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Abstract: Feature selection (FS) is a well-known preprocess step in soft computing and machine
learning algorithms. It plays a critical role in different real-world applications since it aims to
determine the relevant features and remove other ones. This process (i.e., FS) reduces the time
and space complexity of the learning technique used to handle the collected data. The feature
selection methods based on metaheuristic (MH) techniques established their performance over all the
conventional FS methods. So, in this paper, we presented a modified version of new MH techniques
named Atomic Orbital Search (AOS) as FS technique. This is performed using the advances of
dynamic opposite-based learning (DOL) strategy that is used to enhance the ability of AOS to explore
the search domain. This is performed by increasing the diversity of the solutions during the searching
process and updating the search domain. A set of eighteen datasets has been used to evaluate the
efficiency of the developed FS approach, named AOSD, and the results of AOSD are compared with
other MH methods. From the results, AOSD can reduce the number of features by preserving or
increasing the classification accuracy better than other MH techniques.

Keywords: soft computing; machine learning; feature selection (FS); metaheuristic (MH); atomic
orbital search (AOS); dynamic opposite-based learning (DOL)

1. Introduction

Data has become the backbones of different fields and domains in recent decades,
such as artificial intelligence, data science, data mining, and other related fields. The vast
increase of data volumes produced by the web, sensors, and different techniques and
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systems raised a considerable problem with this excellent data size. The problems of the
high dimensionality and big size data have particular impacts on the machine learning
classification techniques, represented by the high computational cost and decreasing the
classification accuracy [1–3]. To solve such challenges, Dimensionality Reduction (DR)
techniques can be employed [4–6]. There are two main types of DR, called feature selection
(FS) and feature extraction (FE). FS methods can remove noisy, irrelevant, and redundant
data, which also improves the classifier performance. In general, FS techniques select a
subset of the data that capture the characteristics of the whole dataset. To do so, two main
types of FS, called filter and wrapper, have been widely used. Wrapper methods leverage
the learning classifiers to evaluate the chosen features, where filter methods leverage
the characteristic of the original data. Filter methods can be considered more efficient
than wrapper methods [7]. FS techniques are used in various domains, for example,
big data analysis [8], text classification [9], chemical applications [10], speech emotion
recognition [11], neuromuscular disorders [12], hand gesture recognition [13], COVID-19
CT images classification [14], and other many other topics [15].

FS is considered as a complex optimization process, which has two objectives. The first
one is to minimize the number of features and minimize error rates or maximize the clas-
sification accuracy. Therefore, metaheuristics (MH) optimization algorithms have been
widely employed for different FS applications, such as differential evolution (DE) [16],
genetic algorithm (GA) [17], particle swarm optimization (PSO) [18], Harris Hawks opti-
mization (HHO) algorithm [7], salp swarm algorithm (SSA) [19], grey wolf optimizer [20],
butterfly optimization algorithm [21], multi-verse optimizer (MVO) algorithm [22], krill
herd algorithm [23], moth-flame optimization (MFO) algorithm [24] Henry gas solubility
optimization (HGS) algorithm [25], and many other MH optimization algorithms [26,27].

In the same context, Atomic Orbital Search (AOS) [28] has been proposed as a meta-
heuristic technique that belongs to physical-based categories. AOS simulates the laws of
quantum technicians and the quantum-based atomic design where the typical arrangement
of electrons around the nucleus is in attitude. According to the characteristic of AOS, it
has been applied to different applications such as global optimization [28]. In [29], AOS
has been used to find the optimal solution to various engineering problems. With these
advantages of AOS, it suffers from some limitations such as attraction to local optima,
leading to degradation of the convergence rate. This motivated us to provide an improved
version for AOS.

The enhanced AOS depends on using the dynamic opposite-based learning strategy
to improve the exploration and maintain the diversity of solutions during the searching
process. DOL is used in this study since it has several properties that will enhance the
performance of different MH techniques. For example, it has been applied to improve
the performance for antlion optimizer in [30], and this modification is applied to solve
CEC 2014 and CEC 2017 benchmark problems. In [31], the SCA has been enhanced
using DOL, and the developed method is applied to the problem of designing the plat-fin
heat exchangers. In [32], the flexible job scheduling problem has been solved using the
modified version of the grasshopper optimization algorithm (GOA) using DOL. Enhanced
teaching–learning-based optimization (TLBO) is presented using DOL, and this algorithm
is applied to CEC 2014 benchmark functions.

The main contributions of this study are:

1. We propose an alternative feature selection method to improve the behavior of atomic
Orbit optimization (AOS).

2. We use the dynamic opposite-based learning to enhance the exploration and maintain
the diversity of solutions during the searching process.

3. We compare the performance of the developed AOSD with other MH techniques
using different datasets.

The other sections of this study are organized as follows. Section 2 presents the related
works and Section 3 introduces the background of AOS and DOL. The developed method
is introduced in Section 4. Section 5 introduces the experiment results and the discussion of
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the experiments using different FS datasets. The conclusion and future works are presented
in Section 6.

2. Related Works

In recent years, many MH natural-inspired optimization algorithms have been used
in the field of feature selection [33–36]. This section presents a simple review of the latest
MH optimization techniques used for FS applications. Hu et al. [37] proposed a modified
binary gray wolf optimizer (BGWO) for FS applications. They developed five transfer
functions to enhance the BGWO. The authors evaluated the developed approach using
different datasets. They concluded that the applications of the extended transfer functions
improved the performance of the developed BGWO, and it outperformed the traditional
BGWO and GWO. In [38], an FS approach was developed based on the multi-objective
Particle Swarm Optimization (PSO) with fuzzy cost. The main idea of this approach is to
develop a simple technique, called fuzzy dominance relationship, which is employed to
compare the performance of the candidate particles. In addition, it is used to define a fuzzy
crowding distance measure to determine the global leader of the particles. This method,
called PSOMOFS, was evaluated with UCI datasets and compared to several FS techniques
to confirm its competitive performance. Gao et al. [39] developed two variants of the binary
equilibrium optimizer (BEO) using two techniques. The first technique is developed by
mapping the continuous equilibrium optimizer into discrete types with S and V-shaped
transfer functions (BEO-S and BEO-V). The second technique depends on the current target
(solution) and the position vector (BEO-T). The two variants of the BEO were evaluated with
nineteen UCI datasets, and they obtained good results. Al-tashi et al. [40] proposed a new
variant of the GWO for FS applications. The proposed method, called binary multi-objective
GWO, is developed using the sigmoid transfer function (BMGWO-S). It was tested with
fifteen UCI datasets, and it outperformed the traditional multi-objective GWO (MGWO)
and several well-known optimization algorithms. Alazam et al. [41] proposed a wrapper-
based FS method using a pigeon-inspired optimizer. The proposed FS method was applied
for intrusion detection systems (IDS) in cloud computing environments. It was evaluated
using the three well-known IDS dataset, and it improved the classification accuracy of the
IDS. Zhang et al. [42] developed the binary version of the differential evolution (BDE) for
FS. They used several developed operators to enhance the performance of the BDE, such as
the mutation operator and One-bit Purifying Search operator. The evaluation outcomes
showed that the application of the developed operators improved the performance of
the BDE.

Additionally, different MH optimization algorithms have been developed and uti-
lized for FS applications, such as the binary emperor penguin optimizer, proposed by
Dhiman et al. [43]. Three modified binary versions of the dragonfly algorithm (BDA) were
presented by [44] for FS, called linear, quadratic, and sinusoidal BDA. The experimental
outcomes showed that Sinusoidal-BDA achieved the best performance compared to other
modified versions of the BDA. A modified binary Harris hawks optimizer was proposed
by Zhang et al. [45] for FS applications. The salp swarm algorithm was used to boost the
search process of the original HHO and overcome its shortcomings. Sahlol et al. [46] pro-
posed a modified marine predators algorithm (MPA) using the fractional-order technique.
The developed method, called FO-MPA, was applied to enhance the classification accuracy
of the COVID-19 CT images. Abdel-Basset et al. [47] proposed an FS approach using four
binary versions slime mould algorithm (SMA).

3. Background
3.1. Atomic Orbital Search

The AOS is a newly developed optimization method [28], which is inspired by the
laws of quantum technicians where the typical arrangement of electrons around the nucleus
is in attitude. The mathematical representation of the AOS is given as follows.
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The AOS algorithm uses several solutions (X) as shown in Equation (1), and each
solution (Xi) holds several decision variables (xi,j).

X =



X1
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...
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
, i = 1, 2, ..., N, j = 1, 2, ..., D (1)

where N represents the number of used solutions, and D indicates the dimension length of
the tested problem.

The first solutions are randomly initialized using Equation (2).

xj
i = xj

i,min + rand× (xj
i,max − xj

i,min), (2)

where xj
i the position number i in the solution number j, xj

i,min indicates the lower bound

of the ith position, and xj
i,max represents the upper bound of the ith position.

A vector of energy values includes the objective function of different solutions as
presented in Equation (3).

E =



E1
E2
...

Ei
...

Em


(3)

where E represents a vector of objective values, and Ei refers to the energy level of the
solution number i.

The electron likelihood density chart defines solutions positions estimated using the
Probability Density Function (PDF). According to the given description of the individuals
by PDF, each imaginarily formulated layer includes several solutions. In this respect,
the mathematical representation of the Kk positions and the Ek of the used individuals in
imaginary courses are given as below:

X =
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
, i = 1, 2, 3, ..., N, j = 1, 2, 3, ..., D, (4)

Ek =


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i
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p


, k = 1, 2, ..., n (5)
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where Xk
i is the solution number i in the imaginary layer (IL) number k, and n represents

the number of the produced IL. p indicates the number of solutions of IL number k. Ek
i

represents the objective value of the solution number i in the IL number k.
In this respect, the required state and energy are defined for the solutions in each

supposed IL by analyzing all solutions’ average positions and objective values in the felt
layer. More so, the mathematical representation for this scheme is given as:

BSk =
∑

p
i=1 Xk

i
p

(6)

BEk =
∑

p
i=1 Ek

i
p

(7)

In Equation (7), BSk and BEk denote the required state and energy of the layer number
k, respectively. Xk

i and Ek
i stand for the position and fitness value of the solution number i

in k-th layer.
Depending on the given items, the required energy and state of an atom are defined

by estimating the mean positions and objective values of the used solutions as follows:

BS =
∑m

i=1 Xi

m
(8)

BE =
∑m

i=1 Ei

m
(9)

where BS and BE are the required state and energy of the atom.
The energy level (Ek

i ) of t Xk
i in each IL is associated with the required energy of the

layer (BEk). Suppose the energy ratio of the current solution in a particular layer is larger
than the required energy (i.e., Ek

i ≥ BEk) so, the photon emission is estimated. In this rule,
the individuals are managing to transmit a photon with a cost of energy estimated using γ
and β to concurrently give to the required position of the atom (BS) and the position of the
electron with the lowest energy ratio (LE) in the atom. The updating process of individuals
is formulated as:

Xk
i+1 = Xk

i +
αi(βi × LE− γi × BS)

k
, k = 1, 2, ..., n, i = 1, 2, ..., p (10)

in Equation (10), Xk
i and Xk

i+1 denote the current and expected values for individual i at
kth layer. αi, βi, and γi refer to random vectors.

Suppose the energy ratio of a solution in a particular layer is smaller than the required
energy (Ek

i < BEk); the consumption of photon is examined. The mathematical function for
the position updating is presented as follows:

Xk
i+1 = Xk

i + αi × (βi × LEk − γi × BSk) (11)

In the case of generating a random number (∅) for each individual and it is valued less
than the PR (i.e., ∅ < PR), the number of photons on the solution is not feasible. Therefore,
the action of particles between various layers nearby the nucleus is estimated. The position
updating is given as follows:

Xk
i+1 = Xk

i + ri (12)

where ri is a vector of random numbers.

3.2. Dynamic-Opposite Learning

The primary steps of the Dynamic-Opposition-Based Learning (DOL) approach are
presented. In the beginning, the conventional Opposition-Based Learning (OBL) approach
is presented [48]. This approach is used in this paper to enhance the performance of the
proposed method. The OBL approach is employed to create a unique opposition solution
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to the existing solution. It attempts to determine the best solutions that lead to increasing
the speed rate of convergence.

The opposite (Xo) of a given real number (X ∈ [U, L]) can be calculated as follows.

Xo = U + L− X (13)

Opposite point [49]: Suppose that X = [X1, X2,..., XDim] is a point in a Dim-dimensional
search space, and X1, X2, ...,XDim ∈ R and Xj [Uj,Lj]. Thus, the opposite point (Xo) of X is
presented as follows:

Xo
j = UBj + Lj − Xj, where j = 1....D. (14)

Moreover, the most useful two points (Xo and X) are chosen according to the fitness
function values, and the other is neglected. For the minimization problem, if f (X) ≤ f (Xo),
X is maintained; oppositely, Xo is maintained.

Related to the opposite point, the dynamic opposite preference (XDO) of the value X
is represented as follows:

XDo = X + w× r8(r9 × Xo − X), w > 0 (15)

where r8 and r9 are random values in the range of [0 1]. w is weighting agent.
Consequently, the dynamic opposite value (XDO

j ) of X is equal to [X1, X2,..., XDim],
which is presented as follows:

XDo
j = Xj + w× rand(rand× Xo

j − Xj), w > 0 (16)

Accordingly, DOL optimization begins by creating the first solutions (X = (X1, ..., XDim)
and calculate its dynamic opposite values (XDo) using Equation (16). Next, based on the
given fitness value, the best solution from the given (i.e., XDo and X) is used, and another
one is excluded.

4. Developed AOSD Feature Selection Algorithm

To improve the performance of the traditional AOS algorithm and use it as an FS
method, we use dynamic opposite-based learning. The steps of the developed AOS-based
DOL are given in Figure 1. These steps can be classified into two phases; the first one aims
to learn the developed method based on the training set. At the same time, the second
phase aims to assess the method’s performance using the testing set.

4.1. Learning Phase

In this phase, the training set representing 70% from the input is applied to learn
the model by selecting the optimal subset of relevant features. The developed AOSD
aims at the beginning by constructing initial population, and this is achieved using the
following formula:

Xi = rand ∗ (U − L) + L, i = 1, 2, ..., N, j = 1, 2, ..., NF (17)

In Equation (17), NF is the number of features (also, it is used to represents the
dimension). U and L are the limits of the search domain. The next process in AOSD is to
convert each agent Xi to binary form BXi, and this is defined in Equation (20).

BXij =

{
1 i f Xij > 0.5
0 otherwise

(18)
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Thereafter, the fitness value of each Xi is computed, and it represents the quality.
The following formula represents the fitness value that depends on the selected features
from the training set.

Fiti = λ× γi + (1− λ)×
(
|BXi|

NF

)
, (19)

where |BXi| is the number of features that correspond to the ones in BXi. γi refers to
the classification error obtained from the KNN classifier that learned using the reduced
training set using features in BXi. λ is applied to manage the process of selecting features
which simulate reducing the error of classification.

The following process is to apply the DOL as defined in Equation (16) to each Xi to
find XDo

i . Then select from X ∪ XDO the best N solutions that have the smallest fitness
value. In addition, the best solution Xb is determined with best fitness Fitb.

Figure 1. Steps of AOSD for FS problem.

After that, AOSD starts to update the solutions X using the operators of AOS as
discussed in Section 3.1. To maintain the diversity of the solutions X, their opposite values
are computed using the following formula:

X =

{
X i f PrDO > 0.5

XN otherwise
(20)

where PrDO is random probability used to switch between X and XN . XN represents the N
solutions chosen from X ∪ XDoJ based on their fitness value. Whereas, XDoJ

ij for each Xi at
dimension j is given as:

XDoJ
ij = Xij + w× rand(rand× Xo

ij − Xij), w > 0 (21)

where Xo
ij is defined in Equation (16). In the developed AOSD, the limits of search space

are updated dynamically using the following formula:

Lj = min(Xij) (22)
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Uj = max(Xij) (23)

Thereafter, the terminal conditions are checked, and if they are met, then return by Xb.
Otherwise, repeat the updating steps of AOSD.

4.2. Evaluation Phase

In this phase, the best solution Xb is employed to reduce the number of features of
the testing set representing 30% from given data. This process is performed by select-
ing only those features corresponding to ones inside its binary version BXb (computed
using Equation (20)). Then, the KNN classifier is applied to the reduced testing set and
it predicts the output of the testing set by computing the output’s performance using
performance measures.

5. Experimental Results

This section introduces the experimental evaluation of the developed AOSD method.
Additionally, extensive comparisons to several existing optimization methods are carried
out to verify the performance of the developed AOSD method.

5.1. Experimental Datasets and Parameter Settings

We considered comprehensive datasets to evaluate the proposed AOSD method using
twenty datasets with different categories, including low and high dimensionality. The low
dimensionality datasets are the well-known UCI datasets [50]. The properties of the
used datasets are given in Table 1, including the number of classes, number of features,
and number of samples. It is worth mentioning that the used datasets covered several
domains, such as games, biology, biomedical, and physics.

Table 1. Datasets’ characteristics.

Datasets Number of Features Number of Instances Number of Classes Data Category

Breastcancer (S1) 699 2 9 Biology
BreastEW (S2) 569 2 30 Biology

CongressEW (S3) 435 2 16 Politics
Exactly (S4) 1000 2 13 Biology

Exactly2 (S5) 1000 2 13 Biology
HeartEW (S6) 270 2 13 Biology

IonosphereEW (S7) 351 2 34 Electromagnetic
KrvskpEW (S8) 3196 2 36 Game

Lymphography (S9) 148 2 18 Biology
M-of-n (S10) 1000 2 13 Biology

PenglungEW (S11) 73 2 325 Biology
SonarEW (S12) 208 2 60 Biology
SpectEW (S13) 267 2 22 Biology
tic-tac-toe (S14) 958 2 9 Game

Vote (S15) 300 2 16 Politics
WaveformEW (S16) 5000 3 40 Physics

WaterEW (S17) 178 3 13 Chemistry
Zoo (S18) 101 6 16 Artificial

Furthermore, we set up essential parameters and strategies to evaluate the proposed
AOSD method. For example, we use the Hold-out strategy as a classification strategy,
with 80% and 20% for training and testing sets, respectively. More so, we repeat each
experiment with 30 independent runs. The K nearest neighbor (KNN) is adopted as the
classifier with the Euclidean distance metric (K = 5).

In addition, a number of the well-known optimization algorithms have been consid-
ered for the comparison, such as Atomic Orbital Search (AOS), arithmetic optimization
algorithm (AOA) [51], Marine Predators Algorithm (MPA) [46], Manta ray foraging opti-
mizer (MRFO) [52], Harris Hawks optimization (HHO), Henry gas solubility optimization
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(HGS) algorithm (HGSO), Whale optimization algorithm (WOA), grey wolf optimization
(GWO) [53], GA, and BPSO. These methods are uniformly distributed, and the max itera-
tion number is set to 100, where the population size is 10. In addition, the dimensions of
these methods are fixed to the feature numbers as in the datasets.

5.2. Performance Measures

We used several evaluation measures to test the proposed AOSD method. The confu-
sion matrix (CM) is described in Table 2. As known, it is used to test the performance of a
classifier, including Accuracy, Specificity, and Sensitivity [54].

Table 2. Confusion Matrix.

Predicted Class

Actual class Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

• Average accuracy (AVGAcc): This measure is the rate of correctly data classification,
and it is computed as [22,55–57]:

Accuracy =
TP + TN

TP + FN + FP + TN
(24)

Each method is performed 30 times (Nr = 30); thus, the AVGAcc is computed as:

AVGAcc =
1

Nr

Nr

∑
k=1

Acck
Best (25)

• Average fitness value (AVGFit): it is used to assess the performance of an applied
algorithm, and it puts the error rate of classification and reducing the selection ratio
as the following equation [22,55–57]:

AVGFit =
1

Nr

Nr

∑
k=1

Fitk
Best (26)

• Average number of the selected features (AVG|BXBest |): This metric is applied to
compute the ability of the applied method to reduce the number of features overall
number of runs, and it is computed as [22,55–57]:

AVG|BXBest | =
1

Nr

Nr

∑
k=1

∣∣∣BXk
Best

∣∣∣ (27)

in which |BXk
Best| represents the cardinality of selected features for kth run.

• Average computation time (AVGTime): This measure is used to compute the average
of CPU time(s), as in the following equation [22,55–57]:

AVGTime =
1

Nr

Nr

∑
k=1

Timek
Best (28)

• Standard deviation (STD): STD is employed to assess the quality of each applied method
and analyze the achieved results in different runs. It is computed as [22,55–57]:

STDY =

√√√√ 1
Nr

Nr

∑
k=1

(
Yk

Best − AVGY
)2 (29)
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(Note: STDY is computed for each metric: Accuracy, Fitness, Time, Number of selected
features, Sensitivity, and Specificity.

5.3. Comparisons

In this section, the developed AOSD is evaluated over eighteen well-known datasets.
The evaluation uses ten algorithms to compare the performance of the developed AOSD,
namely AOS, AOA, MPA, MRFO, HHO, HGSO, WOA, bGWO, GA, and BPSO. Six mea-
sures are used, called maximum fitness function (MAX), the average of the fitness function,
minimum fitness function (MIN), accuracy (Acc), and standard deviation (St). The values
obtained by the compared algorithms are recorded in Tables 3–9 where the smaller value
in the tables means the better results, except for Table 8, where the higher value is the best;
therefore, all best values in the tables are in boldface.

The results of the fitness function values are listed in Table 3 and the smaller fitness
value means the better results. This table contains the average of the fitness function for the
developed AOSD method and the comparison methods for all datasets. From these results,
the AOSD got the best results in 6 out of 18 datasets (i.e., S2, S4, S7, S9, S15, and S16);
therefore, it got the first rank. The AOA obtained the best values in three datasets (i.e.,
S3, S8, and S18), and it was ranked second, followed by MPA, MRFO, BPSO, and HHO,
respectively; the GA showed the worst results. With the use of the average, it is possible to
analyze the behavior of the results provided by the algorithms in the experiments. In terms
of optimization, the fitness standard helps identify a typical value in the experiments
for each dataset. Figure 2 shows the performance of the AOSD using the average of the
fitness functions.

Table 3. Average of the fitness values for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 0.07787 0.07097 0.06313 0.07245 0.06836 0.05214 0.06006 0.07381 0.06789 0.10176 0.05905
S2 0.03779 0.04860 0.03979 0.04004 0.04558 0.05288 0.09111 0.06994 0.08085 0.12798 0.04738
S3 0.02841 0.03401 0.02707 0.03773 0.04760 0.04950 0.03019 0.07382 0.10753 0.10184 0.06191
S4 0.04258 0.07248 0.04769 0.05013 0.05393 0.07699 0.08515 0.15975 0.14146 0.19231 0.06569
S5 0.20225 0.29336 0.24958 0.26147 0.21919 0.23719 0.29019 0.21696 0.19977 0.33061 0.24169
S6 0.15154 0.19231 0.12897 0.12966 0.16470 0.11368 0.13009 0.21598 0.20376 0.19581 0.17427
S7 0.03450 0.06409 0.04345 0.08089 0.05246 0.09376 0.10571 0.09927 0.08166 0.12058 0.08644
S8 0.08291 0.07925 0.06224 0.06559 0.07450 0.07771 0.09491 0.09712 0.09547 0.11478 0.07716
S9 0.06864 0.10067 0.07972 0.09194 0.13178 0.12578 0.10091 0.12868 0.15640 0.18178 0.14111

S10 0.07080 0.06836 0.04769 0.04974 0.05116 0.06224 0.07679 0.11761 0.09975 0.11787 0.04718
S11 0.10098 0.05470 0.16158 0.07389 0.01497 0.05145 0.02392 0.04076 0.04886 0.20224 0.04142
S12 0.07500 0.08233 0.09371 0.07768 0.08346 0.07990 0.08322 0.06727 0.09649 0.08905 0.10349
S13 0.14697 0.12485 0.14667 0.14556 0.15566 0.10010 0.11152 0.23364 0.23525 0.20475 0.12909
S14 0.24469 0.22896 0.20556 0.19815 0.23154 0.22999 0.22279 0.25719 0.25477 0.22787 0.22899
S15 0.02050 0.04950 0.04325 0.06358 0.03783 0.06042 0.04650 0.04567 0.05325 0.10517 0.02217
S16 0.24680 0.28778 0.27168 0.26385 0.27501 0.29047 0.29423 0.29956 0.30259 0.30750 0.26581
S17 0.03885 0.04462 0.03385 0.03846 0.03949 0.04936 0.04218 0.06987 0.05705 0.08782 0.03333
S18 0.01750 0.04125 0.01000 0.01667 0.03917 0.01625 0.03875 0.05327 0.06595 0.05625 0.02333
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Figure 2. Average of the fitness functions’ values.

Table 4 shows the results of the standard division for all methods. The Std here is used
to verify the dispersion of the results along with the experiments with different datasets.
A low value in Std represents low dispersion, which means the algorithm is more stable
along with the experiments. The AOSD showed good stability compared to the other
methods, and it achieved the lowest Std value in 6 out of 18 datasets (i.e., S6, S7, S9, S13,
S17, and S18). It was ranked first followed by BPSO and it showed good stability in S14,
S8, S10, S11, and S15 datasets. In addition, the AOA, MPA, and MRFO also showed good
resilience. The bGWO and WOA showed the worst Std values in this measure.

Table 4. Standard deviation of fitness values for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 0.00981 0.00755 0.00131 0.00130 0.00664 0.00344 0.00181 0.01129 0.00613 0.01204 0.00000
S2 0.01058 0.00773 0.01133 0.00678 0.00678 0.00527 0.00581 0.01152 0.01138 0.00665 0.00581
S3 0.01863 0.00183 0.00293 0.00621 0.00872 0.00510 0.00187 0.01534 0.01959 0.01187 0.00504
S4 0.01611 0.02493 0.00344 0.00772 0.00651 0.06475 0.03297 0.09634 0.08102 0.08227 0.06514
S5 0.01149 0.01593 0.01551 0.02358 0.00000 0.00000 0.04174 0.02620 0.00487 0.01642 0.00000
S6 0.00116 0.02502 0.01463 0.01521 0.02765 0.03781 0.01825 0.02253 0.03192 0.01045 0.00748
S7 0.00232 0.01001 0.01858 0.01097 0.01648 0.01745 0.01646 0.01774 0.00944 0.00910 0.00920
S8 0.01807 0.01065 0.00742 0.00796 0.00498 0.01075 0.00795 0.01500 0.01414 0.01060 0.00374
S9 0.00524 0.03655 0.00977 0.02158 0.00749 0.02783 0.01341 0.05968 0.02549 0.02710 0.03738

S10 0.00350 0.02887 0.00344 0.00397 0.00689 0.01409 0.02357 0.04101 0.04160 0.04253 0.00271
S11 0.03558 0.02912 0.05446 0.01485 0.00753 0.04051 0.01160 0.03144 0.02659 0.00234 0.00153
S12 0.01437 0.01961 0.01301 0.01644 0.01392 0.01418 0.01696 0.01282 0.02020 0.01060 0.01996
S13 0.00324 0.02430 0.00761 0.00969 0.02229 0.01815 0.01516 0.00716 0.01772 0.01193 0.00869
S14 0.00204 0.00784 0.00000 0.00061 0.00090 0.01094 0.00929 0.01796 0.01766 0.02312 0.00000
S15 0.00892 0.01092 0.00873 0.00704 0.00730 0.00868 0.00529 0.01677 0.02007 0.02316 0.00326
S16 0.01690 0.02056 0.01420 0.01350 0.01110 0.00957 0.01028 0.01740 0.01149 0.00855 0.00875
S17 0.00318 0.00644 0.00421 0.00581 0.01002 0.00895 0.00966 0.01386 0.01171 0.01607 0.00475
S18 0.00280 0.00948 0.00839 0.00386 0.01168 0.00939 0.00350 0.01187 0.01567 0.00747 0.00286

In addition, the best fitness values are listed in Table 5. By analyzing the best values
obtained by the compared algorithms in all the runs for each dataset, the idea is to see
which algorithm can provide the best solution in the best case (or in the best run). This
table shows that the AOSD showed the best Min values in 33% of all datasets; it obtained
the best Min results in S14, S2, S4, S7, S8, S16, and S18. The HHO and MPA received the
best values in this measure in two datasets for each, ranking second and third, respectively.
All methods obtained the same results in S4 datasets except for HGSO and GA. The GA
recorded the worst performance in this measure.
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Table 5. Results of the best fitness function values for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 0.04016 0.06548 0.06254 0.07190 0.06548 0.04968 0.05905 0.05905 0.05730 0.08302 0.05905
S2 0.02702 0.03912 0.03123 0.02912 0.03246 0.04368 0.07860 0.04912 0.06070 0.11070 0.03789
S3 0.06013 0.03319 0.02500 0.03125 0.03944 0.04353 0.02909 0.05603 0.06638 0.07694 0.05819
S4 0.04615 0.04615 0.04615 0.04615 0.04615 0.04615 0.05385 0.04615 0.04615 0.06154 0.04615
S5 0.21154 0.26927 0.22877 0.23719 0.21919 0.23719 0.24169 0.21019 0.19669 0.30323 0.24169
S6 0.23590 0.15513 0.12179 0.11282 0.12308 0.07436 0.10641 0.17308 0.16282 0.16923 0.16410
S7 0.01621 0.05273 0.01765 0.06156 0.02738 0.05953 0.06541 0.07423 0.06744 0.10476 0.07332
S8 0.04734 0.06845 0.05292 0.05028 0.06424 0.05717 0.08094 0.06595 0.06832 0.10031 0.07120
S9 0.05889 0.07444 0.06992 0.06992 0.11556 0.09889 0.06239 0.04711 0.10651 0.13222 0.06889

S10 0.05385 0.04615 0.04615 0.04615 0.04615 0.04615 0.05385 0.06154 0.05385 0.06154 0.04615
S11 0.06646 0.00277 0.09746 0.02215 0.00523 0.00369 0.01077 0.00308 0.02031 0.19815 0.03815
S12 0.06143 0.06643 0.07619 0.04667 0.05976 0.06143 0.05643 0.04810 0.06476 0.07500 0.07143
S13 0.11212 0.10455 0.13485 0.12424 0.09848 0.06515 0.08939 0.21818 0.19394 0.17727 0.11515
S14 0.21024 0.21493 0.20556 0.19792 0.23073 0.22135 0.21788 0.23542 0.23073 0.21198 0.22899
S15 0.05125 0.04000 0.03375 0.05500 0.02500 0.04875 0.03750 0.03625 0.03375 0.06250 0.01875
S16 0.22722 0.25690 0.25740 0.23800 0.24820 0.27790 0.27580 0.27300 0.28470 0.29510 0.24930
S17 0.04615 0.03846 0.03077 0.03077 0.02308 0.03846 0.03077 0.04615 0.03846 0.06923 0.03077
S18 0.00250 0.03125 0.00625 0.01250 0.02500 0.00625 0.03125 0.03750 0.04375 0.04375 0.01875

In terms of the worst results of the fitness values, Table 6 shows these results. The
study of the worst values in the results of compared algorithms helps to verify that even in
the worst case, some algorithms provide reasonable solutions. Besides, it also permits one
to see which algorithm is the worst in the worst case. The developed AOSD showed good
results compared to other methods and achieved the best results in 7 out of 18 datasets
(i.e., S14, S3, S9, S12, S13, S16, and S18). It showed competitive results in the other datasets.
The AOA achieved the second rank by obtaining the best results in six datasets (i.e., S4,
S6, S7, S8, S10, and S17), followed by AOA and MPA. The other compared methods were
ordered as MRFO, BPSO, AOS, HGSO, HHO, bGWO, WOA, and GA in this sequence.

Table 6. Results of the worst fitness values’ results for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 0.04944 0.08008 0.06548 0.07659 0.08944 0.05905 0.06373 0.09762 0.08183 0.12278 0.05905
S2 0.08316 0.05702 0.05702 0.05368 0.06035 0.06158 0.10228 0.08561 0.10105 0.13649 0.05912
S3 0.03058 0.03728 0.03125 0.04784 0.07694 0.06228 0.03319 0.10366 0.14310 0.13297 0.07694
S4 0.07404 0.09754 0.05385 0.07504 0.06604 0.30208 0.15473 0.28219 0.23719 0.30962 0.30077
S5 0.28077 0.31092 0.27042 0.29496 0.21919 0.23719 0.33342 0.31165 0.21208 0.35592 0.24169
S6 0.26282 0.21282 0.15513 0.15513 0.21154 0.16282 0.15769 0.25128 0.26923 0.20897 0.18077
S7 0.09097 0.08012 0.06653 0.10750 0.08509 0.12697 0.12991 0.12788 0.09959 0.13894 0.10456
S8 0.10474 0.09198 0.06990 0.07545 0.08214 0.10333 0.10505 0.11599 0.12151 0.13403 0.08375
S9 0.06667 0.16222 0.09215 0.12889 0.14556 0.20889 0.11984 0.24667 0.20516 0.22778 0.18889

S10 0.06423 0.11873 0.05385 0.05385 0.07054 0.09173 0.12192 0.18362 0.17854 0.21062 0.05385
S11 0.14246 0.06952 0.24838 0.08246 0.03385 0.13754 0.05415 0.08523 0.09046 0.20646 0.04431
S12 0.08119 0.10619 0.11262 0.10286 0.10762 0.11262 0.11095 0.08667 0.12429 0.10810 0.13905
S13 0.12494 0.16667 0.15303 0.16515 0.17121 0.12879 0.14394 0.23788 0.26515 0.22273 0.14394
S14 0.26476 0.23247 0.20556 0.19965 0.23247 0.26354 0.24184 0.29167 0.29236 0.27934 0.22899
S15 0.06375 0.06750 0.05750 0.07625 0.05000 0.08000 0.05500 0.09500 0.09750 0.14375 0.02750
S16 0.27200 0.31280 0.29540 0.28820 0.29420 0.31140 0.31520 0.32290 0.32150 0.32150 0.27920
S17 0.07692 0.05385 0.03846 0.04615 0.05385 0.07115 0.05385 0.08654 0.07115 0.11923 0.04615
S18 0.01875 0.05625 0.02500 0.02500 0.05625 0.03125 0.04375 0.08036 0.08661 0.06875 0.02500

Moreover, the selected features number by each method is recorded in Table 7. In this
measure, the best method tries to choose the lowest features and achieve high accuracy
results. As shown in Table 7, the AOSD reached the second rank by obtaining the lowest
features number in 7 out of 18 datasets, whereas the first rank was received by the WOA
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method, it selected the lowest number of features in 8 datasets. The third rank was obtained
by HGSO followed by MRFO, HHO, AOS, bGWO, MPA, AOA, and BPSO; whereas, the GA
showed the worst performance in all datasets.

Table 7. Selected features numbers for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 3 2 3 2 2 4 3 2 3 3 3
S2 2 3 5 4 4 6 5 4 3 18 7
S3 2 2 3 4 3 5 2 2 2 9 4
S4 6 6 6 6 6 3 7 8 8 8 4
S5 11 4 3 5 6 4 5 5 6 7 1
S6 3 5 5 5 4 4 7 7 7 9 4
S7 3 4 6 6 2 3 4 2 6 24 8
S8 9 13 12 10 13 13 11 4 17 27 11
S9 4 5 7 7 10 3 3 3 5 13 6

S10 5 6 6 6 6 6 7 8 7 8 6
S11 21 9 67 24 17 12 35 10 66 254 124
S12 24 27 17 21 13 13 16 9 15 45 22
S13 9 8 4 6 4 5 4 5 4 14 6
S14 4 5 5 6 6 5 4 3 3 5 5
S15 2 3 4 3 4 2 3 3 3 9 5
S16 16 16 9 13 17 11 7 12 11 32 15
S17 3 5 4 4 3 5 3 3 3 8 4
S18 2 5 3 3 4 5 5 6 6 7 3

In addition, Table 8 illustrates the results of all compared methods in terms of clas-
sification accuracy. The use of accuracy permits the evaluation of the correct predicted
data points out of all the data points. By such interpretation, this study permits identifying
if an algorithm is outstanding in classification. The accuracy is essential in multiple real
applications; for that reason, its use is mandatory. In this measure, the developed AOSD
showed good results in 17% of the datasets; therefore, it was able to classify these datasets
with high accuracy compared to other methods, and it obtained the same accuracy with the
other methods in 22% of the datasets. The MRFO was ranked second, followed by MPA,
AOA, BPSO, HHO, AOS, HHO, HGSO, EFO, and bGWO whereas, the lowest accuracy
was shown by the WOA method. Figure 3 illustrates the performance of the AOSD based
on the average classification accuracy for all datasets.

Figure 3. Average of the classification accuracy among tested datasets.
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Table 8. Accuracy results for FS approaches.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

S1 0.9714 0.9557 0.9471 0.9557 0.9619 0.9643 0.9752 0.9476 0.9567 0.9462 0.9714
S2 0.9737 0.9719 0.9825 0.9807 0.9760 0.9731 0.9333 0.9433 0.9415 0.9351 0.9854
S3 0.9655 0.9747 0.9977 0.9923 0.9716 0.9640 0.9854 0.9448 0.9157 0.9609 0.9724
S4 1.0000 0.9810 1.0000 0.9990 0.9993 0.9720 0.9743 0.8960 0.8987 0.8667 0.9800
S5 0.7750 0.7390 0.7620 0.7437 0.7650 0.7450 0.7260 0.7703 0.7900 0.7130 0.7400
S6 0.8148 0.8444 0.8926 0.9049 0.8654 0.9062 0.8914 0.7988 0.8272 0.8753 0.8531
S7 0.9859 0.9549 0.9831 0.9408 0.9681 0.9268 0.9117 0.9174 0.9380 0.9577 0.9399
S8 0.9719 0.9675 0.9734 0.9720 0.9779 0.9725 0.9495 0.9507 0.9577 0.9616 0.9643
S9 0.9667 0.9400 0.9657 0.9542 0.9289 0.9133 0.9319 0.8821 0.8756 0.8844 0.8889

S10 1.0000 0.9890 1.0000 1.0000 0.9990 0.9947 0.9853 0.9497 0.9627 0.9477 1.0000
S11 0.9333 0.9457 0.8454 0.9378 1.0000 0.9556 1.0000 0.9686 0.9822 0.8667 1.0000
S12 0.9762 0.9667 0.9381 0.9683 0.9571 0.9571 0.9556 0.9825 0.9381 0.9937 0.9381
S13 0.9259 0.9148 0.8704 0.8790 0.8506 0.9309 0.9148 0.7593 0.7716 0.8580 0.8963
S14 0.8281 0.8271 0.8333 0.8556 0.8226 0.8177 0.8101 0.7809 0.7819 0.8250 0.8073
S15 1.0000 0.9700 0.9700 0.9622 0.9978 0.9667 0.9844 0.9622 0.9700 0.9600 0.9967
S16 0.7500 0.7408 0.7348 0.7589 0.7665 0.7287 0.7283 0.7283 0.7186 0.7533 0.7528
S17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9981 0.9759 0.9833 0.9833 1.0000
S18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9968 0.9841 1.0000 1.0000

Moreover, Table 9 records the statistical results of the Friedman rank test to rank all
methods using both the classification accuracy and the fitness function values. This test
studies the statistical differences between the algorithms considering the results obtained
for the 30 independent runs in all datasets. From Table 9, we can see that developed AOSD
achieved the first rank in classification accuracy, followed by MRFO, MPA, AOA, BPSO,
AOS, and HHO. The WOA was ranked last. Whereas, in the fitness function, the AOSD
showed an excellent rank and was came second after the AOA with slight deference,
followed by MPA, BPSO, MRFO, HHO, and HGSO. The GA was ranked last. From these
results, we can notice that the AOSD showed the best results in accuracy, whereas it showed
the second-best in the fitness function. These results indicate the superiority of the AOSD
due to the fact that the classification accuracy measure can be more important than the
fitness function value in solving classification problems.

Table 9. Friedman rank test results for all methods.

AOSD AOS AOA MPA MRFO HHO HGSO WOA bGWO GA BPSO

Fitness 4.11 6.06 3.50 4.33 5.11 5.33 5.94 8.00 8.50 10.11 5.00
Accuracy 8.17 6.31 7.42 7.56 7.67 6.06 5.42 3.11 3.47 4.14 6.69

In general, the aforementioned results show that the developed AOSD method showed
a noticeable enhancement in solving classification problems by selecting the essential
features. The DOL approach improves the performance of the AOS by increasing the ability
of the AOS to discover the search domain and save it from getting stuck in a local point.

Furthermore, the results of the AOSD showed its advantages over the compared
algorithms by achieving the best fitness functions values in 33% of all datasets, whereas
the second-rank HHO method achieved the best values in 16% of the datasets. This result
was also observed in the rest of the measures. In addition, if we compare the differences
between the proposed method AOSD and its original version AOS, in the accuracy measure,
we can see that the proposed method outperformed the original version in 16 out of 18
datasets and showed similar accuracies in the other two cases. Besides, the proposed
method is ranked first according to the statistical test (i.e., Friedman test) for accuracy
measure, which indicates a significant difference between the AOSD and the compared
method at p-value equals 0.05. Based on the results, we will work in the future to increase
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the performance of the proposed method by improving its exploitation phase and applying
it in different optimization problems.

6. Conclusions

This paper developed a modified Atomic Orbit Search (AOS) and used it as a feature
selection (FS) approach. The modification has been performed using dynamic opposite-
based learning (DOL) to enhance the exploration and diversity of solutions. This leads
to improving the convergence rate to explore the feasible region that contains the optima
solution (relevant features). To justify the performance of the AOSD as an FS approach, a set
of twenty datasets collected from different real-life applications has been used. In addition,
the results of AOSD have been compared with other well-known FS approaches based on
MH techniques such as AOS, APA, MPA, MRFO, HHO, HGSO, WOA, GWO, GA, and PSO.
The obtained results concluded that the developed AOSD provided higher efficiency than
other FS approaches.

Besides the obtained results, the developed AOSD can be extended to other real-life
applications, including medical images, superpixel-Based clustering, Internet of things
(IoT), security, and other fields.
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