss (RCCL) [10] to evaluate the
quality of the produced illustrative sketch styles. We reconstruct the input photograph from
the produced illustrative sketch styles and compare it with the input photograph to evaluate
the styles. Several researchers have applied cycle consistency loss [7] for comparison. In our
framework, however, we should concentrate more on important features instead of using
all features to evaluate illustrative sketch styles. Thus, we applied the RCCL [10], which
emphasizes important features more, ignoring less important features.

We collect 64 portraits to construct the training dataset in this study. Our challenge is
to produce illustrative sketch styles on various photographs including landscapes, animals
and still lifes using our model, trained only by portraits. Most portraits include salient
features such as eyes, lips, and chin lines, but they lack tiny textures. Figure 1 presents our
teaser images that show illustrative sketches for various photographs. Furthermore, we
apply our model to various categories of sketches, including landscapes and still lifes.

The contributions of this study can be summarized as follows:

• We present a GAN-based framework that produces illustrative sketch styles from
various photographs. To facilitate its production, we apply two ideas: an attention
map-based approach for style extraction and production and a relaxed cycle consis-
tency to evaluate the produced styles.

• We present an efficient training strategy for illustrative sketch styles. Our framework
is trained on a dataset of portraits, and can be applied to produce illustrative sketch
styles from landscapes, animals or objects.

The remainder of this paper is organized as follows. Section 2 presents the existing
works on illustrative sketches and Section 3 presents the outline of our framework. We
explain our framework and its components in Section 4 and the loss functions in Section 5.
We present the implementation details and results in Section 6 and analyze our results
by comparing existing schemes in Section 7. Finally, we conclude this study and present
future work in Section 8.
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Figure 1. The teaser images of our study.

2. Related Work
2.1. Conventional Schemes for Illustrative Sketches

In computer graphics, many techniques that convey the shape of 3D meshes or objects
in a photograph have been proposed. DeCarlo et al. [1] presented a suggestive contour that
expresses the shape of 3D meshes using contours and some import lines. Kang et al. [2]
presented a coherent line, which extracts a salient line from a photograph by performing
an LIC through an edge tangent flow. Some researchers have presented hatching-based
approaches to express dark tones of 3D meshes.

Kim et al. [11] presented a line art illustration scheme on dynamic objects by drawing
hatching lines through principal directions on the surface of objects. Paiva et al. [12]
presented a flow-based hatching scheme to produce tonal expression on 3D meshes. They
express strokes of line illustration by generating particles on surfaces and integrating them
through smooth flow fields on the surface. Coconu et al. [13] presented a pen-and-ink
illustration on a photograph by simplifying the scene that is embedded in the photograph.
They rendered the scene using stylized silhouette, hatching and abstract shading.

Xu and Kaplan [14] presented an artistic thresholding scheme that produces a black-
and-white image from a scene by thresholding the tone of the scene using a proper value.
They segment the scene into a planar subdivision graph and apply a combinatorial op-
timization on the graph to produce the black-and-white image. Mould and Grant [15]
presented a similar scheme that produces stylized black-and-white renderings from pho-
tographs. They aim to preserve as many details as possible while producing large regions
of a solid color. They apply an energy minimization scheme for separate layers of the
image. Rosin and Lai [16] proposed an artistic minimal rendering scheme that abstracts an
input photograph as a series of dark tones. Inspired by Warhol’s artworks, their scheme
re-renders input photographs with a minimal set of tones. They apply a combination of
refined lines and blocks to abstract the photographs by considering a tradeoff between the
reduction in information and the preservation of shapes.

Benard et al. [17] presented active strokes that produce lines by animating 3D models
in a coherent way. Their scheme connects and smooths unorganized line samples to build
a coherent parameterization to support the active contours that automatically update
the geometry and topology of animating objects. Their scheme can render complex and
actively moving objects in a series of thick contour lines. Winnemoller et al. [4] proposed
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an XDoG algorithm that simplifies the complex shape of input photographs in black-and-
white abstracted images. They extend classic DoG edge extraction operator to depict a
photograph in various styles.

2.2. General DL Schemes for Illustrative Sketches

The recent DL progress, including CNNs and GANs, has presented an innovative
approach to applying various styles to photographs. Among these, pix2pix [6] presents an
impressive framework for alternating the styles of paired images. They apply an encoder–
decoder structure or U-net structure to their generator. The generation process is performed
to input paired images and losses between the generated and original images are computed
and minimized to improve the quality of the generated images. Since this generation is
performed in both directions, the styles of one domain are transferred to those of the other
domain and vice versa. The pix2pix scheme, however, has a limitation: it works only for
paired datasets.

Zhu et al. [7] improved the pix2pix framework by releasing requirements for a paired
dataset by applying cycle consistency. Their framework, known as CycleGAN, successfully
converts styles between two domains instead of two images by minimizing the cycle-
consistency loss, which is defined between the original image and the reconstructed image
from the original image through cyclic process of style transfer.

Yi et al. [18] presented a DualGAN, which is an improvement of the conditional GAN
(CGAN), for cross-domain image-to-image translation. Their scheme does not require
human labeled datasets to train their model. The primal GAN of their framework learns
to translate from one domain to another, and DualGAN learns to translate in the reverse
direction. This closed translation loop learns the translation and reconstruction process
of their framework. Huang et al. [8] proposed MUNIT, which presents a multimodal,
unsupervised image-to-image translation. They address the problem of producing diverse
styles from one source domain image by decomposing an image into a content code and a
style code. They apply various styles to the source domain image by combining various
style codes to a content code of the image.

These frameworks can translate an input photograph into an illustrative sketch style,
which depicts shapes with salient lines and monochrome tones. Nevertheless, these
schemes have a limitation: they require heavy training processes and high-quality datasets.

2.3. Dedicated DL Schemes for Illustrative Sketches

Recently, Yi et al. [9] have presented APDrawingGAN that produces an illustrative
sketch-styled portrait generation scheme from input photographs. They segment the face
into six local regions, including the left eye, right eye, nose, lip, skin and background, and
generate each region into an illustrative sketch style using different networks. Finally, they
combine the regions into one portrait image. Although they can produce visually pleasing
illustrative sketch-styled portraits, their frame is limited to face photographs taken by the
front angle. Yi et al. [10] extended their framework in [9] to unpaired portrait drawing by
applying asymmetric cycle mapping. For an unpaired portrait transfer without unwanted
artifacts, which are frequently observed by cycle consistency-preserving schemes, they
propose an asymmetric cycle mapping only embedded in selective regions. They also
devise local discriminators for facial regions to preserve important facial features.

An attention map, which is devised for natural language processing, is used in image-
to-image translation. Tang et al. [19] and Xie et al. [20] presented an attention-guided GAN
for unsupervised image-to-image translation. Kim et al. [21] presented a U-GAT-IT that
transforms face photographs into cartoon style portraits. Although they do not produce
illustrative sketch-styled portraits, their scheme can be considered an important related
work, since they have very successful results in image-to-image translation. They apply an
attention map to distinguish important regions in a photograph. Furthermore, they apply a
new AdaIN layer to improve shape and texture control on a significant scale. Consequently,
they successfully translate face photographs into exaggerated cartoon images.
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3. Outline of Our Framework

Our framework consists of three main modules: a style extraction module, a generator,
a discriminator, and an RCCL module. As illustrated in Figure 2, the style extraction
module, denoted as Es produces a style attention map as from the sample style image
S. The generator, which is denoted as GI→S and GS→I , transforms an input image into
an illustrative sketch using GI→S and converts an illustrative sketch into an input image
using GS→I . As an input for the transformation, GI→S applies I, the input photograph,
and as, a style attention map extracted by Es, and produces OIS, an illustrative sketch.
The discriminator, denoted as DS, measures the quality of the illustrative sketch that was
transferred to OIS. Additionally, the generator GS→I reconstructs the original input image,
RI , from the input image and OIS. The RCCL module extracts and compares the edge of
the image RI and I to measure the RCCL.

as

Generator (GIS, input  sketch)
Fig. 4 & Sec. 4.2

Generator (GSI, sketch  input)
Fig. 4 & Sec. 4.2

Discriminator (DS) Fig. 5 & Sec. 4.3RCCL module (Fig. 6 & Sec. 4.4)

Style

Input photograph output sketch

Reconstructed input

style extractor (Es)
Fig. 3 & Sec. 4.1

Figure 2. The process of our framework.

4. Modules of Our Framework

In this section, we explain our framework by describing the modules of our framework.

4.1. Style Extraction Module

The style extraction module, ES, extracts a style attention map aS of the illustrative
sketch sample image S. The style extraction module, which is illustrated in Figure 3, has
an encoder-based structure. The output of the encoder is processed through a residual
block to produce a feature map FS, which is further processed to extract aS through a fully
connected layer.

Encoder
Residual
Block FS aS

ES

Figure 3. The structure of our style extractor.
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4.2. Generator

We devise two generator modules in our model. One generator, GI→S, transforms the
input image I into an illustrative sketch OIS and the other generator, GS→I , reconstructs
RI from OIS. In the generator, an encoder with residual block extracts a feature map FI ,
which is further processed to an attention map aI . With aI , aS, an attention map from
the style extraction module, is processed through a decoder with an adaptive residual
block to produce Is, the illustrative sketch result. In GS→I , aIS, an attention map from the
generated illustrative sketch, and aI , an attention map from the input image, are employed
to reconstruct the input image. The structure of our generator is illustrated in Figure 4.

Encoder Residual
Block

FI aI

aS

Adaptive
Residual
Block

Decoder

GIS

I OIS

Figure 4. The structure of our generator.

4.3. Discriminator

The discriminator module, DS, is a module that measures the quality of the generated
illustrative sketch OIS. This module is designed on the basis of an encoder and a classifier
(See Figure 5). In the first step, an attention map aIS is extracted from the feature map FIS,
which is generated through the encoder and its residual block. Next, an adaptive residual
block and a classifier estimate the logit for the probability of a successful illustrative sketch
using aIS.

Encoder Residual
Block FIS

Adaptive
Residual
Block

ClassifieraIS

DS

OIS

Figure 5. The structure of our discriminator.

4.4. RCCL Module

The RCCL module compares the edge (H(I)) of an input image I and the edge (H(RI))
of reconstruction image RI. RCCL is composed of holistically nested edge detection
(HED) [22] extracting edges and learned perceptual image patch similarity (LPIPS) [23]
comparing the extracted edges (Figure 6).
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GSI

LPIPSHED HED
RCCL

I H(I) H(RI) RI

OIS

Figure 6. The structure of our RCCL module.

The structure of our generator and discriminator is explained in Table 1 and the
structure of our RCCL module in Table 2.

Table 1. The layers of generator and discriminator.

Description Generator Discriminator

Encoder Decoder

ReflectionPad(3) Linear(256,256) ReflectionPad(1)
initial block Conv(input_nc,64) ReLU(True) Conv(input_nc,64)

InstanceNorm(64) Linear(256,256) LeakyReLU(0.2,True)
ReLU(True) ReLU(True)

ReflectionPad(1)
Conv(256,256)
AdaILN(256)

ResAdaILNBlock None ReLU(True) ×6 None

ReflectionPad(1)
Conv(256,256)
AdaILN(256)

# Down-Sample
ReflectionPad(1) ReflectionPad(1)

Conv(64,128) Conv(256,128) ReflectionPad(1)
each block InstanceNorm(256) INL(128) Conv(64,128)
description ReLU(True) ReLU(True) LeakyReLU(0.2,True)

ReflectionPad(1) ReflectionPad(1) Reflectionpad(1)
Conv(128,256) Conv(128,64) Conv(64,128)

InstanceNorm(256) ILN(64) LeakyReLU(0.2,True)
ReLU(True) ReLU(True)

# Down-sampling
Bottleneck

ReflectionPad(1)
Conv(256,256) ReflectionPad(1)

ResBlock InstanceNorm(256) ×6 None Conv(256,512)

ReLU(True) LeakyReLU(0.2,True)
ReflectionPad(1)
Conv(256,256)

InstanceNorm(256)

Linear(256,1,False)
Conv(512,256) Linear(512,1)

ReLU(True) ReflectionPad(3) Conv(1024,512)

Final block Linear(256,256) Conv(64,output_nc LeakyReLU(0.2,True)
ReLU(True) Tanh() LeakyReLU(0.2,True)

Linear(256,256) ReflectionPad(1)
ReLU(True) Conv(512,1)
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Table 2. The layers of RCCL module.

Description Each Block Information

MaxPool(2,2) MaxPool (2,2) MaxPool (2,2)
Conv(3,64,3,1,1) MaxPool (2,2) Conv(128,256,3,1,1) Conv(256,512,3,1,1) Conv(512,512,3,1,1)

ReLU (False) Conv(64,128,3,1,1) ReLU (False) ReLU (False) ReLU (False)
HED VGGNet Conv(64,64,3,1,1) ReLU (False) Conv(256,256,3,1,1) Conv(512,512,3,1,1) Conv(512,512,3,1,1)

ReLU (False) Conv(128,128,3,1,1) ReLU (False) ReLU (False) ReLU (False)
ReLU (False) Conv(256,256,3,1,1) Conv(512,512,3,1,1) Conv(512,512,3,1,1)

ReLU (False) ReLU (False) ReLU (False)

Side Conv(64,1,1,1,0) Conv(128,1,1,1,0) Conv(256,1,1,1,0) Conv(512,1,1,1,0) Conv(512,1,1,1,0)
Output

LPIPS dropout(0.5) dropout(0.5) dropout(0.5) dropout(0.5) dropout(0.5)
Conv(64,1,1,1,0,False) Conv(192,1,1,1,0,False) Conv(384,1,1,1,0,False) Conv(256,1,1,1,0,False) Conv(256,1,1,1,0,False)

5. Loss Function

In this section, we explain the terms of our loss function.

5.1. Adversarial Loss

The adversarial loss is used to construct an elaborated generator module by measuring
the quality of the image, which is an input to the discriminator Ds:

LI→S
lsgan = Ex∼XS [(Ds(x))2] + Ex∼XI [1− (Ds(GI→S(x)))2]. (1)

Equation (1) processes the real illustrated sketch x and fake illustration sketch GI→S (I)
generated from the input image I into DS. As a result, Equation (1) estimates the probability
that the input image is an illustrative sketch.

5.2. Cycle Consistency Loss

In Zhu et al.’s work [7], a cycle consistency loss is devised to measure the loss between
the style-transferred image and the reconstructed image from the style-transferred image.
This loss term is used to force these two images to remain similar:

LS→I
cycle = Ex∼XS [|x− GI→S(GS→I(x)))|1]. (2)

In Equation (2), the difference between the style-transferred image x and the recon-
structed image GI→S(GS→I)(x))) is measured and compared. In our model, the most
important feature of an illustrative sketch is the line depicting the shape of objects embed-
ded in a scene. Thus, we employ an RCCL to compare the difference between the edges of
the input image and the reconstructed image. We concentrate on comparing the lines of the
image instead of the entire scene. Therefore, the loss is measured by removing unnecessary
information, such as color, from the illustrative sketch as follows:

LI→S
relax−cycle = Ex∼XI [Llpips(H(x), H(GS→I(GI→S(x))))]. (3)

Equation (3) measures the loss of the edge H(I) extracted from the input image I
and the edge H(GS→I(GI→S(I))) extracted from the reconstructed image GS→I(GI→S(I))
through the LPIPS metric.

5.3. Identity Loss

The identity loss is used to match the color distribution between the input and the
generated images:

LI→S
identity = Ex∼XS [|x− GI→S(x)|1]. (4)

Equation (4) measures the loss between the input image I and the illustrative sketch
GI→S(I) generated from the input I. The purpose of this loss term is to create an illustrative
sketch image while preserving the input image as much as possible.
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5.4. CAM Loss

A class activation map (CAM) loss employs the CAM approach, where areas have a
large impact on the classification of objects into a specific class:

LI→S
cam = −(Ex∼XI [logηI(x)] + Ex∼XS [log(1− ηI(x)]). (5)

In Equation (5), ηI(x) represents the probability of the domain x being the input
image. This information allows you to focus on characteristic areas such as the eyes, mouth,
and noses.

LDS
cam = Ex∼XS [(ηDS(x))2] + Ex∼XI [(1− ηDS(GI→S(x)))2]. (6)

In Equation (6), ηDS(x) discriminates the two domains by determining whether the
input x is real or fake using an attention map.

5.5. Total Loss

The loss terms defined in Equations (1)–(6) are integrated as a total loss as follows:

min
G,η

max
D,ηD

λ1Llsgan + λ2Lrelax−cyc + λ3Lidentity + λ4Lcam. (7)

We devise the effects of the loss terms to be adjusted through the variables λ1, λ2,
λ3 and λ4, and the experiment was performed by assigning λ1 = 1, λ2 = 10, λ3 = 10,
and λ4 = 1000.

6. Implementation and Results

In this section, we explain how we implemented our model and describe the results.

6.1. Training Dataset

To train our framework, we hire a professional artist to draw sample images. She drew
64 illustrative sketch images from various portrait photographs of celebrities. Figure 7
illustrates our training samples.

Figure 7. The training dataset of our framework.

6.2. Implementation Environments

We implemented our model in a personal computer with an Intel Core i9-9900x CPU,
128 GByte main memory and nVidia Titan RTX GPU. The software environment is the
Pytorch library implemented on Linux of Ubuntu version.

6.3. Results

In our implementation, we executed 50 K training epochs. Total time required for the
training is 44,545 s. Each training epoch takes 0.8909 s. The number of parameters in our
model is approximately 134 M. We present our results in the following order.
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6.3.1. Results with Ground Truth

We collect our groundtruth illustrative sketch artwork images from portraits of celebri-
ties. We compare our resulting illustrative sketches with their corresponding groundtruth
artwork sketches in Figure 8. Our result can capture the details of portraits, such as the
eyebrows, eyes, pupils, and lips, very successfully. Our results in were limited in the
depiction of the hair. The smooth flow of hair in the groundtruth artwork sketches is
unsuccessfully depicted in our results.

sample images

groundtruth illustrative sketches created by a professional artist

Illustrative sketches produced by our model

Figure 8. Our illustrative sketch portraits compared to the groundtruth artwork sketches produced by a professional artist.

6.3.2. Results from Various Images

Since our groundtruth images are from portraits, we have several doubts about the
production of illustrative sketch images for portraits not included in the groundtruth
datasets and for other images including animals, landscapes, still lifes and synthesized
scenes. We attempted to transform input images from different domains into illustrative
sketch images to prove the superiority of our model. The input images are suggested in
Figure 9 and their resulting illustrative sketch images are presented in Figure 10.
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Figure 9. Input images.

Figure 10. Our illustrative sketch images from various sources including portraits, animals, land-
scapes, still-lifes and synthesized scenes.

6.3.3. Comparison with Existing Works

In this section, we compare our results with various existing works including
pix2pix [6], DualGAN [18], CycleGAN [7], FDoG [2], UGATIT [21], and MUNIT [8]. We
compare their results with ours in Figures 11 and 12. We also compare our results with
those from state-of-the-art works [9] in Figure 13. We further compare the computation
time required for training and testing our model in Table 3.
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Input pix2pix DualGAN CycleGAN FDoG UGATIT MUNIT Ours

Figure 11. Our illustrative sketch images compared with existing works: The portraits are contained in blue cells and
animals in orange.
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Input pix2pix DualGAN CycleGAN FDoG UGATIT MUNIT Ours

Figure 12. Our illustrative sketch images compared with existing works: The landscapes are contained in yellow cells and
synthesized in green.
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Input

APDrawing
GAN

Ours

Figure 13. Our illustrative sketch portraits compared with APDrawingGAN [9], one of the state-of-the-art works.

Table 3. Comparison of computation time for training and test. Train time is recorded as seconds for all training epochs and
test time as the seconds taken to process one image. Note that the train time for FDoG is Not Available, since it is not a
deep-learning-based method.

Model DualGAN pix2pix CycleGAN FDoG U-GAT-IT MUNIT Ours

train 60,000 66,400 66,000 NA 39,630 432,000 76,500

test 0.2 0.632 0.3 3.86 0.133 0.264 0.251

6.3.4. Comparison with Commercial Apps

We select the three most frequently used commercial apps that produce sketch styles
from input photographs and compare the results in Figure 14. Even though these commer-
cial apps successfully convert the input images into reasonable sketch styles, their results
is somewhat far from the illustrative sketch styles in the processing of salient features.
Furthermore, ours successfully reduce artifacts to complete the illustrative sketch styles.

Input

Pencil
Photo 

Sketch®

Sketch
Photo®

Sketch 
Camera®

Ours

Figure 14. Comparison with the apps available on mobile phones: Pencil Photo Sketchr, Sketch
Photor and Sketch Camerar.

7. Analysis

In this section, we analyze our results through various evaluation schemes.
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7.1. Evaluations
7.1.1. Human Study

To evaluate our results, we conduct a human study with 10 participants. The images
used for the human study are illustrated in Figures 11 and 12. We prepare 20 sample images,
which are categorized into four groups: human, animal, landscape and synthesized. Each
group contains five images, respectively.

We ask the participants to choose one image among seven candidates, including ours,
that best fits the following questions.

(Q1: Quality) Which of the images looks most visually pleasing?

(Q2: Similarity) Which of the images looks most similar to the input image in the right-
most column?

(Q3: Artifact) Which of the images show the fewest artifacts?

The results of this human study are given in Table 4, which shows that our result
receives the most votes from the participants. For the three questions, ours receive more
than half of the first votes.

The result of our user study shows that most of the votes are concentrated in Cycle-
GAN, MUNIT and ours. The quality of the sketch images comes from the details most
similar to the input images and the sketch styles they mimic. The three models they vote
on successfully produce sketch styles while preserving details. Other schemes, such as
pix2pix and FDoG produce, too many artifacts. DualGAN and UGATIT cannot present
the salient features of the input images. Our result shows the fewest artifacts among these
models. Furthermore, ours present the edges and dark tone in detail.

Table 4. The results of user study.

Type DualGAN pix2pix CycleGAN FDoG U-GAT-IT MUNIT Ours Total

human 0 0 11 0 0 10 29 50

animal 0 0 14 0 0 9 27 50

(Q1) landscape 0 0 13 0 0 12 25 50

synthesized 0 0 9 0 0 15 26 50

total 0 0 47 0 0 46 107 200

human 0 0 9 0 0 13 28 50

animal 0 0 15 0 0 12 23 50

(Q2) landscape 0 0 12 0 0 14 24 50

synthesized 0 0 14 0 0 10 26 50

total 0 0 50 0 0 49 101 200

human 0 0 8 0 0 15 24 50

animal 0 0 7 0 0 11 30 50

(Q3) landscape 0 0 11 0 0 12 23 50

synthesized 0 0 9 0 0 12 26 50

total 0 0 35 0 0 50 103 200

7.1.2. Ablation Study

We conducted two ablation studies in this paper and compared their results. The first
ablation study we conducted was on loss terms. Our loss function is composed of four
terms: Llsgan, Lrelaxcyc, Lidentity, and Lcam. Among the four terms, we remove three terms:
Lrelaxcyc, Lidentity, and Lcam. As illustrated in Figure 15, the result without RCCL (Lrelaxcyc)
lacks salient lines in the result. The result without an identity loss (Lidentity) has several
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important but tiny features such as the eyes in the dog. The result without a cam loss (Lcam)
looks most similar to our result. However, it has limitations in conveying regions of dark
tones, such as the tone of the hair in the third column.

Input

Without 
Relax-cycle loss

Without 
Identity loss

Without 
CAM loss

Ours

Figure 15. Ablation study on loss terms.

The second study is on the edge detection scheme. We replace our RCCL scheme with
the widely used Canny edge detection scheme. As illustrated in Figure 16, the Canny edge
scheme performs poorly in depicting the salient features of the results.

Input

Canny edge 
detection

Ours

Figure 16. Ablation study on edge extraction schemes.

7.1.3. FID Evaluation

The quality of our result is estimated through Frechet Inception Distance (FID). Lower
FID values indicate better results. We evaluate FID values for the 20 images of four
categories in Figures 11 and 12. The FID values are presented in Table 5. We draw two
conclusions from Table 5. First, our results show the lowest FID values among the six
existing schemes, meaning that ours show the best result. Second, the FID values of
the portrait show the lowest values, whereas the FID values of the landscape show the
highest values.
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Table 5. The FID values estimated from the images in Figures 11 and 12.

Type DualGAN pix2pix CycleGAN FDoG U-GAT-IT MUNIT Ours

portrait 398.28 296.59 254.05 303.92 248.18 239.69 226.26

animal 467.88 433.30 380.49 388.78 374.39 373.75 325.43

landscape 554.68 578.25 545.93 488.84 471.21 493.50 493.50

synthesized 459.39 471.72 403.98 402.86 404.13 359.90 359.90

average 470.06 444.96 396.11 396.10 374.48 366.71 366.71

7.2. Discussion

We evaluated our framework using various metrics including human study, ablation
study and FID evaluation. Through the human study, we have proved that the quality,
similarity and artifact of our scheme outperforms many existing schemes. As described in
Table 4, more than half of the participants recognize that our results are better than those of
the existing schemes. We have demonstrated how our results evolve through the loss terms
in the ablation study. As illustrated in Figure 15, our framework incorporates loss terms to
depict the salient features of the objects and to suppress unwanted artifacts. In Figure 16,
we also prove that the RCCL scheme improves the translation results by comparing them
with those from Canny edge detection schemes.

Finally, we estimate FID values from the result images to compare our results with
the results that were quantitatively obtained by the existing schemes. This analysis also
proves that our scheme produces more visually convincing illustrative sketch styles than
the existing schemes. We measure the effect size of the FID values by estimating Cohen’s
d values. The Cohen’s d values from the schemes compared in Table 5 are presented in
Table 6. From this table, we can recognize that the effect sizes between those schemes and
our scheme are greater.

Table 6. Effect size of the FID values estimated by Cohen’s d value. We test twenty samples for the estimation.

DualGAN pix2pix CycleGAN FDoG U-GAT-IT MUNIT

average 470.06 444.96 396.11 396.10 374.48 366.71

s 113.76 141.79 142.14 116.06 126.06 126.22

d 1.23 0.81 0.47 0.57 0.37 0.29

Effect greater than greater than greater than greater than greater than greater than
size very large large small medium small small

7.3. Limitation

First, our framework cannot properly produce illustrative sketch styles on monotonal
dark regions, such as dark-colored hair and shadow. As the CNN, which is the base
technique of our framework, has a limitation in the extraction of feature maps from
monotonal dark regions, our synthesized styles for the regions unsuccessfully mimic the
styles that were sampled from the training data.

Second, our framework has a limitation in producing sketch styles for regions filled
with tiny textures, such as a tree, animal or building. We found that our framework cannot
express tiny texture regions due to our training dataset. Since our framework is trained on
portraits, it is not familiar with tiny texture styles. This limitation influences our models to
produce a poor illustrative sketch style in expressing tiny texture regions.

8. Conclusions and Future Work

We presented a GAN-based framework that produces illustrative sketch styles from
various photographs. To facilitate our framework for the production, we apply an attention
map to extract and produce styles and a relaxed cycle consistency to evaluate the produced
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styles. We train our model on portrait style samples and produced illustrative sketch styles
from various photographs, including landscapes, animals and still lifes. We prove the
effectiveness of our framework by analyzing its results through human study, ablation
study and FID evaluation.

We aim to extend our framework to produce a controllable, illustrative sketch style.
For this purpose, we aim to develop a framework that separates the lines and tones of
the style. By seperately processing the lines and tones, we can enrich styles at a signifi-
cant scale. Another goal is to concentrate on illustrative sketch portraits, which present
various poses and expressions. To do this, we aim to employ various face rotation and
reenactment modules.
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