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Abstract: Given a connected graph G = (V(G), E(G)), a set S ⊆ V(G) is said to be a k-metric
generator for G if any pair of different vertices in V(G) is distinguished by at least k elements of S. A
metric generator of minimum cardinality among all k-metric generators is called a k-metric basis and
its cardinality is the k-metric dimension of G. We initially present a linear programming problem
that describes the problem of finding the k-metric dimension and a k-metric basis of a graph G. Then
we conducted a study on the k-metric dimension of a unicyclic graph.

Keywords: unicyclic graph; k-metric generator; k-metric dimension; k-metric dimensional graph;
linear programming problem

1. Introduction

Given a graph G = (V(G), E(G)), we say that a vertex v ∈ V(G) distinguishes two
different vertices x, y ∈ V(G), if dG(v, x) 6= dG(v, y), where dG(a, b) denotes the length of a
shortest a− b path. A set S ⊆ V(G) is said to be a k-metric generator for G if and only if for
any pair of different vertices u, v ∈ V(G), there exist at least k vertices w1, w2, . . . wk ∈ S
such that

d(u, wi) 6= d(v, wi), for all i ∈ {1, . . . k}.

In other words, a set S ⊆ V(G) is a k-metric generator for G if and only if for any pair
of vertices of G there exist at least k vertices in S that distinguish it. The k-metric dimension
of G, denoted by dimk(G), is the minimum cardinality among all k-metric generator for G.
Any k-metric generator with cardinality dimk(G) is called a k-metric basis of G.

These concepts were introduced, in the context of graph theory, by Estrada-Moreno et al.
in [1], as a generalization of the well-known concept of metric dimension in graphs. In
particular, for k = 1 is when these concepts correspond to the original theory of met-
ric dimension introduced independently by Harary and Melter in [2] and Slater in [3].
However, the particular case of k = 2 had also been previously defined in [4]. Recent
studies on the k-metric dimension of a graph can be consulted in [1,5–9]. Independently of
the aforementioned articles, k-metric dimension was studied in [10–12] with a computer
science oriented approach. More recently, based on the generalization given for k-metric
dimension, k-partition dimension was introduced in [13] as a generalization of partition
dimension previously defined in [14].

The theory of the metric dimension of a space general metric space was introduced in
1953 in [15] and it was not until 20 years later that it attracted attention in the context of
graph theory. Recently, the theory of metric dimension was developed further for general
metric spaces in [16]. However, it was also generalized for the k-metric dimension in the
context of general metric spaces in [17]. Again, in the context of graph theory, the concept
of k-metric dimension was generalized for a more general metric than the standard distance
in graphs in [18]. A particular case of this general metric, known as the adjacency distance,
had already been studied previously in [19].

Metric generators for a graph, for the particular case of k = 1, were shown to have
a high number of applications in real life. In particular, in those problems that can be
represented as graphs and it is also necessary that each vertex be uniquely identified with
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respect to the rest of the vertices of the graph. Example of this kind of applications is
the navigation of robots in networks [20]. However, it was shown in [1] that the metric
generators, in their primary version, have a weakness for the case where some of the
sensors located in the network, used to guide the robots, fail. Therefore, in order to
guarantee that the robots are not lost within the network when one of their sensors fails, it
is necessary to place the sensors on vertices that belong to k-metric generators, for some
k > 1. The higher the value of k, the more security we provide to the network, but we
may also incur additional costs. The k-metric generators, for k ≥ 3, have also been shown
to have application in theory of error correcting codes which was presented in [21]. As
k-metric generators are studied in depth, new applications of this concept of graph theory
may emerge.

The problem of finding the k-metric dimension and a k-metric basis for a graph can
be given in terms of an integer programming problem. Let G be a connected graph with
V(G) = v1, v2, . . . , vn and let D = [dij] be the distance matrix of G, where dij = d(vi, vj).
Given a binary variable xi for 1 ≤ i ≤ n, we define the objective function F by

F(x1, x2, . . . , xn) = x1 + x2 + . . . + xn.

The integer programming problem would then be minimizing F subject to the follow-

ing
(

n
2

)
constraints

|di1 − dj1|x1 + |di2 − dj2|x2 + . . . + |din − djn|xn ≥ k, for 1 ≤ i < j ≤ n.

Please note that the set S = {vi : xi = 1}, for any given assignment A to the n binary

variables xi, is a k-metric generator for G if and only if the
(

n
2

)
constraints are satisfied by

A. Since |S| = F and F is minimum, we conclude that S is also k-metric basis of G and F is
the k-metric dimension.

The previous integer programming problem has been proven to be NP-hard in [9,22].
Even for a more general metric than standard distance in graphs, it has been proven
in [18] that the problem is also NP-hard, for any odd k. Therefore, it would be convenient
in order to solve the problem either to use approximate methods, such as heuristics or
metaheuristics, or to determine closed formulae, or bounds, for the k-metric dimension
of certain families of graphs. In this article, we work on the second of the research lines.
However, presenting the original problem in terms of an integer programming problem can
motivate researchers in the area of operations research to work on the first of the research
lines in order to solve this problem mainly in graphs with a complex structure.

We present now some additional terminology and notation. If two vertices u, v are
adjacent in G = (V(G), E(G)), then we write u ∼ v or we say that uv ∈ E(G). Given
x ∈ V(G) we define NG(x) to be the (open) neighbourhood of x in G, i.e., NG(x) = {y ∈
V(G) : x ∼ y}. The closed neighbourhood, denoted by NG[x], equals NG(x) ∪ {x}. If there is
no ambiguity, we will simply write N(x) or N[x]. Two vertices x, y are called false twin if
N(x) = N(y) and x, y are called true twin if N[x] = N[y]. Two vertices x, y are twin if they
are false twin vertices or true twin vertices. In this work, the remainder definitions will be
introduced whenever a concept is needed.

A unicyclic graph is a connected graph containing exactly one cycle. This article
is dedicated to the study of the k-metric dimension of unicyclic graphs. The paper is
organised in the following way: Section 2 is devoted to the study of the values of k for
which there is a k-metric basis for some unicyclic graphs while in Section 3, we obtain
closed formulae for the k-metric dimension of some unicyclic graphs.

2. k-Metric Dimensional Graphs

In this section, we tackle the problem of finding the largest integer k such that there
exists a k-metric generator for some unicyclic graphs. We say that a graph G is k-metric
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dimensional if k is the largest integer such that there exists a k-metric basis of G. Notice
that if G is a k-metric dimensional graph, then for each positive integer r ≤ k, there exists
at least one r-metric basis of G.

Next, we give a characterization of k-metric dimensional graphs. To do so, we need
some additional terminology. Given two vertices x, y ∈ V(G), we say that the set of
distinctive vertices of x, y is

D(x, y) = {z ∈ V(G) : dG(x, z) 6= dG(y, z)}.

Theorem 1 ([1]). A connected graph G is k-metric dimensional if and only if k = min
x,y∈V(G)

|D(x, y)|.

In particular, the case of cycles was analysed in the following result.

Proposition 1 ([1]). Let Cn be a cycle graph of order n. If n is odd, then Cn is (n− 1)-metric
dimensional and if n is even, then Cn is (n− 2)-metric dimensional.

Although it has been shown in [9] that min
x,y∈V(G)

|D(x, y)| can be computed in poly-

nomial time for any graph, it is sometimes interesting to consider this value for some
particular cases of graphs.

k-Metric Dimensional Unicyclic Graphs

From now on, we consider some notations for a unicyclic graph G. Let C be the cycle
of G, that is, the subgraph of G induced by the vertices that form the single cycle of G.
Let V(C) = {v0, v1, . . . , vs−1} be the vertex set of C. In this context, we shall assume that
vi ∼ vi+1 for every i ∈ {0, 1, . . . , s− 1}, where the subscripts are taken modulo s. Given
vi ∈ V(C), we define Ti(Vi, Ei) as the tree rooted in vi, obtained by removing from G the
two neighbours of vi belonging to C. Please note that a rooted tree, such as the one defined,
may be trivial. A unicyclic graph G is said to be type 1 if the following conditions are
satisfied:

(a) For every vi ∈ V(C) we have 2 ≤ deg(vi) ≤ 3.
(b) For every vi ∈ V(C) such that deg(vi) = 3, we have Ti is a path.
(c) There exists at least vi ∈ V(C) such that deg(vi) = 3.

We said that G is type 2 if G is not a cycle and it is not type 1. In Figure 1, we show an
example of each type of unicyclic graph.

Figure 1. The graph on the left is type 1, and the one on the right is type 2.

Let G be a unicyclic graph of type 1 with odd cycle C. We define the following
parameter for G

θo(G) = max
vi∈V(C)

{|V(Ti)|}.

Let U = {v ∈ V(C) : deg(3) = 3} and ti be the order of the tree Ti rooted in vi ∈ U.

Let j be an integer such that 0 ≤ j ≤ min
{

s− 1
2

, ti − 1
}

. We define the following sets for

every vi ∈ V(C):

F+
i (j) =

j+b s−1
2 c⋃

t=0
V(Ti+t)− {vi} F−i (j) =

j+b s−1
2 c⋃

t=0
V(Ti−t)− {vi}.
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From the previous sets we define the parameters

Do(vi) = min{|F+
i (1)|, |F−i (1)|} Do(G) = min

vi∈V(C)
{D(vi)}

Let R+, R− be two subsets of U. A vertex vi belong to R+ if there exists another
vertex vj ∈ U such that i − j ≡ d(vi, vj)(s) and |V(Tj)| ≥ d(vi, vj) + 1. A vertex vi
belong to R− if there exists another vertex vj ∈ U such that j − i ≡ d(vi, vj)(s) and
|V(Tj)| ≥ d(vi, vj) + 1. If R+ 6= ∅, then we define ω+(G) = minvi∈R+{F+

i (0)}, otherwise,
ω+(G) = Do. Analogously, if R− 6= ∅, then we define ω−(G) = minvi∈R−{F−i (0)},
otherwise, ω−(G) = Do. From these two parameters, we introduce

ω(G)min{ω+(G), ω−(G)}.

Finally, we define

ηo = min{|V(G)| − θo(G),D(G), ω(G)}.

Proposition 2. Any unicyclic graph of type 1 with odd cycle is ηo-metric dimensional.

Proof. Let G be a unicyclic graph of type 1 with odd cycle and order n. Given vl ∈ U we
consider V(Tl) = {u0,l , . . . , utl−1,l}, where vl = u0,l and ui,l ∼ ui+1,l for 0 ≤ i ≤ tl − 2. In
this context, the subscripts that refer to the vertices of cycle C, as well as their respective
rooted paths, will be taken modulo s. We now consider four cases:

Case 1. ui,l , uj,l ∈ V(Tl), with vl ∈ U. These vertices are distinguished by the elements
of V(G) with at most one exception. This exception happens when i + j ≡
0(2), where D(ui,l , uj,l) = V(G) − {u j−i

2 ,l
} considering i < j. Hence, either

|D(ui,l , uj,l)| = n− 1 or |D(ui,l , uj,l)| = n.
Case 2. vi, vj ∈ V(C). If i + j ≡ 0(2), then D(vi, vj) = V(G) − V(T i+j

2
), otherwise,

D(vi, vj) = V(G) − V(T i+j+s
2

). Thus, if θo(G) = |V(Tr)|, then |D(vi, vj)| ≥
|D(vr−1, vr+1)| = n− θo(G).

Case 3. vi ∈ V(C) and uj,l ∈ V(Tl), with i 6= l and vl ∈ U. Recall that diameter of odd
cycle C is s−1

2 . We consider two subcases for vi, uj,l :

Subcase 3.1. d(vi, vl) = d(uj,l , vl) = j. In this case 1 ≤ j ≤ min{ s−1
2 , tl − 1}

and i ∈ {l + j, l − j}. If i = l + j, then D(vl+j, uj,l) = F+
l (j),

and considering F+
l (1) ⊆ F+

l (j) for any 1 ≤ j ≤ s−1
2 , tl − 1},

it follows that |D(vi, uj,l)| ≥ |F+
l (1)| = |D(vl+1, u1,l)|. Analo-

gously, if i = l − j, then |D(vi, uj,l)| ≥ |F−l (1)| = |D(vl−1, u1,l)|.
Thus, if Do(G) = Do(vr), then either |D(vr+1, u1,l)| = Do(G) or
|D(vr−1, u1,l)| = Do(G), and as a consequence, |D(vi, uj,l)| ≥
Do(G).

Subcase 3.2. t = d(vi, vl) 6= d(uj,l , vl) = j. Now 1 ≤ t ≤ s−1
2 . Please note

that i ∈ {l + t, l − t}. If j > t, then vi, uj,l are distinguished by
elements of V(G) with at most one exception. This exception
is when t + j ≡ 0(2), where D(vi, uj,l) = V(G)− {u j−t

2 ,l
}. Thus,

if j > t, then |D(vi, uj,l)| ≥ n− 1. Suppose now that j < t. If
i + j ≡ 0(2), then D(vi, uj,l) = V(G)−V(T i+l−j

2
) and, if i + j 6≡

0(2), then the vertices D(vi, uj,l) = V(G)− V(Ts+i+l+j
2

). Thus,

|D(vi, uj,l)| ≥ n− θo(G).

Case 4. ui,l ∈ V(Tl) and uj,m ∈ V(Tm), with vl , vm ∈ U. In this case d(ui,l , vl) = i and
d(uj,m, vm) = j. Without loss of generality we assume that i ≥ j. We analyse the
next subcases:
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Subcase 4.1. i = j. If l + m ≡ 0(2), then D(ui,l , uj,m) = V(G) − V(T l+m
2
),

otherwise, D(ui,l , uj,m) = V(G)−V(Ts+l+m
2

). Hence, in this case

|D(ui,l , uj,m)| ≥ n− θo(G).
Subcase 4.2. i > j. If i > d(vl , vm) + j, then any vertex in V(G) distinguishes

ui,l , uj,m with at most one exception given when d(ui,l , uj,m) ≡
0(2), which implies that |D(ui,l , uj,m)| ≥ n− 1. If i < d(vl , vm) +
j, then any vertex in V(G) distinguishes ui,l , uj,m with the ex-
ception of vertices in V(Tr), where vr is the only vertex in
V(C) such that d(vr, ui,l) = d(vr, uj,m), and as a consequence,
|D(ui,l , uj,m)| ≥ n − θo(G). If i = d(vl , vm) + j, then for l −
m ≡ d(vl , vm)(s) we have that D(ui,l , uj,m) = F−m (0), while if
m− l ≡ d(vl , vm)(s) it follows that D(ui,l , uj,m) = F+

m (0). In this
case R+ ∪ R− 6= ∅, which implies |D(ui,l , uj,m)| ≥ ω(G).

Since min{n, n− 1, n− θo(G),Do(G), ω(G)} = min{n− θo(G),Do(G), ω(G)} by Theorem 1,
we conclude that G is ηo-metric dimensional.

We next discuss the case when G is a unicyclic graph of type 1 such that whose cycle
C is even. To this end, we will introduce some parameters as we did with the case where C
was odd:

θe(G) = max
vi∈V(C)

{|V(Ti) ∪V(Ti+ s
2
)|}.

Please note that in this case vi and vi+ s
2

are antipodal vertices of C. Given vi ∈ U
we define

De(vi) = min{|F+
i (1)|, |F−i (1)|} De(G) = min

vl∈U
{D(vl)},

and
ηe = min{n− θe(G),De(G), ω(G)}.

Proposition 3. Any unicyclic graph of type 1 with even cycle is ηe-metric dimensional.

Proof. Let G be a unicyclic graph of type 1 with even cycle and order n. Given vl ∈ U we
consider V(Tl) = {u0,l , . . . , utl−1,l}, where vl = u0,l and ui,l ∼ ui+1,l for 0 ≤ i ≤ tl − 2. We
now consider three cases:

Case 1. ui,l , uj,l ∈ V(Tl). This case is analogous to Case 1 of Proposition 2.

Case 2. vi, vj ∈ V(C). If i + j ≡ 0(2), then |D(vi, vj)| = n−
∣∣∣∣V(T i+j

2
) ∪V(T i+j+s

2
)

∣∣∣∣, oth-

erwise, |D(vi, vj)| = n. If θe(G) = |V(Tr) ∪V(Tr+ s
2
)|, then since |D(vr−1, vr+1)|

= n− θe(G), we have that |D(vi, vj)| ≥ |D(vr−1, vr+1)| = n− θe(G).
Case 3. vi ∈ V(C) and uj,l ∈ V(Tl). Notice that diameter of cycle C is s

2 . Given vl ∈ U
we consider two subcases for the pairs of the form vi, uj,l :

Subcase 3.1. d(vi, vl) = d(uj,l , vl) = j. In this case 1 ≤ j ≤ min{ s
2 , tl − 1}. No-

tice that i ∈ {l + j, l − j}. If i = l + j, then D(vl+j, uj,l) = F+
l (j).

Please note that F+
l (1) ⊆ F+

l (j) for any 1 ≤ j ≤ min{ s
2 , tl − 1}

which implies |D(vi, uj,l)| ≥ |F+
l (1)| = |D(vl+1, u1,l)|. Analo-

gously, if i = l − j, then D(vl−j, uj,l) = F−l (j) and |D(vi, uj,l)| ≥
|F−l (1)| = |D(vl−1, u1,l)|. Thus, |D(vi, uj,l)| ≥ |De(G), where
D(vl+1, u1,l)| = De(G) or D(vl−1, u1,l)| = De(G).

Subcase 3.2. t = d(vi, vl) 6= d(uj,l , vl) = j. Now 1 ≤ t ≤ s
2 . Please

note that i ∈ {l + t, l − t}. If j > t, then vi, uj,l are distin-
guished by elements of V(G) with at most the exception u j−t

2 ,l
when t + j ≡ 0(2). Thus, if j > t, then either |D(vi, uj,l)| =
n − 1 or |D(vi, uj,l)| = n. If j < t, then D(vi, uj,l) = V(G) −
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(
V(T i+l−j

2
) ∪V(Ts+i+l+j

2
)

)
for i + j ≡ 0(2) and D(vi, uj,l) =

V(G) for i + j ≡ 1(2). Thus, |D(vi, uj,l)| ≥ n− θe(G).

Case 4. ui,l ∈ V(Tl) and uj,m ∈ V(Tm), with vl , vm ∈ U. In this case d(ui,l , vl) = i and
d(uj,m, vm) = j. Without loss of generality we assume that i ≥ j. We analyse the
next subcases:

Subcase 4.1. i = j. If l + m ≡ 0(2), then D(ui,l , uj,m) = V(G)− V(T l+m
2
)−

V(Ts+l+m
2

), otherwise, D(ui,l , uj,m) = V(G). Hence, in this case

|D(ui,l , uj,m)| ≥ n− θe(G).
Subcase 4.2. If i > d(vl , vm)+ j, then any vertex in V(G) distinguishes ui,l , uj,m

with at most one exception given when d(ui,l , uj,m) ≡ 0(2),
which implies that |D(ui,l , uj,m)| ≥ n − 1. If i < d(vl , vm) + j,
then any vertex in V(G) distinguishes ui,l , uj,m with at most the
exception, when d(ui,l , uj,m) ≡ 0(2), of vertices in V(Tr)∪V(Ts),
where vr, vs are the only vertices in V(C) such that d(vr, ui,l) =
d(vr, uj,m) and d(vs, ui,l) = d(vs, uj,m), and as a consequence,
|D(ui,l , uj,m)| ≥ n − θe(G). If i = d(vl , vm) + j, then for l −
m ≡ d(vl , vm)(s) we have that D(ui,l , uj,m) = F−m (0), while if
m− l ≡ d(vl , vm)(s) it follows that D(ui,l , uj,m) = F+

m (0). In this
case R+ ∪ R− 6= ∅, which implies |D(ui,l , uj,m)| ≥ ω(G).

Since min{n, n− 1, n− θe(G),De(G), ω(G)} = min{n− θe(G),De(G), ω(G)} by Theorem 1,
we conclude that G is ηe-metric dimensional.

3. The k-Metric Dimension of Unicyclic Graphs

To begin this section, we present some results and definitions that were given previ-
ously in [1]. Later, in Section 3, we give some closed formulae for the unicyclic graphs that
fulfil certain properties.

From the fact that every pair of vertices x, y is distinguished only by the elements of
D(x, y), we deduce the following Lemma given in [1].

Lemma 1 ([1]). If |D(x, y)| = k, then for any k-metric basis B we have that D(x, y) ⊆ B.

Next we give an important bound given in [1].

Theorem 2 ([1]). Let G be a k-metric dimensional graph different from a path. Then for any
r ∈ {2, ..., k},

dimr(G) ≥ r + 1.

Now we introduce some definitions that will be useful to us to prove our next results.
A vertex of degree at least three in a graph G will be called a major vertex of G. Any
end-vertex (a vertex of degree one) u of G is said to be a terminal vertex of a major vertex v
of G if dG(u, v) < dG(u, w) for every other major vertex w of G. The terminal degree ter(v)
of a major vertex v is the number of terminal vertices of v. A major vertex v of G is an
exterior major vertex of G if its terminal degree is positive. LetM(G) be the set of exterior
major vertices of G whose terminal degree is greater than one.

Given w ∈ M(G) and a terminal vertex uj of w, we denote by P(uj, w) the short-
est path that starts at uj and ends at w. Let l(uj, w) be the length of P(uj, w). Now,
given w ∈ M(G) and the set of terminal vertices W = {u1, u2, . . . , uk} of w, we define
l(w) = min

uj∈U
{l(uj, w)}. Please note that by definition of exterior major vertex, P(uj, w, ur)

is obtained by concatenating the paths P(uj, w) and P(ur, w), where w is the only vertex of
degree greater than two lying on these paths.
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Now we present a lower bound for the r-metric dimension of any k-metric dimensional
graph. To do so, we first define the following function for any exterior major vertex
w ∈ M(G) and any 1 ≤ r ≤ k.

Ir(w) =


(ter(w)− 1)(r− l(w)) + l(w), if l(w) ≤

⌊ r
2

⌋
,

(ter(w)− 1)
⌈ r

2

⌉
+
⌊ r

2

⌋
, otherwise.

In order to clarify the previous formula for the vertices that belong to the setM(G),
we will use the graph G given in Figure 2. In this case, w1, w2 are the only exterior major
vertices with terminal degree at least two, and as a consequence, M(G) = {w1, w2}.
In both cases these vertices have terminal degree 2, l(w1) = 2 and l(w2) = 1. Hence,

I1(w1) = (ter(w1)− 1)
⌈

1
2

⌉
+

⌊
1
2

⌋
= 1, I2(w1) = (ter(w1)− 1)(2− l(w1)) + l(w1) =

l(w1) = 2, and I3(w1) = (ter(w1)− 1)(3− l(w1)) + l(w1) = 3. Analogously, Ir(w2) =
(ter(w2)− 1)(r− l(w2)) + l(w2) = r.

w1 w2

Figure 2. A unicyclic graph G whereM(G) = {w1, w2}, dim1(G) = ∑
w∈M(G)

I1(w) = 2, dim2(G) =

∑
w∈M(G)

I2(w) = 4, and dim3(G) = ∑
w∈M(G)

I3(w) = 6.

Theorem 3 ([1]). If G is a k-metric dimensional graph such that |M(G)| ≥ 1, then for every
r ∈ {1, ..., k},

dimr(G) ≥ ∑
w∈M(G)

Ir(w).

The tightness of the previous bound is shown in [1] for the case of the tree different
from path. We present, in Theorem 6, that this bound is reached for some unicyclic graphs.

Closed Formulae for the k-Metric Dimension of Some Unicyclic Graphs

Proposition 4. Let Cn be cycle graph of order n.

(i) If n is even, then

• dimk(Cn) = k + 1 for every 1 ≤ k ≤ n
2
− 1.

• dimk(Cn) = k + 2 for every
n
2
≤ k ≤ n− 2.

(ii) If n is odd, then

• dimk(Cn) = k + 1 for every 1 ≤ k ≤ n− 1.

Proof. By Proposition 1, we have that if n is odd Cn is (n− 1)-metric dimensional, oth-
erwise Cn is (n − 2)-metric dimensional. Thus, if n is odd, then dimk(Cn) exists for
1 ≤ k ≤ n− 1 and, if n is even, then dimk(Cn) exists for 1 ≤ k ≤ n− 2. On the other hand,
by Theorem 2, we have that dimk(Cn) ≥ k + 1. We now consider two cases for computing
dimk(Cn):

Case 1. n is odd. For any pair of vertices u, v ∈ V(Cn) there exist only one vertex
w ∈ V(Cn) such that w does not distinguish u and v. Hence, for every S ⊆ V(Cn)
such that |S| = k+ 1 and every pair u, v ∈ V(Cn) there exists at least k element of
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S which distinguish u, v. Thus, S is a k-metric generator for Cn and, consequently,
dimk(Cn) ≤ |S| = k + 1. Therefore, dimk(Cn) = k + 1.

Case 2. n is even. In this case, Cn is 2-antipodal (The diameter of G = (V, E) is defined as
D(G) = maxu,v∈V(G){dG(u, v)}). We say that u and v are antipodal vertices or
mutually antipodal if dG(u, v) = D(G). We recall that G = (V, E) is 2-antipodal
if for each vertex x ∈ V there exists exactly one vertex y ∈ V such that dG(x, y) =
D(G)). For any pair of vertices u, v ∈ V(Cn), such that d(u, v) = 2l, we can take
a vertex x such that d(u, x) = d(v, x) = l. Therefore, D(u, v) = V(Cn)− {x, y},
where x and y are antipodal vertices. On the other hand, if d(u, v) is odd, then
D(u, v) = V(Cn). Now, we analyse two subcases:

Subcase 2.1. 1 ≤ k ≤ n
2
− 1. Let P = {v1, v2, . . . , vk+1} be a path in Cn.

Since k <
n
2
= D(Cn) there are no two antipodal vertices on P.

Thus, for any pair of vertices u, v ∈ V(Cn) there exists at most
only one vertex w ∈ P such that w does not distinguish u and
v. Therefore, P is k-metric generator for Cn and, consequently,
dimk(Cn) ≤ |P| = k + 1. Therefore, dimk(Cn) = k + 1.

Subcase 2.2.
n
2
≤ k ≤ n− 2. Since k ≥ n

2
= D(Cn), for any S ⊆ V(Cn) such

that |S| = k + 1, there exist at least two antipodal vertices w1, w2,
which leads there exist at least two vertices u, v which are not
distinguish by w1, w2. Hence, if |S| = k + 1, then |S∩D(u, v)| <
k, and as consequence, dimk(Cn) ≥ k + 2. On the other hand,
since each pair of vertices of V(Cn) is distinguished by V(Cn)
with at most the exception of two vertices, every S′ ⊆ V(Cn)
such that |S′| = k + 2, is a k-metric generator for Cn. Therefore,
dimk(Cn) ≤ |S′| = k + 2, which implies dimk(Cn) = k + 2.

Theorem 4. Let G be a unicyclic graph of type 1 whose cycle C is of odd order s. If there exists
only one vertex v ∈ V(C) such that deg(v) = 3 whose rooted tree T is the order r, then for any
k ∈ {1, 2, . . . , min{s− 1, s+1

2 + r− 1}}

dimk(G) =



2 if k = 1,
3 if k = 2,

3k− 1
2

if k ≥ 3, k is odd and r ≥ k− 3
2

,
3k− 2

2
if k ≥ 4, k is even and r ≥ k

2
,

2k− r− 1 otherwise.

Proof. By Proposition 2, we have that G is k′-metric dimensional graph for k′ = min{s−
1, s+1

2 + r − 1}, and as a consequence, dimk(G) exists. Let V(C) = {v0, . . . , vs−1} be the
vertex set of C such that vi ∼ vi+1. We consider, without loss of generality, deg(v0) = 3
and V(T0) = {u0, u1, . . . , ur−1}, where v0 = u0 and uj ∼ uj+1 for 0 ≤ j ≤ r− 2. Since by
Theorem 2, we have dim(G) ≥ 2 and dim2(G) ≥ 3, and also considering that {v s−1

2
, v s+1

2
}

and {v0, v s−1
2

, v s+1
2
} are a metric generator and a 2-metric generator for G, respectively, we

deduce dim(G) = 2 and dim2(G) = 3.
From now on, we assume that k ≥ 3. Keep the following facts in mind

• D(v1, vs−1) = V(G)−V(T0).
• D(v1, u1) = (V(T0)− {u0}) ∪ {v1, v2, . . . , v s+1

2
}.

• D(vs−1, u1) = (V(T0)− {u0}) ∪ {v s−1
2

, v s+1
2

, . . . , vs−1}.
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Let S′ be a k-metric basis of G. First, suppose that k is odd. Since |S′ ∩D(v1, vs−1)| ≥ k,
there exists R ⊆ D(v1, vs−1) such that |R| = k and R ⊂ S′. Given |R ∩ D(v1, u1) ∩
D(vs−1, u1)| ≤

k + 1
2

, V(T0)− {u0} ⊂ D(v1, u1) ∩D(v1, vs−1) and (V(T0)− {u0}) ∩ R =

∅, if r ≥ k− 3
2

, then as we need to take at least
k− 1

2
vertices of V(T0) − {u0} for dis-

tinguishing at least k times the pairs v1, u1 and vs−1, u1, we conclude that dim(G) =

|S′| ≥ |R| + k− 1
2

=
3k− 1

2
. If r <

k− 3
2

, then at least I have to choose the r −
1 vertices in V(T0) − {u0}, and at least k − 2r vertices of (D(v1, u1) ∪D(vs−1, u1)) −
(R ∪ (V(T0)− {u0})) to distinguish at least k times the pairs v1, u1 and vs−1, u1, and conse-
quently, dim(G) = |S′| ≥ |R|+ (r− 1) + (k− 2r) = 2k− r− 1. Now, suppose k is even. By
an analysis analogous to the previous one, and considering |R∩D(v1, u1)∩D(vs−1, u1)| ≤
k
2
+ 1, if r ≥ k

2
, then dim(G) = |S′| ≥ 3k− 2

2
, otherwise dim(G) = |S′| ≥ 2k− r− 1.

We now define the following sets for each case considered in our result:

(a) For k odd and r ≥ k− 3
2

, we consider S1 = {v s−k
2

, v s−k+2
2

, . . . , v s+k−2
2
}∪

{u1, u2, . . . , u k−1
2
}. Please note that |S1| =

3k− 1
2

.

(b) For k odd and r <
k− 3

2
, we consider S2 = {v s−2k+2r+1

2
, v s−2k+2r+3

2
, . . . , v s+2k−2r−1

2
}

∪{u1, u2, . . . , ur−1}. Please note that |S2| = 2k− r− 1.

(c) For k even and r ≥ k
2

, we consider S3 = {v s−k+1
2

, v s−k+3
2

, . . . , v s+k−1
2
} ∪ {u1, u2, . . . ,

u k−2
2
}. Please note that |S3| =

3k− 2
2

.

(d) For k even and r <
k
2

, we consider S2.

We claim, in the cases (a)–(d), that the respective sets previously defined are k-metric
generator for G. In this context, we will consider S ∈ {S1, S2, S3} and we only make
distinctions where necessary. We now analyse three cases:

Case 1. ui, uj ∈ V(T0). These vertices are distinguished by the elements of V(G) with at
most one exception. Assume that i < j. If i + j ≡ 0(2), then D(ui, uj) = V(G)−
{u j−i

2
}. Since |D(ui, uj) ∩ S| ≥ |S| − 1 ≥ k, we deduce ui, uj are distinguished

by at least k elements of S.
Case 2. vi, vj ∈ V(C). If i + j ≡ 0(2), then D(vi, vj) = V(G)− V(T i+j

2
) and, if i + j 6≡

0(2), then D(vi, vj) = V(G)−V(T i+j+s
2

). Since for any pair of vertices vi, vj such

that v0 does not distinguish it, we have V(C)− {v0} distinguish it, and also
considering |S ∩ (V(C)− {v0})| ≥ k, in this case we are done. The rest of the
pairs of vertices are distinguished by the vertices of V(G) with the exception
of one vertex of V(C)− {v0}. Thus, in this case |D(ui, uj) ∩ S| ≥ |S| − 1 ≥ k
which implies each pair in V(C) is distinguished by at least k elements of S.

Case 3. vi ∈ V(C) and uj ∈ V(T0). Recall that diameter of cycle C is s−1
2 . We consider

two subcases for the pairs of the form vi, uj:

Subcase 3.1. d(vi, v0) = d(uj, v0) = j. In this case 1 ≤ j ≤ min{ s−1
2 , r − 1}.

Notice that i ∈ {−j, j}. If i = j, thenD(vj, uj) = (V(T0)− {v0})∪(⋃j+ s−1
2

t=1 {vt}
)

. Please note that D(v1, u1) ⊆ D(vj, uj) for any j.

Analogously, if i = −j, then D(v−j, uj) = (V(T0)− {v0})∪(⋃j+ s−1
2

t=1 {v−t}
)

and D(vs−1, u1) ⊆ D(v−j, uj) for any j. Since

|D(v1, u1)∩ S| ≥ k and |D(vs−1, u1)∩ S| ≥ k, we conclude, each
pair is distinguished by k elements of S.

Subcase 3.2. t = d(vi, v0) 6= d(uj, v0) = j. In this case 1 ≤ t ≤ s−1
2 , i ∈

{−t, t} and 1 ≤ j ≤ r − 1. If we suppose j > t, then vi, uj are
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distinguished by elements of V(G) with at most one exception.
This exception happens when t + j ≡ 0(2), where we have
D(vi, uj) = V(G)− {u j−t

2
}. Thus, if j > t, then |D(vi, uj) ∩ S| ≥

|S| − 1 ≥ k. Suppose now that j < t. If i + j ≡ 0(2), then
D(vi, uj) = V(G)− {v i−j

2
} and, if i + j 6≡ 0(2), then D(vi, uj) =

V(G)− {v s+i+j
2
}. Hence, again |D(vi, uj) ∩ S| ≥ |S| − 1 ≥ k. In

any case vi, uj are distinguished by at least k elements of S.

Therefore, S, in each case, is a k-metric generator for G, and as a consequence,
dim(G) ≤ |S|.

Theorem 5. Let G be a unicyclic graph of type 1 whose cycle C is of even order s. If there exists
only one vertex v ∈ V(C) such that deg(v) = 3 whose rooted tree T is the order r, then for any
k ∈ {1, 2, . . . , min{s− 2, s

2 + r− 1}}

dimk(G) =



4 if k = 2 and s = 4
3k + 1

2
if k is odd and r ≥ k + 1

2
,

3k
2

if s ≥ 6, k is even and r ≥ k
2

,

2k− r otherwise.

Proof. By Proposition 3, we have that G is k′-metric dimensional graph for k′ = min{s−
2, s

2 + r − 1}, and as a consequence, dimk(G) exists. Let V(C) = {v0, . . . , vs−1} be the
vertex set of C such that vi ∼ vi+1. We consider, without loss of generality, deg(v0) = 3
and V(T0) = {u0, u1, . . . , ur−1}, where v0 = u0 and uj ∼ uj+1 for 0 ≤ j ≤ r− 2. Let S′ be a
k-metric basis of G.

First, suppose that s = 4 and k = 2. Since v1, v3 are twin vertices, by Lemma 1, we
have that {v1, v3} ⊆ S′. Since the pair v0, v2 is not distinguished by v1, v3, there exist two
vertices in V(G)− {v1, v3} which belonging to S′ and, consequently, dim2(G) = |S′| ≥ 4.
Since V(C) is a 2-metric generator for G, we conclude that dim2(G) ≤ |V(C)| = 4 and,
consequently, dim2(G) = 4.

From now on, we consider s ≥ 6 or k 6= 2. Keep the following facts in mind

• D(v1, vs−1) = V(G)− (V(T0) ∪ {v s
2
}).

• D(v1, u1) = (V(T0)− {u0}) ∪ {v1, v2, . . . , v s
2
}.

• D(vs−1, u1) = (V(T0)− {u0}) ∪ {v s
2
, v s+2

2
, . . . , vs−1}.

First, suppose that k is odd. Since |S′ ∩D(v1, vs−1)| ≥ k, there exists R ⊆ D(v1, vs−1)

such that |R| = k and R ⊂ S′. Given |R ∩ D(v1, u1) ∩ D(vs−1, u1)| ≤
k− 1

2
, (V(T0) −

{u0}) ∪ {v s
2
} ⊂ D(v1, u1) ∩ D(v1, vs−1) and ((V(T0) − {u0}) ∪ {v s

2
}) ∩ R = ∅, if r ≥

k + 1
2

, then as we need to take at least
k + 1

2
vertices of (V(T0) − {u0}) ∪ {v s

2
} for dis-

tinguishing at least k times the pairs v1, u1 and vs−1, u1, we conclude that dim(G) =

|S′| ≥ |R| + k + 1
2

=
3k + 1

2
. If r <

k + 1
2

, then at least I have to choose the r vertices

in (V(T0)− {u0}) ∪ {v s
2
}, and at least k− 2r vertices of (D(v1, u1) ∪D(vs−1, u1))− (R ∪

((V(T0)− {u0}) ∪ {v s
2
})) to distinguish at least k times the pairs v1, u1 and vs−1, u1, and

consequently, dim(G) = |S′| ≥ |R|+ r + (k− 2r) = 2k− r. Now, suppose k is even. By an

analysis analogous to the previous one, and considering |R∩D(v1, u1)∩D(vs−1, u1)| ≤
k
2

,

if r ≥ k
2

, then dim(G) = |S′| ≥ 3k
2

, otherwise dim(G) = |S′| ≥ 2k− r. We now define the
following sets for each case considered in our result:
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(a) For k odd and r ≥ k + 1
2

, we consider S1 = {v s−k−1
2

, v s−k+1
2

, . . . , v s+k−1
2
}∪

{u1, u2, . . . , u k−1
2
}. Please note that |S1| =

3k + 1
2

.

(b) For k odd and r <
k + 1

2
, we consider S2 = {v s−2k+2r

2
, v s−2k+2r+2

2
, . . . , v s+2k−2r

2
}∪

{u1, u2, . . . , ur−1}. Please note that |S2| = 2k− r.

(c) For k even and r ≥ k
2

, we consider S3 = {v s−k
2

, v s−k+2
2

, . . . , v s+k
2
} ∪ {u1, u2, . . . , u k−2

2
}.

Please note that |S3| =
3k
2

.

(d) For k even and r <
k
2

, we consider S2.

We claim, in the cases (a)–(d), that the respective sets previously defined are k-metric
generator for G. In this context, we will consider S ∈ {S1, S2, S3} and we only make
distinctions where necessary. We now analyse three cases:

Case 1. ui, uj ∈ V(T0). These vertices are distinguished by the elements of V(G) with
at most one exception. This exception happens when i + j ≡ 0(2), where
D(ui, uj) = V(G)− {u j−i

2
} assuming i < j. Since |D(ui, uj) ∩ S| ≥ |S| − 1 ≥ k,

each pair in V(T0) is distinguished by at least k elements of S.
Case 2. vi, vj ∈ V(C). These vertices are distinguished by the elements of V(G) with

at most two exceptions. These exceptions happen when i + j ≡ 0(2), where
D(vi, vj) = V(G)− {T i+j

2
, T i+j+s

2
}. Since for any pair of vertices vi, vj such that

v0 does not distinguish it, we have V(C) − {v0, v s
2
} distinguish it, and also

considering |S∩ (V(C)−{v0, v s
2
})| ≥ k, in this case we are done. The rest of the

pairs of vertices are distinguished by the vertices of V(G) with the exception of
two vertices of V(C)−{v0, v s

2
}. Please note that only |(D(vi, vj)−V(C))∩ S| =

2 if k ≥ s
2

. However, if k ≥ s
2

, then |D(vi, vj) ∩ S| ≥ |S| − 2 ≥ k. Otherwise,

since |D(vi, vj)∩ S| ≥ |S| − 1 ≥ k, we deduce each pair in V(C) is distinguished
by at least k elements of S.

Case 3. vi ∈ V(C) and uj ∈ V(T0). Recall that diameter of cycle C is
s
2

. We consider two
subcases for the pairs of the form vi, uj:

Subcase 3.1. d(vi, v0) = d(uj, v0) = j. In this case 1 ≤ j ≤ min{ s
2 , r − 1}.

Notice that i ∈ {−j, j}. If i = j, then D(vj, uj) = (V(T0)− {v0})
∪
(⋃j+ s

2−1
t=1 {vt}

)
. Please note that D(v1, u1) ⊆ D(vj, uj) for any

j. Analogously, if i = −j, then D(v−j, uj) = (V(T0)− {v0}) ∪(⋃j+ s
2−1

t=1 {v−t}
)

and D(vs−1, u1) ⊆ D(v−j, uj) for any j. Since
|D(v1, u1)∩ S| ≥ k and |D(vs−1, u1)∩ S| ≥ k, we conclude, each
pair is distinguished by k elements of S.

Subcase 3.2. t = d(vi, v0) 6= d(uj, v0) = j. Now 1 ≤ t ≤ s
2 . Please note that

i ∈ {−t, t}. If j > t then, vi, uj are distinguished by elements
of V(G) with at most one exception. This exception happens
when t + j ≡ 0(2), where D(vi, uj) = V(G) − {u j−t

2
}. Hence,

|D(vi, uj) ∩ S| ≥ |S| − 1 ≥ k. Now, suppose that j < t. If i + j ≡
0(2), then D(vi, uj) = V(G)− {v i−j

2
, v s+i+j

2
}. If {v i−j

2
, v s+i+j

2
} ⊂

S, then k ≥ s
2

, and as a consequence, |D(vi, uj) ∩ S| ≥ |S| − 2 ≥
k. In any other case, |D(vi, uj) ∩ S| ≥ |S| − 1 ≥ k.

Therefore, S, in each case, is a k-metric generator for G, and as a consequence,
dim(G) ≤ |S|.
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We say a vertex v of a unicyclic graph G is transcendental if and only if v ∈ M(G)
or the tree T rooted in v is not a path. We will denote by T(G) the set of transcendental
vertices of G.

Theorem 6. Let G be a k-metric dimensional unicyclic graph such that |T(G)| ≥ 3. If for any
vertex vi ∈ V(C) such that deg(vi) = 3 and its rooted tree is a path we have D(vi+1, ui) ∩
T(G) 6= ∅ and D(vi−1, ui) ∩ T(G) 6= ∅, where {vi−1, vi+1} = N(vi) ∩ V(C) and {ui} =
N(vi)− {vi−1, vi+1}, then for every r ∈ {1, . . . , k},

dimr(G) = ∑
w∈M(G)

Ir(w).

Proof. By Theorem 3 it follows that dimr(G) ≥ ∑w∈M(G) Ir(w). Since |T(G)| ≥ 3, we
deduceM(G) 6= ∅. For every w ∈ M(G), we assume u1 is a terminal vertex of w such
that l(u1, w) = l(w). Let W(w) = {u1, u2, . . . , us} be the set of terminal vertices of w. Now,

for every uj ∈W(w), let the path P(uj, w) = uju1
j u2

j . . . u
l(uj ,w)−1
j w and we consider the set

S(uj, w) ⊂ V
(

P(uj, w)
)
− {w} given by:

S(u1, w) =


{

u1, u1
1, . . . , ul(w)−1

1

}
, if l(w) ≤

⌊ r
2

⌋
{

u1, u1
1, . . . , ub

r
2 c−1

1

}
, if l(w) >

⌊ r
2

⌋
.

and for j 6= 1,

S(uj, w) =


{

uj, u1
j , . . . , ur−l(w)−1

j

}
, if l(w) ≤

⌊ r
2

⌋
,

{
uj, u1

j , . . . , ud
r
2 e−1

j

}
, if l(w) >

⌊ r
2

⌋
.

Let S(w) =
⋃

uj∈W(w)

S(uj, w) and S =
⋃

w∈M(G)

S(w). Since for every w ∈ M(G) it fol-

lows that
⋂

uj∈W(w)

S(uj, w) = ∅ and
⋂

w∈M(T)

S(w) = ∅, we obtain that |S| = ∑
w∈M(G)

Ir(w).

Furthermore, notice that for every w ∈ M(T), such that ter(w) = 2 we have |S(w)| = r
and, if ter(w) > 2, then we have |S(w)| ≥ r + 1. On the other hand, for any vertex
V ∈ T(G), the tree T rooted in v holds |S ∩ V(T)| ≥ r. We claim that S is an r-metric
generator for G. For any two distinct vertices u, v ∈ V(G) we consider the following cases.

Case 1. u, v ∈ V(Tl), where deg(vl) ≥ 3. If Tl is a tree different from a path, then
M(Tl) ⊂ M(G), and it was proved in [1], u, v are distinguished by r vertices
of ∑

w∈M(Tl)

Ir(w) ⊂ S. If Tl is a path and vl is not a leaf of this path, then

vl ∈ M(G), and as a consequence, u, v are distinguished by at least r vertices
of S ∩V(Tl). Suppose that Tl is a path and vl is a leaf of this path. In this case
u, v are distinguished by the elements of V(G) with at most the exception of
one vertex of Tl which happens when d(u, v) ≡ 0(2). Since |T(G)| ≥ 3, for any
vertex a ∈ T(G) with tree Ta rooted in a, we have every vertex in S ∩ V(Ta)
distinguishes u, v which implies that they are distinguished by r vertices of S.

Case 2. u, v ∈ V(C). Since there exists at most two vertices do not distinguish u, v
and |T(G)| ≥ 3, we have there exists a vertex a ∈ T(G) that distinguishes u, v.
Hence, u, v are distinguished by at least r vertices S∩V(Ta), where Ta is the tree
rooted in a.

Case 3. u ∈ V(C) and v ∈ V(Tl), where deg(vl) ≥ 3. In this case we consider two
subcases:
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Subcase 3.1. d(u, vl) = d(v, vl) = j. If Tl is not a path or vl ∈ M(G), then
any vertex S ∩ V(Tl) distinguishes u, v. Thus, u, v are distin-
guished by r elements of S. Suppose now that Tl is a path and
deg(vl) = 3. By premise we have D(vl+1, ul) ∩ T(G) 6= ∅ and
D(vl−1, ul) ∩ T(G) 6= ∅, where {vl−1, vl+1} = N(vl) ∩ V(C)
and {ul} = N(vl) − {vl−1, vl+1}. Since D(vl+1, ul) ∩ V(C) ⊂
D(u, v) ∩ V(C) or D(vl−1, ul) ∩ V(C) ⊂ D(u, v) ∩ V(C), there
exists a vertex a ∈ T(G) that distinguishes u, v. Hence, they are
distinguished by at least r vertices S ∩ V(Ta), where Ta is the
tree rooted in a.

Subcase 3.2. t = d(u, vl) 6= d(v, vl) = j. If j > t, then u, v are distinguished by
elements of V(G) with at most the exception of w ∈ V(Tl) when
t + j ≡ 0(2). Thus, u, v are distinguished by at least r vertices
S ∩V(Ta), where Ta is the tree rooted in any vertex a ∈ T(G). If
j < t, then at most two vertices of V(C) do not distinguish u, v.
Since |T(G)| ≥ 3, we have there exists a vertex a ∈ T(G) that
distinguishes u, v, which implies they are distinguished by at
least r vertices S ∩V(Ta), where Ta is the tree rooted in a.

Case 4. u ∈ V(Tl) and v ∈ V(Tm), where Tl and Tm are not trivial graphs. In this case,
at most two vertices of V(C) do not distinguish u, v. Since |T(G)| ≥ 3, we have
there exists a vertex a ∈ T(G) that distinguishes u, v, which implies they are
distinguished by at least r vertices S ∩V(Ta), where Ta is the tree rooted in a.

Therefore, dimr(G) ≤ |S| = ∑
w∈M(G)

Ir(w), and the result follows.

4. Conclusions and Open Problems

This article is a contribution to the theory k-metric dimension in graph. In particular,
we study this invariant for unicyclic graph. In our study, we obtain closed formulae to
determine the largest value of k for which there is a k-metric generator of a unicyclic graph
of type 1. Finally, we give closed formulae for k-metric dimension of unicycle graphs of
type 1 with a single vertex of degree three and for unicycle graphs of type 2 with at least
three transcendental vertices and that satisfy a specific property for those vertices of the
cycle with degree 3 and whose rooted tree is a path.

Some open problems have emerged from the study carried out. For instance, we
highlight the following.

(a) It would be interesting to characterize all graphs that satisfy the formula given in
Theorem 6. For instance, the graph in Figure 2 satisfies this formula, however it
does not satisfy the premises given in Theorem 6.

(b) We gave a closed formula for the k-metric dimension of a particular family of
unicyclic graphs of type 1. Therefore, it would be convenient to see if it is possible
to obtain closed formulae or to be able to bound the k-metric dimension of the rest
of the unicyclic graphs of type 1.

(c) Since the optimization problem of finding k-metric dimension is NP-hard, it would
be interesting to devise polynomial-time algorithm for families of unicyclic graphs or
to develop heuristics that allow estimating as accurately as possible this parameter
for these families.
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