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Abstract: This paper evaluates the performance of different small area estimation methods using
model and design-based simulation experiments. Design-based simulation experiments are carried
out using the Mexican Intra Censal survey as a census of roughly 3.9 million households from which
500 samples are drawn using a two-stage selection procedure similar to that of Living Standards
Measurement Study (LSMS) surveys. The estimation methods considered are that of Elbers, Lanjouw
and Lanjouw (2003), the empirical best predictor of Molina and Rao (2010), the twofold nested
error extension presented by Marhuenda et al. (2017), and finally an adaptation, presented by
Nguyen (2012), that combines unit and area level information, and which has been proposed as
an alternative when the available census data is outdated. The findings show the importance of
selecting a proper model and data transformation so that model assumptions hold. A proper data
transformation can lead to a considerable improvement in mean squared error (MSE). Results from
design-based validation show that all small area estimation methods represent an improvement, in
terms of MSE, over direct estimates. However, methods that model unit level welfare using only area
level information suffer from considerable bias. Because the magnitude and direction of the bias is
unknown ex ante, methods relying only on aggregated covariates should be used with caution, but
may be an alternative to traditional area level models when these are not applicable.

Keywords: small area estimation; ELL; poverty mapping; poverty map; empirical best; parametric
bootstrap; nested error model; twofold nested error model

JEL Classification: C55; C87; C15

1. Introduction

The eradication of poverty was the first Millennium Development Goals (MDGs)
established by the United Nations in 2000 and continues as Sustainable Development
Goal (SDG) 1.1.1, but governments can only properly target poverty if they know where
it is. Traditionally, for a given country, the best source for information on the living
standards of its population are household surveys. These surveys are a powerful tool
towards defining and addressing the needs of people. These surveys, however, usually
offer reliable information only at highly aggregated levels of the population. In other words,
direct survey estimates tend to be adequate for very large populations, but inadequate for
smaller populations.

Small area estimation (SAE) is a branch of statistics focused on improving the reliability
of estimates and the associated measures of uncertainty for populations where samples
cannot produce sufficiently reliable estimates (Rao and Molina [1]). Small areas can be
any population subgroup and are not necessarily tied to geographical areas. According to
Ghosh and Rao [2], the use of small area statistics increased towards the end of the 20th
century due to improved computing power and the advent of theoretically sound statistical

Mathematics 2021, 9, 2780. https://doi.org/10.3390/math9212780 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4424-9540
https://doi.org/10.3390/math9212780
https://doi.org/10.3390/math9212780
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212780
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212780?type=check_update&version=2


Mathematics 2021, 9, 2780 2 of 40

methods. The main principle behind small area statistical methods is to use modeling
to “borrow strength” from auxiliary data sources (e.g., census or administrative data) to
produce more efficient estimators than direct survey data alone.

Model-based techniques for small area estimation commonly fall within two groups:
(i) area based models; for examples, see Fay III and Herriot [3] and Torabi and Rao [4]; (ii)
unit-level models; for examples see Molina and Rao [5] and Elbers et al. [6]. The focus of
this paper is to conduct model and design-based evaluation of different unit-level SAE
methods. Model-based methods assume a data generating process for the population that
follows the model’s assumptions, and the target parameters are assumed to be random
(Tzavidis et al. [7]). In this paper, model-based evaluation is done considering two-stage
sampling strategies and thus assumes a model that includes variation at the domain level
as well as at the cluster level, where clusters are the primary sampling units, nested within
domains (see Marhuenda et al. [8]). Design-based simulation entails applying the chosen
methods under realistic conditions (Tzavidis et al. [7]). Here, a design-based evaluation
of several estimators is performed using the 2015 Mexican Intra Censal Survey, which
is used here as a census, and from which we draw repeated samples. The estimation
methods considered are those of Elbers et al. [6] (ELL henceforth), the empirical best
predictor of Molina and Rao [5] (MR henceforth), the twofold nested error extension of
Molina and Rao [5] presented by Marhuenda et al. [8], and finally an adaptation, presented
by Nguyen [9], that combines unit and area level information, and which has been proposed
as an alternative when the available census data is too outdated to be considered for use.
In reality, instead of the original EB method of Molina and Rao [5], we apply the Census
EB variant described in Molina [10].

The paper’s contribution is twofold: (i) it presents a thorough evaluation of the
considered methods as well as their pros and cons, and (ii) it employs the sampling
strategies most often encountered in real world applications to conduct design-based
validations. The results are expected to provide a guideline to others undertaking small area
estimation. The results from design-based validation show that all small area estimation
methods represent an improvement, in terms of MSE, over direct estimates. However,
given the inherent high level of bias of methods relying solely on aggregate information
(see Nguyen [9]; Lange et al. [11], Masaki et al. [12]) these should be used with caution and
only under certain circumstances.

The paper first presents an overview of the small area estimation methods considered,
directing readers who are interested in a more in-depth description to the appropriate
sources. Then, the model-based simulation design is detailed and results of the simulation
experiments are presented. This section is followed by a description of the 2015 Mexican
Intra Censal Survey and how it is adapted to represent a census and how samples are
drawn from the created census. Results from the design-based simulation experiments are
then presented. Finally, conclusions and lessons learned are provided.

2. Unit-Level Models

The nested error model used for small area estimation by Elbers et al. [6] and Molina
and Rao [5] was originally proposed by Battese et al. [13] to produce county-level corn and
soybean crop area estimates for the U.S. state of Iowa. For the estimation of poverty and
welfare, the ELL and MR methods assume the transformed welfare ych for each household h
within each location c in the population is linearly related to a 1×K vector of characteristics
(or correlates) xch for that household, according to the nested error model:

ych = xchβ + ηc + ech, h = 1, . . . , Nc, c = 1, . . . , C, (1)

where ηc and ech are, respectively, location and household-specific idiosyncratic errors,
assumed to be independent from each other, following:

ηc
iid∼ N

(
0, σ2

η

)
, ech

iid∼ N
(

0, σ2
e

)
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where the variances σ2
η and σ2

e are unknown. Here, C is the number of locations in which
the population is divided and Nc is the number of households in location c, for c = 1, . . . , C.
Finally, β is the K × 1 vector of coefficients. Under the original ELL methodology, the
locations indexed with c are supposed to be the clusters, or primary sampling units (PSUs)
of the sampling design and do not necessarily correspond to the level at which the estimates
will be ultimately produced. In fact, clusters are typically nested within the areas of interest
(e.g., census enumeration areas within large administrative areas). Presenting estimates
at a higher aggregation level than the clusters (for which random effects are included
in the model) may not be appropriate in cases of considerable between-area variability,
and may underestimate the estimator’s standard errors (Das and Chambers [14]). The
recommended approach to mitigate this issue is to include covariates that sufficiently
explain the between-area heterogeneity in the model (ibid). In this regard, ELL suggest
the inclusion of cluster-level covariates as a way to explain location effects. Nevertheless,
this approach is context specific and may not always suffice to ameliorate the issues with
between-area heterogeneity. In this regard, Marhuenda et al. [8] recommend and show that
location effects should be at the same aggregation level at which estimation is desired.

If the location effect is specified at the same level where estimation is desired, then
the difference between Elbers et al. [15] and Molina and Rao [5] reduces to differences in
how estimates are obtained and the addition of Empirical Best (EB) prediction by Molina
and Rao [5]. The EB method from Molina and Rao [5] conditions on the survey sample
data and thus makes more efficient use of the information at hand, whereas ELL does not
include this component. In essence, under ELL, for any given area present in the sample
the ELL estimator of the census area mean ȳc is obtained by averaging across M simulated
censuses and is given by ȳ∗(m)

c ≈ X̄′cβ + η
∗(m)
c + ē∗(m)

c , m = 1, . . . , M, where E[η∗c ] = 0 and
E[e∗ch] = 0. Thus, the ELL estimator 1

M ∑M
m=1 ȳ∗(m)

c , which approximates E(ȳc), reduces to
the regression synthetic estimator, X̄′cβ (Molina and Rao [5]). On the other hand, under
Molina and Rao [5], conditioning on the survey sample ensures the estimator includes the
random location effect, since E[ȳc|ηc] ≈ X̄′cβ + ηc. Mechanically, however, conditioning
on survey data requires the linking of areas across surveys and census, something that is
not always straightforward. Under ELL, when including area level covariates, linking the
survey and the census areas is also required (note that the enumeration areas for a census
and survey might not match). Other differences between Elbers et al. [6] and Molina and
Rao [5] are the computational algorithms used to obtain point and noise estimates; see
Corral et al. [16] (CMN henceforth) for further discussion.

ELL’s approach to obtain estimates builds upon the multiple imputation (MI) literature
in that it uses a single algorithm that produces point and noise estimates by varying model
parameters across simulations (see Tarozzi and Deaton [17] as well as Corral et al. [16]). The
use of MI methods for obtaining point and noise estimates has shortcomings, however. Un-
der multiple imputation, the method that yields the lowest MSE does not necessarily yield
valid statistical inference [18], which is contradictory to the goal of small area estimation
in improving precision. Accordingly, Corral et al. [16] show using simulated populations
that the noise estimate (referred to as variance by ELL) is not an appropriate estimate of
the MSE. In contrast, MR’s point estimates are obtained through two separate procedures.
Point estimates are obtained by a Monte Carlo simulation and noise estimates are obtained
by a parametric bootstrap procedure originally proposed by González-Manteiga et al. [19].
For further details, see Corral et al. [16].

In light of the emerging literature, including Molina and Rao [5], the World Bank
expanded the original ELL design by adding EB predictors and revising its fitting methodol-
ogy to incorporate heteroskedasticity and survey weights to account for complex sampling
designs (Van der Weide [20]). The survey weights are incorporated in the estimates of
the regression coefficients and in the variance of the components following Huang and
Hidiroglou [21], based on Henderson method III (H3) by Henderson [22], as well as in the
predicted area effects as in the pseudo empirical best linear unbiased predictor (Pseudo
EBLUP) proposed by You and Rao [23]. In the absence of survey weights and heteroskedas-
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ticity, the fitting method yields parameter estimates that are quite similar to the restricted
maximum likelihood (REML) fitting method used by Molina and Rao [5]. The difference
remains, however, in how point and noise estimates of the target indicators are obtained.

As further detailed in Corral et al. [16], however, even following these revisions, the
bootstrap procedure, as implemented by PovMap software (Zhao [24]) for EB and later de-
tailed in Nguyen et al. [25], differed from the original EB procedure from Molina and Rao [5].
Corral et al. [16] note that the remaining issues rested in the continued reliance on MI
methods as the basis of the methodology. Because under the updated fitting methodology,
Van der Weide [20] does not offer an estimate of var(σ2

η ), bootstrap samples of the data must

be taken for each simulation to obtain the fitting parameters
(

β̂∗, σ̂2∗
η , σ̂2∗

e

)
(ELL provides

the derivation of the estimate for var(σ2
η ) in their Appendix B). This approach was taken

to allow for an algorithm similar to the procedure used in the original implementation of
ELL. However, if clusters were equal to areas, then it is unlikely that all areas are included
in the sample, and thus an area could benefit from EB only in a subset of the simulations,
introducing bias into the resulting point and noise estimates. Corral et al. [16] also present
evidence on the fact that, even if the location effect was modeled at the domain level and
bootstrap samples of clusters are taken, some bias would still likely remain in the resulting
estimates of the original implementation of EB in PovMap and the sae Stata package.

The Stata package for small area estimation developed by Nguyen et al. [25] has been
updated to integrate the fitting methods from Van der Weide [20] with the prediction and
bootstrap methods from Molina and Rao [5]. This new method is referred to as the H3-
CensusEB, because it is based on the CensusEB method that does not link survey and census
households [10]. On the other hand, the previous method (i.e., original bootstrap from
Van der Weide [20]) is called H3-CBEB, where CBEB stands for clustered bootstrap EB. For
the updated Stata package, see https://github.com/pcorralrodas/SAE-Stata-Package (last
accessed on 24 October 2021). Corral et al. [16] performs a model-based validation study of
the different methods: (i) CensusEB, (ii) EB, (iii) H3-CBEB and (iv) ELL. In this study, Corral
et al. [16] extend the simulations done by Molina and Rao [5] by (i) including the area
means of the covariates as additional variables in the model; (ii) considering a model that
has considerably higher explanatory power by adding more covariates; (iii) considering
larger population sizes and smaller sampling fractions; and (iv) generating errors from a
Student’s t5 instead of a normal distribution. However, in all these simulations, population
data are generated under model (1).

Currently, the software available for small area estimation of non-linear parameters,
such as the sae Stata package by Nguyen et al. [25] as well as the R package sae by Molina
and Marhuenda [26], only allow for estimation under the nested error model specified in
(1). However, since household surveys often use two stage sampling, it seems appropriate
to consider a twofold nested error model. Marhuenda et al. [8] extend the EB method from
Molina and Rao [5] to a twofold nested error model, given by (for simplicity, we omit the
heteroskedasticity weights considered by Marhuenda et al. [8]):

yach = xachβ + ηa + ηac + each, h = 1, . . . , Nac, c = 1, . . . , Ca, a = 1, ..., A, (2)

where ηa is the random effect for area a and ηac is the random effect of cluster c within area
a. These effects along with the individual model errors, each, represent the unexplained vari-
ation of the transformed welfare, yach, across areas, clusters, and households (Marhuenda
et al. [8] refer to these effects as domain and sub-domain effects). All three components are
assumed to be mutually independent, following:

ηa
iid∼ N

(
0, σ2

a

)
, ηac

iid∼ N
(

0, σ2
ac

)
, each

iid∼ N
(

0, σ2
e

)
.

Using the assumed twofold nested error model, Marhuenda et al. [8] derive the EB
predictors (for details on the derivation, see Marhuenda et al. [8]) and study the effect of a
misspecified model (i.e., when including cluster effects only but presenting results at the

https://github.com/pcorralrodas/SAE-Stata-Package
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area level) on the MSE estimator. The argument posited by Das and Chambers [14] is that
auxiliary variables should explain the between-area variation of the response variable. If
this fails, there may be model misspecification, which can lead to an underestimation of the
true MSE of the ELL estimator (Marhuenda et al. [8]). Through model-based simulation
experiments under the assumed model (2), Marhuenda et al. [8] reach three important
conclusions under the model-based setup:

1. The relative values of σ2
ac and σ2

a are of key importance; the larger the value of σ2
a

relative to σ2
ac, the more problematic it is to apply models where effects are specified

at the cluster level, including the original ELL and EB with locations specified at the
cluster level. Additionally, EB with location effects specified at the cluster level, while
performing better than ELL (because it includes the average of the cluster effects
unlike ELL)Guadarrama et al. [27] will also perform worse the larger the value of σ2

a
is relative to σ2

ac.
2. Even if the true model contains random effects only at a single level, the assumption

of a twofold model practically does not entail loss in efficiency.
3. EB estimates under model (1) with random effects specified at the area level will

have similar performance to the twofold EB estimates. The recommendation is that if
the estimation is done using model (1) because of software availability or simplicity,
then the model’s random effects should be specified at the level at which results
are desired.

As noted by Marhuenda et al. [8], small area estimators based on unit level models
often achieve very large reductions in MSE compared to direct estimators. EB estimators
based on unit level models are also likely to achieve considerable gains in terms of MSE
over the popular Fay–Herriot (FH) area level models introduced by Fay III and Herriot [3].
For example, Molina and Morales [28] obtained mild gains over direct poverty and poverty
gap estimates when using a FH model. Molina and Rao [5], though, using the same data
sources as Molina and Morales [28], but applying unit level models and EB prediction,
obtain considerably larger gains. However, when the available census and survey are not
from the same year, small area estimates based on unit level models may result in biased
estimates. In such scenarios, FH models offer an alternative because these do not require
census microdata. Alternatively, twofold models such as that of Torabi and Rao [4] could
also be considered to achieve larger gains as noted by Molina [10].

Another potential solution is to use only aggregated covariates in the model for the
household level welfare. This alternative is presented by Nguyen [9] in an application
for Vietnam. The author proposes a model where the dependent variable is household
level logarithm of per capita expenditure from a recent survey, in this case the Vietnam
Household Living Standard Survey from 2006, whereas all covariates are commune level
means. These means are obtained from a dated (1999) census, although the author notes
geographic information system data (GIS) could also be included into the set of covariates.
Nguyen [9] obtains ELL estimates for small areas under that model and compares the
performance with that of typical ELL estimates obtained using unit level covariates from
the Vietnam Household Living Standard Survey from 2006 and the 2006 Rural Agriculture
and Fishery Census. The author finds provinces and districts hovering around the middle
of the distribution suffer from considerable re-rankings across methods, but those at the
top and the bottom are relatively stable.

Lange et al. [11] present an approach similar to that of Nguyen [9], which the authors
suggest as an alternative in cases when census and survey data are not from similar periods,
though the same issues noted above for the ELL method would likely persist in a model
using only area-level covariates. Masaki et al. [12] use a similar modeling approach to
Nguyen [9], but take measures to address some of the shortcomings of a standard ELL
approach and obtain EB estimators of Molina and Rao [5], which appear to be more precise.
The authors conduct a design-based validation study using a wealth index constructed
with principal component analysis using census data for Sri Lanka and Tanzania. Their
results show the approach may hold promise.
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In the sections that follow, the different procedures discussed here are tested under
model-based and design-based simulation experiments.

3. Model-Based Simulation Experiments

The simulation experiment described here is based on those conducted by Marhuenda
et al. [8], in which the true data generating process is a twofold nested error model. Such
a model will better accommodate the usual applications of poverty mapping, where
household surveys use two-stage sampling. In fact, the traditional ELL method includes
random effects only at the cluster level, but estimates are given for a higher level.

In this simulation experiment, a census data set of N = 20,000 observations is cre-
ated, where observations are allocated among 40 areas (a = 1, . . . , A). Within each area,
observations are uniformly spread over 10 clusters (c = 1, . . . , Ca). Each cluster, c, consists
of Nac = 50 observations, and each cluster is labeled from 1 to 10. The assumed model
contains both cluster and area effects. Cluster effects are simulated as ηac

iid∼ N
(
0, 0.12),

area effects as ηa
iid∼ N

(
0, 0.052) and household specific residuals as each

iid∼N
(
0, 0.52), where

h = 1, . . . , Nac; c = 1, . . . , Ca; a = 1, . . . , A. Following a similar approach as in Molina and
Rao [5] and Marhuenda et al. [8], the following covariates are considered:

1. x1 is a binary variable, taking value 1 when a random uniform number between 0
and 1, at the household level, is less than or equal to 0.3 + 0.5 a

40 + 0.2 c
10 .

2. x2 is a binary variable, taking value 1 when a random uniform number between 0
and 1, at the household level, is less than or equal to 0.2.

3. x3 is a binary variable, taking value 1 when a random uniform number between 0
and 1, at the household level, is less than or equal to 0.1 + 0.2 a

40 .
4. x4 is a binary variable, taking value 1 when a random uniform number between 0

and 1, at the household level, is less than or equal to 0.5 + 0.3 a
40 + 0.1 c

10
5. x5 is a discrete variable, simulated as the rounded integer value of the maximum

between 1 and a random Poisson variable with mean λ = 3
(
1− 0.1 a

40
)
.

6. x6 is a binary variable, taking value 1 when a random uniform value between 0 and 1
is less than or equal to 0.4. Note that the values of x6 are not related to the area’s label.

7. x7 is a binary variable, taking value 1 when a random uniform number between 0
and 1 is greater than or equal to 0.2 + 0.4 a

40 + 0.1 c
10

The welfare vector for each cluster within an area is created from the model with these
covariates, as follows:

yach = 3 + 0.09x1ach − 0.04x2ach − 0.09x3ach + 0.4x4ach − 0.25x5ach

+ 0.1x6ach + 0.33x7ach + ηa + ηac + each, (3)

The dependent variable, yach, is in the log scale. The poverty line in this scenario is
fixed at z = 12.

From the created “census”, 20% of the observations are sampled in each of the clusters
using simple random sampling without replacement. This yields our “survey” data. Note
that the same units are sampled in every simulation and the values of x1 to x7 for all
the census units are also kept fixed; this implies that the values of these covariates for
the sample units are always the same across simulations. The generation and sampling
processes are repeated L = 10,000 times. In each simulation replicate, the following
quantities are computed for the poverty rates and gaps in each area:

1. True poverty indicators τa, using the “census”.
2. Direct estimators τ̂DIR

a using the “survey”, defined as the sample versions of τa.
3. Census EB estimators τ̂CEBac

a presented in Marhuenda et al. [8] based on a twofold
nested error regression model, and obtained using a Monte Carlo approximation with
M = 50 replicates. Note that, for this estimator, the fitted model agrees with the true
data generating process (3).



Mathematics 2021, 9, 2780 7 of 40

4. Census EB estimators τ̂CEBa
a presented in Corral et al. [16] based on a nested error

model with only area random effects obtained using a Monte Carlo approximation
with M = 50 replicates.

5. Census EB estimators τ̂CEBc
a presented in CMN Corral et al. [16] based on a nested

error model with only cluster random effects and including the aggregate cluster and
area means of the considered auxiliary variables, where M = 50.

6. Traditional ELL estimators τ̂ELLc
a , based on a nested error model with only cluster

random effects and including the aggregate cluster and area means of the considered
auxiliary variables, where M = 50.

7. Unit-context Census EB estimators τ̂UC−CEBa
a based on a nested error model with

random effects at the area level. This estimator follows the approach from Masaki
et al. [12] that is a modified version of that of Nguyen [9], which uses only area means
for some of the right hand side variables. Specifically, the covariates used in this
model are x̄1ac, x̄3a, x̄4ac, x̄5a and x̄7ac. Nguyen [9] proposes this solution for the case
when only a dated census and a recent survey are available.

8. Unit-context two-fold nested error Census EB estimators τ̂UC−CEBac
a based on a two-

fold nested error model with random location effects at the area and cluster level.
This estimator follows the approach from Masaki et al. [12] and Nguyen [9], where
only area means for some of the right hand side variables are used. Specifically, the
covariates used in this model are x̄1ac, x̄3a, x̄4ac, x̄5a and x̄7ac.

Model bias and MSE are approximated empirically as in Molina and Rao [5], as the
averages across the L = 10,000 simulations of the prediction errors in each simulation (l),
τ̂

j(l)
a − τ

(l)
a and of the squared prediction errors, respectively, where j stands for one of the

methods: DIR, CEBac, CEBa, CEBc, ELLc, UC − CEBa, UC − CEBac. Here, E
(

τ̂
j
c − τc

)
for the bias and E

(
τ̂

j
c − τc

)2
for the MSE, where E(.) denotes expectation under model

(2). Model bias and root MSE for a given area’s estimate are computed at the area level as
follows:

Bias
(

τ̂
j
a

)
=

1
L

L

∑
l=1

(τ̂
j(l)
a − τ

(l)
a )

RMSE
(

τ̂
j
a

)
=

√√√√ 1
L

L

∑
l=1

(τ̂
j(l)
a − τ

(l)
a )2

3.1. Results

The section presents the results from the model-based simulation experiments where
the goal is to compare the performance of the different methods. Marhuenda et al. [8]
consider multiple scenarios where they simulate different values for σ2

a and σ2
ac. The authors

note what matters are the relative values. In this instance, the interest is to assess how
results differ when the random cluster effect is considerably smaller than the random area
effect and when the random cluster effect is considerably larger than the random area
effect. ELL would commonly specify its random location effect at the cluster level and then
aggregate results to the area level. Consequently, we expect ELL to perform better when
the random cluster effect is larger than the area random effect.

The scenarios are chosen to contrast what occurs when the cluster effect is twice the
area effect and when the cluster effect is half the area effect. Consequently, we consider
two scenarios:

1. ηac
iid∼ N

(
0, 0.12) and ηa

iid∼ N
(
0, 0.052)

2. ηac
iid∼ N

(
0, 0.052) and ηa

iid∼ N
(
0, 0.12)

Simulation results under the two considered scenarios are presented, respectively,
in Figures 1 and 2 for bias, and Figures 3 and 4 for MSE. The target parameters for this
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simulation are mean welfare and the FGT class of decomposable poverty measures due to
Foster et al. [29] for α = 0, 1, 2, which are, respectively, the headcount poverty (denoted
FGT0), the poverty gap (FGT1), and the poverty severity (FGT2).

Figure 1. Empirical model bias of FGT0 estimators for σac = 0.1 and σa = 0.05.

Figure 2. Empirical model bias of FGT0 estimators for σac = 0.05 and σa = 0.1.
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Figure 3. Empirical model MSE of FGT0 estimators; σac = 0.1 and σa = 0.05.

Figure 4. Empirical model MSE of FGT0 estimators; σac = 0.05 and σa = 0.1.

The results for bias and MSE are presented at the area level. With the exception of a
few areas in which the ELL and unit-context methods demonstrate a slightly higher bias, all
examined methods perform better than the direct estimators, in most cases by a substantial
margin. For MSE, the result varies between the two simulation scenarios. Under scenario
1 with results shown in Figure 3, where the variance of cluster effects is double that of
the area effects, the methods considered, including ELL and the unit-context methods,
perform relatively well and in nearly all cases now do as well as or better than direct
estimates, though again ELL and the unit-context methods perform worse than the other
options. Despite the result, other issues from the implementation of ELL method noted by
Corral et al. [16], like the underestimation of the MSE still remain, unless the method to
estimate MSE is adjusted. However, in Figure 4, where the variance of the area effects is
now much larger, ELL in particular performs poorly in terms of MSE likely due to the error
misspecification and the contextual variables not sufficiently explaining the variability
of the area effects. To a lesser extent, a similar effect can be observed for the CensusEB
estimator, based on a model with only cluster effects and contextual variables (CEBc with
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context), which performs well in terms of MSE under scenario 1, but under-performs in
scenario 2.

The twofold model results are aligned to the results presented by [8]; the bias and MSE
of estimates obtained under twofold fitting and onefold CensusEB fitting at the area level
are largely indistinguishable. This result is interesting in that it resonates with the findings
from [8]; in the absence of a software solution for a twofold nested error regression, it is
preferable to specify the random effects at the level at which results are desired. This will
ensure that MSEs are minimized despite mistaken model assumptions.

Surprisingly, the two unit-context models used to obtain CensusEB estimators, one
with random effects only at the area level and another with random effects at the cluster
and area levels, show more bias than ELL within any given area. The covariates used in
this model are x̄1ac, x̄3a, x̄4ac, x̄5a and x̄7ac. In other simulation experiments run, but not
shown here, all the covariates’ aggregates at the cluster level are used and similar results
are obtained. The results shown here are not evident under the model based simulation
conducted in Masaki et al. [12], page 36, because under the simulation presented here, true
welfare is generated from household level covariates as is likely the case in real world
scenarios. In Masaki et al. [12], the authors chose to model the dependent variable using
only 2 subdomain level covariates, which are constant for all households in the subdomain.

The bias observed in the simulations conducted here for unit-context models is in part
due to omitted variable bias. These models also display an upward bias in an additional
simulation experiment, where the whole population (of size 20,000) is used to fit the models
and to estimate the FGT0 predictors. If the true model includes x5ach, then when we only
consider x̄5ac, we are omitting z5ach = x5ach − x̄5ac from the model. This misspecification
is manifested as failure of the linearity assumption and the magnitude of the resulting
bias depends on the form of the covariates (see Figure 5 and Appendix A). Additionally,
it will vary for each type of indicator. For example, when estimating mean income in a
model without log transformation, linearity is preserved when aggregating, and thus the
approach is expected to perform well (in our simulations, the empirical average relative root
MSE of the Census EB estimator of the area mean of the dependent variable (without back-
transformation) based on the UC model is just slightly higher than that of the corresponding
CensusEB estimator based on the unit level model.

However, the empirical MSEs for the unit-context models in most areas outperform
those from ELL (see Table 1 for average results). In fact, under scenario 1 (Figure 3), in some
areas the MSE for the unit-context models are only slightly worse than those of the CEBa
and CEBac. Under scenario 2, where the area effects have a higher variance relative to that
of the cluster effect, which is likely the case in real world scenarios, the empirical MSE for
the unit-context models show considerable variability for both fitting models. The results
suggest that the method could outperform direct estimates as well as misspecified models
with random effects for the area level only, in terms of MSE, and may be an alternative
under scenarios where census and survey data are not aligned. However, bias in these
unit-context models may be a considerable concern. As one can see in the results from
Table 1, the unit context model yields FGT0 estimators with an average absolute bias that is
56 times larger than the bias of the CensusEB estimators based on the unit level model, and
almost 5 times larger than ELL’s average absolute bias. The unit-context model also yields
mean welfare estimators that are 38 times more biased than Census EB variants obtained
under the unit level model (where the dependent variable is the log of welfare). In the
sections that follow, this is further explored.
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Figure 5. Omitted variable bias under unit-context models.

Table 1. Aggregate results across areas (FGT0).

1 2 3 4

Model R2 ~0.42 ~0.42 ~0.42 ~0.42
σa 0.05 0.1 0.05 0.1
σac 0.1 0.05 0.1 0.05
σe 0.5 0.5 0.5 0.5
Sample per cluster 10 per all clusters 10 per all clusters 10 per 20% clusters 10 per 20% clusters
Population 20,000 20,000 100,000 100,000
Direct
AAB (×100) 1.780 1.783 1.802 1.795
ARMSE (×100) 4.039 4.041 4.396 4.563
CEBac
AAB (×100) 0.020 0.023 0.018 0.023
ARMSE (×100) 2.630 2.859 2.493 2.191
CEBa
AAB (×100) 0.020 0.024 0.021 0.017
ARMSE (×100) 2.642 2.876 2.515 2.237
CEBc
AAB (×100) 0.024 0.029 0.045 0.020
ARMSE (×100) 2.793 3.885 4.731 2.614
ELLc
AAB (×100) 0.238 0.236 0.144 0.139
ARMSE (×100) 3.433 5.269 5.048 2.768
UC− CEBa
AAB (×100) 1.115 1.362 1.296 0.986
ARMSE (×100) 3.074 3.404 3.068 2.584
UC− CEBac
AAB (×100) 1.106 1.370 1.272 0.929
ARMSE (×100) 3.059 3.383 3.046 2.591

AAB: Average absolute bias; ARMSE: Average root MSE.
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4. Design-Based Simulation

In this section, we present a design-based simulation experiment based on the Mex-
ican Intra Censal Survey of 2015 (Encuesta Intracensal). The purpose of the simulation
is to observe the performance of the different methods under more realistic scenarios.
The survey is carried out by the Mexican National Institute of Statistics and Geography
(Instituto Nacional de Estadistica y Geografia—INEGI). The survey has a sample of 5.9 mil-
lion households and is representative at the national, state (32 states) and municipal or
delegation level (2457 municipalities), as well as for localities with a population of 50,000
or more inhabitants.

The 2015 Intra Censal Survey questionnaire includes the following topics related to
the housing unit: dwelling features, size and use of the dwelling, conditions for cook-
ing, ownership and access conditions, access to water, sanitation facilities and sanitation,
electric power, solid waste, equipment, appliances and automobile; and information and
communication technologies (ICT). It also includes the following demographic information:
total population and structure, birth registration, marital status, health services, ethnicity,
education, economic characteristics, non-paid work, migration, daily mobility, fertility
and mortality, household composition, non-labor household income, food security, agri-
cultural land use, relationship to the household head, indigenous language, occupation,
economic activity, and accumulated education. The survey also includes indicators for
states, municipalities, and counties.

One of the key features of the survey is its size and the fact that it includes a measure
of income at the household level (defined as money received from work performed during
the course of the reference week by individuals of age 12 or older within the household).
The inclusion of an income measure allows for a design-based validation of the different
methods presented above. The next section describes how the survey is modified to create
a census data set and how samples are then drawn from the created census data with the
goal of obtaining small area estimates of poverty at the municipal level.

4.1. Creating a Census and Survey

Because the goal of this exercise is to test how well the different methods perform
under a real world scenario, the Intra Censal Survey is modified to mimic a Census in
order to allow for a design-based simulation. The first step consists of randomly removing
90 percent of households that reported an income of 0. This is done to ensure that some
households with an income of 0 are included in the population, but not as many as
in the original data to make it more realistic (welfare values of 0 and/or missing are a
common feature of household surveys). In the second step, all municipalities with less
than 500 households are removed. Thus, the number of households by municipality range
from 501 to 23,513 and the median municipality has 1613 households. The final “Census”
consists of 3.9 million households and 1865 municipalities.

To draw survey samples, primary sampling units (PSU) need to be created. (the
Intra Censal Survey has its own PSUs, however many of these have too few observations
to properly work as PSUs in the created “Census” data). Within each municipality, the
original data’s PSUs are sorted (assumming that the clusters’ numbering is tied to how
proximate each cluster is to one and other) and joined until each created PSU has close to
300 households. Under the proposed approach, original PSUs are never split, just joined to
others. Additionally, all original PSUs that were larger than 300 households are designated
as a created PSU. The entire process yields 16,297 PSUs.

The resulting Census data is used to draw 500 survey samples to conduct a design-
based simulation to establish how a method will perform over repeated sampling from a
finite population [7]. The sampling approach reflects standard designs used in most face-
to-face household surveys conducted in the developing world, such as those conducted by
the Living Standards Measurement Study (LSMS) program of the World Bank [30], with
some simplification for convenience. First, the 32 states that comprise Mexico are treated
as the intended domains of the sample. The main indicator of interest for the survey is
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the welfare measure: household per capita income. The desired level of precision to be
achieved in the sample is assumed to be a relative standard error (RSE) of 7.5 percent
for mean per capita income in each state (this is somewhat arbitrary, but corresponds
to usual precision targets in similar surveys and yields a sample of reasonable size). A
two-stage clustered design is assumed with clusters (defined above) serving as primary
sampling units (PSUs) selected in the first stage within each domain and then a sample of
10 households within each cluster is selected in the second stage. With these design features
established, the trimmed census data was analyzed to identify the parameter estimates for
per capita income (mean and standard deviation) for each state and the target standard
error implied by the parameter estimates that corresponds to an RSE of 7.5 percent. The
minimum sample size required for state s, given these parameters, under simple random
sampling (SRS), is then obtained as:

nSRS
s =

(
σs

ȳs × RSEtgt

)2
=

(
σs

ȳs × 0.075

)2

where σs is the standard deviation of per capita income in state s, RSEtgt is the target
standard error of 7.5 percent in state s, and ȳc is the mean per capita income in state s.
The minimum sample size under SRS must then be adjusted to account for the clustered
design. This design effect due to clustering is accounted for by estimating the intra-cluster
correlation (ICC) for per capita income within each state using the trimmed census data.
The ICC estimates can then be applied to the SRS size obtained above to arrive at the
minimum sample size for state s under the clustered design employed here, given by:

ns = nSRS
s × DEFFs = nSRS

s ×
(
1 +

(
npsu − 1

)
ρs
)

where DEFFs is the design effect in state s, npsu is the number of households selected
within each cluster (10 in this case) and ρs is the intraclass correlation coefficient (ICC) of
per capita income in state s. The minimum number of clusters to achieve ns (assuming
10 households per cluster) was calculated, and then the final (household) sample size
is obtained by multiplying the number of clusters by 10 (full results for the sample size
determination are available upon request).

Taking the sample size requirements from above as fixed, the sample in each simula-
tion is selected in accordance with the two-stage design. PSUs within each state, referred
to here as clusters, are selected with probability proportional to size (PPS) without replace-
ment, where the measure of size is the number of households within the cluster. Then
10 households were selected within each cluster via simple random sampling. Accord-
ing to this design, the inclusion probability for household h in cluster c and in state s is
approximated as follows:

psch =
NscCs

Ns
× nsc

Nsc
,

where Ns is the total number of households in the census for state s, Nsc is the number of
households in cluster c from state s, Cs is the number of clusters selected in state s, and
nsc is the number of households selected in cluster c within state s, which is fixed at 10.
Even though PPS sampling without replacement is used here, the above formula for the
inclusion probabilities is obtained for sampling with replacement. In this case, this formula
should provide a reasonable approximation, since there are a relatively large number of
PSUs present in the frame. The design weight for each household is simply the inverse of
the inclusion probability. In a typical survey, the design weights would be further adjusted
for non-response and calibrated to known population characteristics. However, since the
sampling is only a simulation exercise, there is no non-response and thus no non-response
adjustment is required. Calibration or post-stratification could be performed but was not
implemented to simplify the process.

The sample size across the 500 samples is roughly 23,540. Under the proposed sam-
pling scenario, not all municipalities are included, and the number of municipalities
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included varies from sample to sample, ranging between 951 and 1020 municipalities. The
median municipality included in a given sample, is represented by a sole PSU and thus its
sample size is of 10 households.

4.2. Model Selection

Model selection is conducted using the first sample drawn from the scenario detailed
in the previous section. The target variable is household per capita income. However, this
variable is highly skewed and to achieve an approximately normal distribution we test
three transformations: (i) natural logarithm (in any given sample, roughly 11 observations
have an income of 0, these are assigned an income of 1 prior to transformation), (ii) log-shift
transformation, and (iii) Box-Cox transformation of the natural logarithm (for further
details on transformations, see Tzavidis et al. [7]). As one can see in Figures 6–8 for a single
sample (from a two-stage clustered design), the Box-Cox transformation, as well as the log
shift, fix the skewness in the distribution of model residuals that appears after taking the
natural logarithm of per capita income.

Figure 6. Histogram of residuals from unit level one-fold nested error model fitted to Nat. log. of per
capita income (municipal random effects).

Figure 7. Histogram of residuals from unit level onefold nested error model fitted to log-shift
transformation of per capita income (municipal random effects).
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Figure 8. Histogram of residuals from unit level onefold nested error model fitted to Box-Cox of Nat.
log. of per capita income (municipal random effects).

The goal of the model selection process is to arrive at a model that only includes stable
covariates. Under each transformation, model selection is done using a least absolute
shrinkage and selection operator, commonly known as lasso, where the candidates for
covariates include household characteristics and characteristics at the PSU, municipal and
state level. The model is selected using 20 fold cross validation and shrinkage parameter
λ that is within 1 standard error of the one that minimizes the cross validated MSE. Two
models are selected: (i) a model that includes household characteristics and character-
istics at the PSU, municipal, and state levels and (ii) another model that only includes
characteristics at the PSU, municipal and state levels. The second model is used for the unit-
context approach. All household level characteristics that are also included as aggregates
at the PSU, municipality, and state levels have been previously standardized to ensure
that these have mean 0 and standard deviation 1 for each PSU, municipality and state,
respectively. Note that aggregated covariates have been obtained from the “census”, thus,
the aggregated covariates will be the same within the sample and the census. The lasso
model selection process applied here ignores the error structure presented in (1) and (2)
and does not ensure that selected covariates will be significant under the assumed models.
Consequently, after the initial lasso model selection, model (1) is fit using Henderson’s
Method III (with sampling weights) and random effects specified at the municipality level.
Because the resulting model may still include covariates that are not significant under
the fitted model, all non-significant (at the 1% level) covariates are removed sequentially,
starting with the least significant covariate, then the model is fit again without the covariate,
and the process is repeated until all covariates in the model are significant at the 1% level.
Finally, we check for multicollinearity and remove covariates with a variance inflation
factor (VIF) above 3.

Fitted models using the first sample and the described model selection are presented
in Tables A1 and A2 in the Appendix A. Since in small area estimation models are used
for prediction, assessing the predictive power of the model is important. This may be
measured using the coefficient of determination, R2 [7]. For the household level model
used in this exercise, the R2 is close to 0.45 while that of the unit-context model centers
around 0.25.

Figures 9–11 represent checks on the normality assumptions using normal Q-Q-plots
of household level residuals and estimated area effects for the onefold unit level model
with random municipality location effects. The resulting plots for the unit-context models
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can be seen in the Appendix A Figures A1–A3. The natural logarithm transformation
(Figure 9) presents evidence of deviation from normality. Marhuenda et al. [8] notes in
applications that use real data the exact fit to a distribution is barely met; however, the
Box-Cox and log-shift transformations provide considerably better normal approximations,
see Figures 10 and 11. Box-Cox and log-shift transformations are available under R’s sae
package as well as under Stata’s sae package. In the World Bank’s PovMap software, the
only available transformation was natural logarithm. However, PovMap does allow for
drawing residuals from the empirical distribution as well as from a Student’s t distribution.

Figure 9. Normal Q-Q-plot of unit level onefold nested error model—household level and predicted
subdomain effects (Nat. log transformation).

Figure 10. Normal Q-Q-plot of unit level one-fold nested error model—household level and predicted
subdomain effects (log-shift transformation).
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Figure 11. Normal Q-Q-plot of unit level one-fold nested error model—household level and predicted
subdomain effects (Box-Cox of nat. log transformation).

4.3. Results

Once the models to be used have been selected and L = 500 samples under two-stage
sampling described in Section 4.1 have been taken from the “census” created using the
Mexican Intra Censal Survey of 2015, we obtain estimates using the different considered
models. The target parameters for this simulation are mean welfare and the FGT class
of decomposable poverty measures defined by Foster et al. [29] for α = 0, 1, 2, for the
municipalities present in the census. The true values of the target parameters at the
municipal level are based on the census data.

As a first step, we compare results using the three transformations discussed in the
previous section. Figures 12 and 13 show box plots of empirical absolute relative bias and
MSE of CensusEB estimates of poverty rates based on model (1) under each transformation.
The Box-Cox and log-shift transformation yield estimates that are not only less biased,
but also result with a lower empirical design MSE. As can be seen in the results from the
first 3 columns in Table 2, the log-shift transformation yields aggregate results somewhat
preferable to the Box-Cox. Additionally, in Table 2, it is quite clear that the natural logarithm
may actually result in aggregate results that present considerably smaller gains over direct
ones and thus model and residual checks should always be done to ensure adequate
transformations are used to avoid such an outcome. The rest of the discussion will focus
on estimates obtained from the log-shift transformation applied to the two-stage samples
(Figures under other transformations are available upon request).
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Figure 12. Box plots of Census EB FGT0 design bias for unit level one-fold nested error model
estimates for fitted model 1 and two-stage samples (Municipal level).

Figure 13. Box plots of empirical MSE of unit level onefold nested error model CensusEB FGT0
estimates for fitted model 1 and two-stage samples (Municipal level).

We consider estimators based on one-fold and twofold nested error models, including
unit-context (UC) models with only aggregated covariates (all models include a constant
term), and direct estimators. Concretely, we consider the following (a table summarizing
each method can be found in the Appendix A):

Direct Estimates:

1. Direct estimates from the survey samples for each municipality. These are calcu-
lated with weights from the considered design. Specifically, the calculation of FGT
indicators under the two-stage design detailed in Section 4.1 using the inclusion
probabilities is obtained as:
τ̂direct

a = ∑c ∑h
pach

∑ pach
Fach;

where, pach is the inclusion probability for household h in cluster c and in municipality
a, and Fach is the FGT or welfare measure of interest for household h in cluster c and
in municipality a. Note that, depending on the sampling strategy, some areas might
have zero sample size, and hence no direct estimates can be obtained for those areas.
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Unit-level models:

1. CEBa: Model fit is done using Henderson’s Method III (with sampling weights) and
estimates are obtained using CensusEB as noted in CMN Corral et al. [16]. The fitted
model reads:
yach = xachβ + zacα + taω + gsλ + ηa + εach;
where xach is a vector of household specific characteristics, zac contains cluster level
characteristics, ta includes municipality level characteristics and gs is composed of
state level characteristics. The random effects, ηa, are specified at the municipal level.

2. CEBc: Model fit is done using Henderson’s Method III (with sampling weights) and
estimates are obtained using Census EB as noted in Corral et al. [16]. The difference
with model (1) is that random effects are specified at the PSU level. That is, the fitted
model is:
yach = xachβ + zacα + taω + gsλ + ηac + εach;
where, ηac, is a random effect for cluster c within municipality a.

3. CEBac: Model fit is done using REML and estimates are obtained using CensusEB as
in Marhuenda et al. [8]. Fitted model follows:

(a) yach = xachβ + zacα + taω + gsλ + ηa + ηac + εach; random effects are specified
at the municipality and PSU level.

Note that CensusEB estimators based on twofold nested error models are obtained
without the use of probability sampling weights and are thus not comparable to those
estimators that use survey weights.

4. CEBsa: Similar to CEBac, however random effects are specified at the municipal and
state level. The goal here is to borrow strength from the state for municipalities that
are not in the sample which takes a cue from Marhuenda et al. [8].

5. ELLc: under the same model as in 2. In cases where we use a transformation different
from the natural logarithm, random location effects and household residuals are
drawn from their empirical distribution.

Unit-context models:

1. UC − CEBa: Unit-context model originally proposed by Nguyen [9] but with EB,
similar to Masaki et al. [12]. Model fit is done using Henderson’s Method III (with
sampling weights) and estimates are obtained using CensusEB as noted in Corral
et al. [16]. The fitted model follows:
yach = zacα + taω + gsλ + ηa + εach.

2. UC− CEBac: Unit-context model fit is done using REML and estimates are obtained
using CensusEB as in Marhuenda et al. [8]. The fitted model is:
yach = zacα + taω + gsλ + ηa + ηac + εach;

3. UC− CEBsa: Similar to model UC− CEBac; however, random effects are specified at
the municipal and state levels. Just like 5, the goal here is to borrow strength from the
state for municipalities that are not in the sample.

4. UC − ELLc: ELL estimates under model in UC − CEBa, but random effects are
specified at the PSU level, as was originally proposed by Nguyen [9] and then by
Lange et al. [11]. In cases where we use a transformation different from the natural
logarithm, random location effects and household residuals are drawn from their
empirical distribution.
yach = zacα + taω + gsλ + ηac + εach.

The chosen measures to evaluate performance of the considered predictors are bias,
MSE, and root MSE obtained as:

Bias
(

τ̂
j
a

)
=

1
L

L

∑
l=1

(τ̂
j(l)
a − τa)

MSE
(

τ̂
j
a

)
=

1
L

L

∑
l=1

(τ̂
j(l)
a − τa)

2
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RMSE
(

τ̂
j
a

)
=

√√√√ 1
L

L

∑
l=1

(τ̂
j(l)
a − τa)2

where j stands for one of the methods: CEBa, CEBc, direct, CEBac, CEBsa, ELLc, UC −
CEBa, UC− CEBac, UC− CEBsa, and UC− ELLc; τa denotes the true population param-
eter for municipality a. Note that, in design-based simulations, there is only one true
population parameter because our census is fixed. In model-based simulations, the target
parameters are random. Formal evaluation of the MSE estimators is not undertaken here
since it is beyond the scope of the exercise and computationally intensive as it would
require obtaining a bootstrap MSE for each of the 500 samples.

In Section 3.1, like Marhuenda et al. [8], we noticed how the relative size of the random
effects affected the precision of the different methods. The first sample from the simulation
experiment under two-stage sampling is used to assess the magnitude of the random effects
under the unit level model. The values of σ̂2

ac and σ̂2
a under the twofold nested error model

with a log shift transformation for this sample are equal to 0.021 and 0.013, respectively.
The value of σ̂2

ac when specifying random effects only at the cluster level is equal to 0.072,
and σ̂2

ac/σ̂2
e is equal to 0.054. When specifying random effects only at the municipality level,

σ̂2
a is equal to 0.022, and the σ̂2

ac/σ̂2
e ratio is equal to 0.045.

In Figure 14, we can clearly see that, in general, all SAE methods outperform the direct
estimates in terms of design MSE (see Figure A6 in the Appendix A for the untrimmed
version of the figure). In terms of design bias (Figure 15), direct estimators are very close
to being unbiased under the design and would likely converge to the true estimate as the
number of simulations increase. On the other hand, model-based estimators are all biased
under the design. The result is similar to the one presented by Marhuenda et al. [8], where
gains in MSE for model-based estimators are achieved at the expense of design bias. As an
additional check, we add simulations where L = 500 samples are taken, each consisting of
a 1% SRS without replacement in every PSU within the fixed census population. Aggregate
results for this scenario are presented in column 4 of Table 2 and box plots for MSE and
bias are presented in Appendix A Figures A4 and A5, respectively. The first thing to
note in these figures is there are fewer extreme outliers when compared to results from
the two-stage sample scenario in Figure A6 in the Appendix A. Despite fewer outliers,
the results under the additional sampling scenario mimic those from two-stage samples.
However, under the two-stage sampling used here, direct estimates for most municipalities
are not available across all 500 samples (see Section 4.1). Consequently, direct estimates are
not included under the remaining figures that discuss results from the two-stage samples.

Under the simulation experiment with two-stage sampling, the empirical MSE of
ELLc estimates, where the location effect has been specified at the PSU level, appear to
have a tighter spread than direct estimates (Figure 14). Consequently, though ELL appears
to perform relatively well, relative to direct estimates, the number of ELL outliers with a
high MSE is considerable and ELLc performs worse than all other small area approaches.
This result was not expected, as the FGT0 results for UC− ELLc appear to perform better
than the traditional ELLc, which has a considerably better model fit (note that, under the
MI inspired bootstrap of ELL, a very poor model fit will be heavily penalized and will
likely yield noise estimates for UC− ELLc that are fare worse than direct estimates in most
applications). Nevertheless, UC − ELLc does very poorly in terms of true MSE for the
estimation of mean welfare, with an MSE that is as large as that of direct estimates, and it
is also considerably biased, see Appendix A Table A5. These results also hold under the
simulation experiment with the 1% SRS by PSU samples.

As expected, CEBa estimates show a considerably tighter MSE spread than direct
estimates, but still with outliers. Another interesting finding is that under CensusEB, but
with random effects specified at the PSU level (CEBc), the empirical MSE is tighter than
that of the direct estimates and also displays better properties than ELLc as seen in Table 2.
However, given the discussion in the model-based validation and the results shown here,
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the results with the random effects at the municipality level are preferred over the ones
where the effect is specified at the PSU level.

Figure 14. Box plots of empirical design MSE for FGT0 under two-stage sampling (Nat. log.
shift transformation).

Figure 15. Boxplot of empirical design bias for FGT0 under two-stage sampling (Nat. log. shift
transformation).

Perhaps the most surprising result is the low MSE of the UC− CEBa method with
only contextual variables and the other UC− CEB variants, as proposed by Masaki et al.
[12]. The results display a tight spread and the results from Table 2 corroborate the finding.
Nevertheless, beyond UC models being an alternative if contemporaneous census data is
not available, the method presents a couple of advantages over traditional Fay–Herriot
(FH) area level models under sampling scenarios that follow a two-stage design like
the one considered here. First, as noted toward the end of Section 4.1, the majority of
municipalities are represented by 1 PSU and thus have quite small sample sizes which
makes the likelihood of direct FGT0 estimates being equal to 0 or 1 much higher. Under
these cases, the method from Nguyen [9] is a valid alternative to FH because FH is not
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applicable in these municipalities with a sampling variance of 0. An additional advantage
is that the model can be used for multiple indicators, whereas the FH requires a model for
each indicator considered.

Table 2. Aggregate results for 1865 municipalities in “Census” (FGT0)—results from 500 samples.

1 2 3 4

Transformation Box-Cox Nat. log. Log. Shift Log. Shift
Direct
AAB (×100) 11.314 11.314 11.314 9.722
ARMSE (×100) 14.051 14.051 14.051 11.997
CEBac
AAB (×100) 6.277 8.642 6.273 5.393
ARMSE (×100) 6.580 9.169 6.574 5.964
CEBsa
AAB (×100) 6.382 8.953 6.380 5.740
ARMSE (×100) 6.695 9.414 6.687 5.997
CEBa
AAB (×100) 6.080 8.800 6.092 5.395
ARMSE (×100) 6.584 9.525 6.589 6.034
CEBc
AAB (×100) 6.253 8.690 6.277 6.054
ARMSE (×100) 6.363 8.847 6.384 6.181
ELLc
AAB (×100) 6.685 8.781 6.685 6.961
ARMSE (×100) 6.820 8.854 6.820 7.087
UC− CEBa
AAB (×100) 6.171 7.531 6.016 5.982
ARMSE (×100) 6.607 8.274 6.461 6.672
UC− CEBac
AAB (×100) 6.121 7.596 5.998 5.926
ARMSE (×100) 6.446 8.186 6.332 6.652
UC− ELLc
AAB (×100) 6.250 8.019 6.250 7.581
ARMSE (×100) 6.421 8.100 6.421 7.758
UC− CEBsa
AAB (×100) 6.002 7.539 5.875 5.937
ARMSE (×100) 6.414 8.284 6.294 6.570

AAB: Average absolute bias; ARMSE: Average root MSE. ELL under Box-Cox and log shift, model is still for
Nat. log., but errors are drawn from the empirical distribution. Columns 1, 2, and 3 under two-stage samples
(Section 4.1); Column 4 results are under 1% SRS by PSU, all PSUs are included.

A possible explanation for the good performance of unit-context models under the
considered experiments could be due to estimated random effects, where σ̂2

ac > σ̂2
a , which

coincides with the better performing scenario in Section 3.1. However, this observation
is likely a coincidence, since the performance of unit-context models depends on the
particular covariates included in the model and on the shape of the target indicator. Under
the Mexican data with the covariates used, the unit-context model performs rather well.
However, the method considerably lags behind all others for estimation of the welfare
mean by area. A similar result is observed in the results presented in Section 3.1, see also
Table A5 in the Appendix A).

Under the simulations of column 3 of Table 2, the gains in MSE for the unit-context
methods appear to come in municipalities with larger populations (similar findings are
obtained under the simulations for column 1). This is expected because in our sampling
scenarios, municipalities with a larger population are more likely to be included in all the
samples. For example, in the census there are 16,293 PSUs spread over 1865 municipalities.
The median municipality in the created census has 7 PSUs, and the median municipality in
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a given two-stage sample is only represented by one PSU. Consequently, it is not surprising
the unit-context variants under-perform relative to unit models in terms of bias and MSE in
municipalities with smaller populations, as can be observed in Figure 16. For municipalities
with larger populations, and hence those likely to consist of more PSUs and more of these
PSUs in the sample, direct estimates for FGT0 are more precise and unit-context models
begin to catch up to unit models (see Figure A7 in the Appendix A).

Under the simulations from a 1% SRS by PSU, shown in Table 2, column 4 and in the
Appendix A Figures A4 and A5, we notice the unit models (CEBa) present a slight upward
bias that seems to become more pronounced in more populous municipalities (Figure 17).
Notice that some bias is acceptable since gains in MSE are achieved at the expense of
bias, however in this case the presence of outliers seems to lead to increased upward
bias that affects more municipalities as we move to more populous deciles (box-plots for
CEBa in Figure 17). Unit-context (UC− CEBa) models on the other hand, appear to have a
downward bias. In the box-plots in Figure 17 for UC− CEBa, the bias in lower deciles is
downward and as we move to upper deciles the downward bias is considerably reduced.

As noted in Section 3.1, the problem faced by unit-context models is an effect that is
somehow similar to omitted variable bias, which is manifested as a lack of linearity (see
Figure 18). The true model includes household size at the household level. Consequently,
this variable is a determinant of the dependent variable. Household size xach can be
broken down into zach − x̄ac, thus the omitted component, zach, is also a determinant of the
dependent variable. The unit-context model only includes the PSU average household size
x̄ac obtained from the census as a covariate. Figure 19 further presents the issue. Under
CEBa, residuals appear to follow a random pattern; however, under UC−CEBa households
in municipalities represented by only one PSU in the sample will all have the same linear
fit. This manifests itself in the figures for UC − CEBa as a column of vertical dots. The
problem can also be observed in Figure 20 where the households within municipalities with
just one PSU in the sample will have the same linear fit. More specifically, all the points
corresponding to different households from the same PSU become superposed in Figure 20
right, and for those municipalities with just one PSU, there is a single point representing
the same predicted value for all the households in that municipality.

To check whether the upward bias of estimators based on unit-level models is due
to deviations from model assumptions, specifically deviation from normality, we apply a
normalization transformation called ordered quantile normalization [31] (employed also
by Masaki et al. [12]). In the absence of tied values the transformation is guaranteed to
produce a normally distributed transformed data. The transformation is of use only for
FGT0 because it cannot be fully reversed 1 to 1 without the original data and thus one
has to extrapolate values not observed in the original data (ibid) (the original functional
transformation is only defined when a given value is in the observed original data [31]). The
result for this transformation can be seen in Figure 21, and it shows that the deviation from
normality may be an issue in our models. The previously observed upward bias in the CEBa
models is less evident in these results. However, now that the deviation from normality
is less of an issue, the UC− CEBa models show a clear downward bias. The figure adds
further evidence of a possible bias inherent in the UC− CEBa model offsetting the bias
due to the deviation from the model’s assumptions—in this case normality. Offsetting of
biases is not guaranteed to always occur.

As an additional check, we also performed a hybrid experiment that consists in using
the census data created in Section 4.1 and a 5% SRS from each PSU to construct a synthetic
census based on a twofold model. The 5% SRS sample is used to select a model with all
eligible covariates (household and aggregate) following the same process described in
Section 4.2. Using the model’s resulting parameter estimates from a twofold model as
in (2), we create a new welfare vector in the census for all households. Then a unit-context
model and a new unit model are selected, once again following the process described in
Section 4.2 using the first out of 500 samples where 1% SRS by PSU is selected. This is
done to remove the issue of outliers from the data and to ensure that the data generating
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process follows the one assumed in Equation (2). The simulation removes the potential
misspecification due to deviations from normality in the data and allows us to isolate the
problem present in the unit-context model (UC− CEBa).

Results for the new hybrid simulations are presented in Figures 22 and 23. Note that
in this simulation, where we have removed the normality issue, the upward bias that
was present in the unit level model (CEBa) is no longer evident. On the other hand, the
previously suspected downward bias of the unit context models (UC− CEBa) is salient, as
can be seen in Figure 22 and by municipality deciles sorted by population in Figure 24. Note
that under the UC−CEBa model more than 75% of the municipalities present a downward
bias (Figure 22). This finding is aligned to what we observed in Figure 17. However,
because there is no deviation from normality in the hybrid simulation, the downward
bias of the unit-context models (UC− CEBa) is never offset, and is quite considerable and
leading to substantially larger empirical MSEs for the unit context models (Figure 25).
Simulations were repeated, where, instead of performing model selection, the selected
model for CEB estimators contains exactly the same covariates as those used to generate
the welfare, and considering only the area aggregates for UC models. This was done just to
check whether the observed biases could be due to model misspecification, in the sense that
the selected covariates are different from those in the true model. Results were very similar
to those observed in the previous hybrid simulation with a model selection step. Hence,
the results suggest deviations from the assumed model are an issue and the countering of
biases is what is driving the seemingly good results for unit-context models in the two-stage
sampling scenario, highlighting the importance of proper data transformations and model
selection to ensure that model assumptions hold when using Census EB methods.

Figure 16. Average empirical MSE for FGT0 under two-stage sampling by municipality population
deciles (Nat. log. shift transformation).
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Figure 17. Box plots of design bias under 1% SRS by PSU sampling, by municipality population
deciles (Nat. log. shift transformation).

Figure 18. Omitted variable bias under unit-context models.

Figure 19. Household residuals plotted against linear fit under two-stage sampling (Nat. log.
shift transformation).
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Figure 20. Linear fit plotted against municipalities under two-stage sampling (Nat. log. shift transformation).

Figure 21. Box plots of design bias under ordered quantile normalization by municipality population
deciles (Two-stage sampling).

Figure 22. Box plots of design bias under 1% SRS by PSU sampling (Hybrid simulation).
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Figure 23. Box plots of empirical MSE under 1% SRS by PSU sampling by municipality population
deciles (Hybrid simulation).

Figure 24. Box plots of design bias under 1% SRS by PSU sampling, by municipality population
deciles (Hybrid simulation).

Given the direction of the bias of unit-context models is not known a priori (see how
under the simulations presented in Figures 1 and 2, the method appears to be upward
biased)—and that these might present high bias—unit-context models are unlikely to be
preferred over traditional FH models when the census auxiliary data are not aligned to
survey microdata, unless the calculation of variances of direct estimators, to be used in
the FH model, is not possible for various locations, as noted before. This bias appears
also for other measures of welfare, and particularly for ELL variants of the unit-context
models. In this case, benchmarking is not a recommended procedure for correcting the
bias, since it may not help. EB estimators are approximately model unbiased and optimal
in terms of minimizing the MSE for a given area, thus when adjusted afterwards for
benchmarking, that is, so that these match usual estimates at higher aggregation levels, the
optimal properties are lost and estimators usually become worse in terms of bias and MSE
under the model. When benchmarking adjustments are large, as those likely required by
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UC variants, it is an indication that the model does not really hold for the data. In the case
of UC models, we have shown that the model will not hold due to omitted variable bias.

Figure 25. Box-plot of empirical MSE for FGT0 under 1% SRS by PSU sampling by municipality
population deciles (Hybrid simulation).

Furthermore, note bias can lead to considerable re-ranking of locations and thus a
limit on the acceptable bias should usually be determined according to need. This is
of particular importance when determining priorities across areas based on small area
estimates. If an area’s true poverty rate is 50% and the method yields an estimator of 10%
due to a biased model, there is a real risk that this area may not be given assistance when
needed. Molina [10] suggests 5 or 10 percent of absolute relative bias as an acceptable
threshold. An additional problem for unit-context models in many applications is it is
not possible to match census and survey PSUs; in some cases it is due to confidentiality
reasons and in others it is due to different sampling frames used for the survey. The latter
is something that is likely to affect applications where census and surveys correspond to
different years. Under these scenarios, unit-context models are unlikely to be superior to
FH and alternative area models.

5. Conclusions

In this paper, we have illustrated that one of the most important aspects of SAE
applications with Census EB methods under unit models is selecting a proper model;
especially the issue of data transformation. Such a finding is not new, and has been quite
often echoed by others in the area (see Tzavidis et al. [7], Marhuenda et al. [8], Molina
and Marhuenda [26]). Here we show how data transformations can lead to improved
results. For example, under onefold nested error models, the aggregate gains from moving
to a log-shift transformation as opposed to just taking the natural logarithm are close
to 30 percent in terms of MSE. Nevertheless, as Marhuenda et al. [8] note, finding an
appropriate transformation is not always straightforward and the resulting data could stray
from normality which would lead to biased estimates as we also find here. Consequently,
model checks and residual analysis are something that every SAE application should
include in order to test if the model’s assumptions are not completely invalidated. In case
of data deviating from model assumptions, the model should be changed accordingly. For
instance, in case of area outliers, fixed effects could be included for those outlying areas in
the model to reduce the design bias. If their sample sizes are not too small, the efficiency of
the resulting model-based estimates might be acceptable in this case, even if specific model
parameters are specific to these areas.
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Second, we have validated SAE applications under model-based simulation and
design-based simulation methods. Under model-based validation, where the data generat-
ing process follows a twofold nested error model, we note the ELL method still performs
poorly in terms of MSE even with contextual level variables. The result is most evident in
scenarios where area random effects are larger than cluster random effects, since contextual
variables do not explain a sufficient amount of the area’s variability. Issues regarding the
underestimation of this noise under ELL are not evaluated here, but should be considered
by future practitioners, particularly when the noise is estimated under the MI inspired
bootstrap method (see Marhuenda et al. [8], Das and Chambers [14], Corral et al. [16] ). On
the other hand, model-based simulations conducted here provide further evidence to the
finding from Marhuenda et al. [8] that misspecification of the model under the onefold
CensusEB, i.e., modeling random effects at the area level only, when the true model has
cluster and area level random effects, with clusters nested within areas, entails virtually no
loss of efficiency when estimating area level welfare-based indicators.

Under design-based validation, where the sampling strategy mimics real world scenar-
ios such as those implemented under LSMS surveys, SAE methods present improvements
over direct estimators. We have also investigated estimators based on unit-context models,
originally proposed by Nguyen [9], which can be applied when census auxiliary data at
the household level is not valid. Given that under the two-stage samples used, many
municipalities, which are the target areas, are represented by a small number of observa-
tions (or even zero), these data are not always suitable for FH area level models. Despite
model-based simulations yielding poor results in terms of bias for unit-context models, the
CensusEB variant does considerably better than the ELL variant under the design-based
simulations. The reason for the positive results is shown to be due to the bias that is
inherent in the unit-context model, which was being offset by bias due to deviations from
normality. This offset is something that is not guaranteed to occur in all scenarios because
the direction of the bias of unit-context models is not known a priori. In simulations where
deviations from normality are not an issue, the bias of the unit-context method becomes
quite clear. Additionally, the method’s performance is contingent upon the number of
subdomains present in the domain. Moreover, PSUs or subdomains must be matched
across census and survey for unit-context models, something that is not always feasible.
Finally, since the direction and size of the bias of the unit-context model are not known
beforehand, the models may be considered an alternative to FH and other area level models
only when area level models are not applicable, like in our design-based experiment with
the more realistic two-stage sampling.
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Abbreviations
The following abbreviations are used in this manuscript:

Model Description
LSMS Living Standards Measurement Study
MSE Mean Squared Error
MDGs Millennium Development Goals
SDGs Sustainable Development Goals
SAE Small Area Estimation
ELL Elbers, Lanjouw and Lanjouw (2003)
MR Molina and Rao (2010)
PSUs Primary Sampling Units
EB Empirical Best
CMN Corral, Molina and Nguyen (2020)
MI Multiple Imputation
EBLUP Empirical Best Linear Unbiased Predictor
REML Restricted Maximum Likelihood
H3 Henderson Method III
CBEB Clustered Bootstrap EB
FH Fay-Herriot
GIS Geographic Information System
FGT Foster, Greer and Thorbecke (1984)
AAB Average Absolute Bias
ARMSE Average root MSE
INEGI Instituto Nacional de Estadistica y Geografia
ICT Information and Communication Technologies
RSE Relative Standard Error
SRS Simple random sampling
ICC Intra-cluster Correlation
DEFF Design Effect
PPS Probability Proportional to Size
VIF Variance Inflation Factor
UC Unit-Context

Appendix A

Figure A1. Normal Q-Q-plot of one-fold unit-context model and predicted subdomain effects (Nat.
log. transformation).
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Figure A2. Normal Q-Q-plot of one-fold unit-context model and predicted subdomain effects (log-
shift transformation).

Figure A3. Normal Q-Q-plot of one-fold unit-context model and predicted subdomain effects (Box-
Cox of Nat. log transformation).
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Figure A4. Box plots of empirical design MSE for FGT0 under 1% SRS by PSU sampling (Nat. log.
shift transformation).

Figure A5. Box plots of empirical design bias for FGT0 under 1% SRS by PSU sampling (Nat. log.
shift transformation).

Figure A6. Box plots of empirical design MSE for FGT0 under two-stage sampling (Nat. log.
shift transformation).
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Figure A7. Average empirical MSE for FGT0 under two-stage sampling by municipality population
deciles (Nat. log. shift transformation).

Table A1. Unit level model—under log shift transformation.

Variable Coefficient Std. Error

PSU HH head age −0.0726 *** (0.00700)
PSU % hh with internet 0.133 *** (0.00937)
PSU % of hh with television 0.141 *** (0.00864)
Head’s age −0.00127 *** (0.000406)
HH owns a cellphone 0.214 *** (0.0155)
HH owns a computer 0.190 *** (0.0178)
Number of hh members −0.118 *** (0.00315)
HH has access to internet 0.105 *** (0.0181)
Male HH head 0.0640 *** (0.0136)
Max. education is tertiary 0.393 *** (0.0156)
Share of adult hh members 0.688 *** (0.0247)
State % of male head hh −0.0683 *** (0.00870)
State share of elderly population −0.0514 *** (0.0120)
HH owns a washing machine 0.119 *** (0.0136)
Constant 6.984 *** (0.0351)

Observations 23,516
Adj. R2 0.445
σ2

a 0.0220
σ2

a/σ2
e 0.0452

Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2. Unit-context model—under log shift transformation.

Variable Coefficient Std. Error

PSU avg. hh number of members −0.127 *** (0.0105)
PSU share of male headed households −0.0595 *** (0.00976)
PSU share of households with max. tertiary education 0.219 *** (0.0105)
PSU avg. share of elderly −0.0760 *** (0.00783)
PSU avg. share of female members −0.0283 *** (0.00913)
Municipal share of hh owning a television 0.168 *** (0.0116)
State share of hh owning a computer 0.123 *** (0.0110)
Constant 7.353 *** (0.0104)

Observations 23,516
Adj. R2 0.253
σ2

a 0.0234
σ2

a/σ2
e 0.0357

Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A3. Aggregate results for 1865 municipalities of Mexico (FGT1)—results from 500 samples.

1 2 3 4

Transformation Box-Cox Nat. log. Log. Shift Log. Shift
Direct
AAB (×100) 5.549 5.549 5.549 4.773
ARMSE (×100) 6.975 6.975 6.975 5.943
CEBac
AAB (×100) 3.583 5.843 3.699 3.210
ARMSE (×100) 3.747 6.217 3.867 3.523
CEBsa
AAB (×100) 3.665 6.068 3.773 3.417
ARMSE (×100) 3.830 6.386 3.941 3.553
CEBa
AAB (×100) 3.427 5.889 3.533 3.205
ARMSE (×100) 3.693 6.406 3.807 3.553
CEBc
AAB (×100) 3.548 5.779 3.680 3.556
ARMSE (×100) 3.614 5.904 3.746 3.631
ELLc
AAB (×100) 4.209 5.783 4.209 4.516
ARMSE (×100) 4.300 5.844 4.300 4.600
UC− CEBa
AAB (×100) 3.329 4.589 3.166 3.319
ARMSE (×100) 3.543 5.080 3.400 3.668
UC− CEBac
AAB (×100) 3.287 4.606 3.165 3.284
ARMSE (×100) 3.451 4.998 3.344 3.653
UC− ELLc
AAB (×100) 3.463 4.730 3.463 4.522
ARMSE (×100) 3.574 4.797 3.574 4.637
UC− CEBsa
AAB (×100) 3.265 4.628 3.136 3.319
ARMSE (×100) 3.470 5.122 3.357 3.638

AAB: Average absolute bias; ARMSE: Average root MSE. ELL under Box-Cox and log shift, model is still for
Nat. log., but errors are drawn from the empirical distribution. Columns 1, 2, and 3 under two-stage samples
(Section 4.1); Column 4 results are under 1% SRS by PSU, all PSUs are included.



Mathematics 2021, 9, 2780 35 of 40

Table A4. Aggregate results for 1865 municipalities of Mexico (FGT2)—results from 500 samples.

1 2 3 4

Transformation Box-Cox Nat. log. Log. Shift Log. Shift
Direct
AAB (×100) 3.901 3.901 3.901 3.441
ARMSE (×100) 5.017 5.017 5.017 4.361
CEBac
AAB (×100) 2.432 4.135 2.566 2.267
ARMSE (×100) 2.539 4.421 2.682 2.476
CEBsa
AAB (×100) 2.498 4.289 2.617 2.411
ARMSE (×100) 2.605 4.535 2.731 2.501
CEBa
AAB (×100) 2.327 4.144 2.434 2.259
ARMSE (×100) 2.498 4.540 2.619 2.492
CEBc
AAB (×100) 2.415 4.073 2.555 2.514
ARMSE (×100) 2.462 4.173 2.602 2.564
ELLc
AAB (×100) 3.053 4.085 3.053 3.364
ARMSE (×100) 3.124 4.137 3.124 3.435
UC− CEBa
AAB (×100) 2.354 3.200 2.185 2.329
ARMSE (×100) 2.482 3.558 2.335 2.547
UC− CEBac
AAB (×100) 2.306 3.204 2.182 2.303
ARMSE (×100) 2.406 3.492 2.299 2.535
UC− ELLc
AAB (×100) 2.478 3.297 2.478 3.312
ARMSE (×100) 2.560 3.352 2.560 3.405
UC− CEBsa
AAB (×100) 2.307 3.228 2.177 2.334
ARMSE (×100) 2.431 3.591 2.319 2.532

AAB: Average absolute bias; ARMSE: Average root MSE. ELL under Box-Cox and log shift, model is still for
Nat. log. but errors are drawn from the empirical distribution. Columns 1, 2, and 3 under two-stage samples
(Section 4.1); Column 4 results are under 1% SRS by PSU, all PSUs are included.

Table A5. Aggregate results for 1865 municipalities of Mexico (Mean income)—results from
500 samples.

1 2 3 4

Transformation Box-Cox Nat. log. Log. Shift Log. Shift
Direct
AAB (×100) 38,838.44 38,838.44 38,838.44 30,028.16
ARMSE (×100) 54,351.71 54,351.71 54,351.71 41,841.21
CEBac
AAB (×100) 18,374.61 45,904.53 18,276.26 16,908.87
ARMSE (×100) 19,998.56 48,531.76 19,899.96 19,569.77
CEBsa
AAB (×100) 19,574.38 45,440.07 19,452.75 18,426.15
ARMSE (×100) 21,207.41 47,861.59 21,069.74 19,745.09
CEBa
AAB (×100) 18,146.66 43,445.38 18,158.09 17,016.17
ARMSE (×100) 20,596.54 47,108.70 20,591.85 19,967.33
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Table A5. Cont.

1 2 3 4

CEBc
AAB (×100) 19,048.90 46,845.91 19,093.24 21,112.72
ARMSE (×100) 19,534.06 47,576.32 19,570.16 21,653.29
ELLc
AAB (×100) 32,576.30 48,594.36 32,576.30 44,808.60
ARMSE (×100) 33,650.59 49,018.62 33,650.59 45,504.33
UC− CEBa
AAB (×100) 31,330.70 67,999.59 30,715.13 29,647.72
ARMSE (×100) 33,900.14 72,555.97 33,309.27 33,513.86
UC− CEBac
AAB (×100) 32,718.31 69,364.83 31,893.15 29,700.46
ARMSE (×100) 34,599.54 72,841.40 33,823.68 33,765.53
UC− ELLc
AAB (×100) 53,184.14 73,673.70 53,184.14 71,189.32
ARMSE (×100) 54,672.16 74,068.42 54,672.16 72,282.49
UC− CEBsa
AAB (×100) 33,148.54 69,355.82 32,296.15 29,642.77
ARMSE (×100) 35,502.18 73,879.73 34,677.96 33,217.28

AAB: Average absolute bias; ARMSE: Average root MSE. ELL under Box-Cox and log shift, model is still for
Nat. log. but errors are drawn from the empirical distribution. Columns 1, 2, and 3 under two-stage samples
(Section 4.1); Column 4 results are under 1% SRS by PSU, all PSUs are included.

Table A6. Different models tested.

Model Description

CEBa One-fold CensusEB unit model with location effects specified at the municipality level
CEBc One-fold CensusEB unit model with location effects specified at the PSU level
CEBac Two-fold CensusEB unit model with location effects specified at the municipality and PSU level
CEBsa Two-fold CensusEB unit model with location effects specified at the state and municipality level
ELLc One-fold ELL unit model with location effects specified at the PSU level

UC− CEBa One-fold CensusEB unit-context model with location effects specified at the municipality level
UC− CEBac Two-fold CensusEB unit-context model with location effects specified at the municipality and PSU level
UC− CEBsa Two-fold CensusEB unit-context model with location effects specified at the state and municipality level
UC− ELLc One-fold ELL unit-context model with location effects specified at the PSU level

Appendix B

Appendix B.1. Omitted Variable Bias under Unit-Context Models

Consider that data are generated as:

yah = β0 + β1x1
ah + · · ·+ βpxp

ah + ηa + eah; h = 1, . . . , Na; a = 1, . . . , A (A1)

Let us decompose xk
ah as follows:

xk
ah =

(
xk

ah − X̄k
a

)
+ X̄k

a , where X̄k
a = N−1

a ∑Na
h=1 xk

ah is the population mean of xk
ah in

area a. However, under unit-context model we fit:

yah = α0 + α1X̄1
a + · · ·+ αpX̄p

a + ηa + eah; h = 1, . . . , Na; a = 1, . . . , A (A2)

Note that here we are omitting variables:

x̃k
ah = xk

ah − X̄k
a ; k = 1, . . . , p

Let us write model (A1) in matrix notation, for the sample data. For this we define
the vectors:
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ya =

 ya1
...

yana

, Xa =

 1 x1
a1 · · · xp

a1
...

...
. . .

...
1 x1

ana . . . xp
ana

, β =


β0
β1
...

βp

, ea =

 ea1
...

eana


Then, the model is given by:

ya = Xaβ + 1na ηa + ea, a = 1, . . . , A

Finally, define:

y =

 y1
...

yA

, X =

 X1
...

XA

, Z =

 1n1
. . .

1nA

, η =

 η1
...

ηA

 ea =

 ea1
...

eana


where 1nA is an nA × 1 column of ones.

Then the model in (A1) may be written as:

y = Xβ + Zη + e

On the other hand, for model (A2) we define:

X̄ =

 1n1 X̄1
11n1 · · · X̄p

1 1n1
...

...
. . .

...
1nA X̄1

A1nA · · · X̄p
1 1nA


Then model (A2) can be written as, for α =

(
α0, α1, . . . , αp

)′:
y = X̄α + Zη + e

the WLS estimator of α in model (A2):

α̂UC =
(

X̄′V−1X̄
)−1

X̄′V−1y (A3)

However, y actually follows model (A1), that is:

y = X̃β(0) + X̄β + Zη + e (A4)

where

β(0) =

 β0
...

βp

, X̃ =

 X̃1
...

X̃A

, X̃a =

 x1
a1 − X̄1

a · · · xp
a1 − X̄p

a
...

. . .
...

x1
ana − X̄1

a · · · xp
ana − X̄p

a


replacing (A4) in to (A3), we get:

α̂UC =
(

X̄′V−1X̄
)−1

X̄′V−1X̄β +
(

X̄′V−1X̄
)−1

X̄′V−1X̃β(0) +
(

X̄′V−1X̄
)−1

X̄′V−1(Zη + e)

Taking expectations, and since E[η] = 0 and E[e] = 0, we get:

E
[
α̂UC

]
= β + B

[
α̂UC

]
where the bias is equal to:
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B
[
α̂UC

]
=
(

X̄′V−1X̄
)−1

X̄′V−1X̃β(0)

where

X̄′V−1X̄ =
1
σ2

η


∑a γa ∑a γaX̄1

a · · · ∑a γaX̄p
a

∑a γaX̄1
a ∑a γa

(
X̄1

a
)2 · · · ∑a γaX̄1

a X̄p
a

...
...

. . .
...

∑a γaX̄p
a ∑a γaX̄1

a X̄p
a · · · ∑a γa

(
X̄p

a

)2


and where

γa =
σ2

η

σ2
η + σ2

e
na

Additionally, we obtain

X̄′V−1X̃β(0) =


∑a 1

′
na V−1

a X̃aβ(0)

∑a X̄1
a 1
′
na V−1

a X̃aβ(0)
...

∑a X̄p
a 1
′
na V−1

a X̃aβ(0)


noting that:

1
′
na V−1

a X̃a =
1
σ2

η

γa

na
1
′
na x̃a

where x̃a =
(

x̃1
a , . . . , x̃p

a

)′
, with

x̃k
a =

1
na

∑
h∈Sa

(
xk

ah − X̄k
a

)
= x̄k

a − X̄k
a

and where Sa is the survey sample households in area a. Therefore,

X̄′V−1X̃β(0) =
1
σ2

η


∑a γa ∑k x̃k

aβk
∑a γaX̄1

a ∑k x̃k
aβk

...
∑a γaX̄p

a ∑k x̃k
aβk


Finally, the bias is given by:

B
[
α̂UC

]
=


∑a γa ∑a γaX̄1

a · · · ∑a γaX̄p
a

∑a γaX̄1
a ∑a γa

(
X̄1

a
)2 · · · ∑a γaX̄1

a X̄p
a

...
...

. . .
...

∑a γaX̄p
a ∑a γaX̄1

a X̄p
a · · · ∑a γa

(
X̄p

a

)2


−1

∑a γa ∑k x̃k
aβk

∑a γaX̄1
a ∑k x̃k

aβk
...

∑a γaX̄p
a ∑k x̃k

aβk


Consequently, the bias of α̂UC is due to the discrepancy between the sample mean of a

given covariate and the population mean of that covariate, x̃k
a = x̄k

a − X̄k
a .

Appendix B.2. Bias of Individual Predictors under Unit-Context Models

Under model (A2),

yah = X̄′aα + ηa + eah
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the conditional expectation under model (A2) for h ∈ Sa is:

µUC
ah|s = E[yah|ys] = X̄′aα + η̃a, for η̃a = γa

(
ȳa − X̄′aα

)
Then, and replacing α with its estimate, α̂UC

µUC
ah|s = X̄′aα̂UC + γa

(
ȳa − X̄aα̂UC

)
= γaȳa + (1− γa)X̄′aα̂UC

and taking its expectation, we get:

E
[
µUC

ah|s

]
= γaE[ȳa] + (1− γa)X̄′aE

[
α̂UC

]
,

where E[ȳa] = x̄′aβ and E
[
α̂UC] = β + B

[
α̂UC]. Consequently,

E
[
µUC

ah|s

]
= X̄′aβ + γa(x̄a − X̄a)β + (1− γa)X̄′aB

[
α̂UC

]
Note that once again, the discrepancy between the sample and population means play

a role in the bias.
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