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Abstract: Given a complex Banach space X , we investigate the stable character of the property (VE)

for a bounded linear operator T : X → X , under commuting perturbations that are Riesz, compact,
algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of
property (VE) from the tensorial factors T and S to its tensor product.
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1. Introduction

In 1900, E. Fredholm published his famous article On a new method for the solution of
Dirichlet’s problem, which changed the study of the solution of integral equations. This
article served as inspiration for F. Riesz, in 1918, to establish Fredholm’s abstract methods
in the form of compact operators, thereby initiating what is now known as Fredholm theory
for operators. In this theory, there are two classes of operators that play a fundamental
role; these are the so-called Browder operators (also classically known as Riez–Schauder
operators) and the Weyl operators, which have been the subject of a range of studies.
In the last decades, numerous investigations have been developed on Fredholm theory,
where some authors have introduced and studied several spectral properties similar to
Weyl’s theorem formulated by L. Coburn in [1]. The study of the spectra of the semi
B-Fredholm and B-Weyl operators allowed M. Berkani and J. Koliha [2] to introduce two
properties known as the generalized Weyl’s and generalized a-Weyl’s theorems, which are
generalizations of the classical versions of the Weyl’s and a-Weyl’s theorems, respectively.
Recently, other properties have been introduced and studied involving the different spectra
of the Fredholm and B-Fredholm theories (started by M. Berkani), which together with
the classical properties are known today as Weyl-type theorems. The stability of strong
variations of Weyl-type theorems under direct sums and restrictions has been studied, as
well as the transmission of spectral properties between a Drazin invertible operator and
its Drazin inverse; for example, see [3,4]. In addition, the study of Weyl-type theorems
under commuting perturbations has been considered by several authors, among which
we can mention Oudghiri [5,6], Berkani et al. [7,8], Aiena and Triolo [9]. Elsewhere, the
stability of Weyl’s theorem under the tensor product has been studied by Kubrusly and
Duggal in [10]. Subsequently, studies in this direction have been expanded by Duggal [11],
Rashid [12] and Rashid and Prasad [13], involving new Weyl-type theorems. This article
follows the same line of research as the works referenced above, but now we consider a
strong variation of the Weyl-type theorems that was introduced by Sanabria et al. [3,14],
namely property (VE). According to [14], if an operator T satisfies property (VE), then T
satisfies equivalently another forty-four spectral properties, among which are Weyl-type
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theorems such as the properties (VΠ) and (gaz) recently studied in [15,16], respectively.
This arouses the interest of studying property (VE) from different points of view. In this
paper, we focus our interest on obtaining conditions so that the property (VE) remains
stable under perturbations that are commutative and tensor products for some classes of
operators.

2. Preliminaries

Let L(X ) = {T : X → X | T is a bounded linear operator}, where X is a complex
Banach space. For T ∈ L(X ), let T ∗, T (X ) and N(T ) be the dual operator, the range
and the kernel of T , respectively. We will use the following spectra of T : σ(T ) (classical),
σa(T ) (approximate point), σs(T ) (surjectivity), σp(T ) (point), σe(T ) (essential), σSF+(T )
(upper semi-Fredholm), σSF−(T ) (lower semi-Fredholm), σb(T ) (Browder), σub(T ) (upper
semi-Browder), σlb(T ) (lower semi-Browder), σW(T ) (Weyl), σSF−+

(T ) (upper semi-Weyl),
σSF+

−
(T ) (lower semi-Weyl), σBF(T ) (B-Fredholm), σSBF+(T ) (upper semi B-Fredholm),

σSBF−(T ) (lower semi B-Fredholm), σD(T ) (Drazin invertible), σLD(T ) (left Drazin in-
vertible), σRD(T ) (right Drazin invertible), σBW(T ) (B-Weyl) and σSBF−+

(T ) (upper semi
B-Weyl). See [17,18] for definitions and other details.

For T ∈ L(X ), let β(T ) be the codimension of T (X ), α(T ) the dimension of N(T ),
p(T ) the ascent of T and q(T ) the descent of T . The resolvent set of T is denoted by
ρ(T ) and the quasi-nilpotent part of T by H0(T ) := {x ∈ X : limn→∞ ‖T nx‖1/n = 0}. In
addition, we put:

∆(T ) := {n ∈ N : T n(X ) ∩ N(T ) ⊆ T m(X) ∩ N(T ) if m ≥ n}

and

dis(T ) :=
{

inf ∆(T ), if ∆(T ) 6= ∅
∞, if ∆(T ) = ∅.

Definition 1. An operator T ∈ L(X ) is quasi-Fredholm (of degree k) if for some k ∈ N:

1. dis(T ) = k,
2. For any n ≥ k, T n(X ) is a closed subspace of X ,
3. T (X ) + N(T k) is a closed subspace of X .

In [19], Finch introduced the following property. An operator T ∈ L(X ) checks the
single valued extension property at µ0 ∈ C (briefly, SVEP at µ0), if for each open disc Dµ0 ⊆ C
with center at µ0 the unique analytic function f : Dµ0 → X , which satisfies the equation

(µI − T ) f (µ) = 0 for each µ ∈ Dµ0 ,

is f ≡ 0 on Dµ0 . We say that T satisfies SVEP if T satisfies SVEP at each point µ ∈ C.
We put

Σ(X , µ) := {T ∈ L(X ) : T satisfies SVEP at µ},

Σ(X ,A) := {T ∈ L(X ) : T satisfies SVEP at each λ ∈ A}

and

Σ(X ) := {T ∈ L(X ) : T satisfies SVEP}.

Obviously, T ∈ Σ(X , ρ(T )). In addition, T ∈ Σ(X , Fr σ(T )), where Fr σ(T ) is the
frontier of σ(T ). Note that, T ∈ Σ(X , µ) and T ∗ ∈ Σ(X ∗, µ) for all µ being an isolated
point of the spectrum of T . We also have

p(µI − T ) is finite ⇒ T ∈ Σ(X , µ) (1)

and dually,
q(µI − T ) is finite ⇒ T ∗ ∈ Σ(X ∗, µ), (2)
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see [17] (Theorem 3.8). Furthermore,

µ is not a limit point of σa(T )⇒ T ∈ Σ(X , µ), (3)

and dually,
µ is not a limit point of σs(T )⇒ T ∗ ∈ Σ(X ∗, µ). (4)

Observe that, in general, H0(T ) is not necessarily closed, and by [17] (Theorem 2.31),

H0(µI − T ) is closed⇒ T ∈ Σ(X , µ). (5)

Remark 1. It is well known that if µI − T is quasi-Fredholm, the implications (1)–(5)
become equivalences; in particular, this happens when µI − T is a semi B-Fredholm
operator [20].

Let IsoD := {µ ∈ C| µ is an isolated point of D}. For T ∈ L(X ), we consider the
following sets:

E0(T ) := {µ ∈ Iso σ(T ) : 0 < α(µI − T ) < ∞},

E(T ) := {µ ∈ Iso σ(T ) : 0 < α(µI − T )}.

We also define

Π0
a(T ) := σa(T ) \ σub(T ), Π0

+(T ) := σ(T ) \ σub(T ),

Π0(T ) := σ(T ) \ σb(T ), Π(T ) := σ(T ) \ σD(T ).

According to [21], T ∈ L(X ) has the a-Browder’s theorem if σa(T ) \ σSF−+
(T ) = Π0

a(T ).
Following [2], T has the generalized Weyl’s theorem if σ(T ) \ σBW(T ) = E(T ). Following [22]
(resp. [23]), T is said to satisfy property (w) (resp. property (gw)) if σa(T ) \σSF−+

(T ) = E0(T )
(resp. σa(T ) \ σSBF−+

(T ) = E(T )).

3. Perturbation Theory for Property (VE)

For T ∈ L(X ), put ∆+(T ) := σ(T ) \ σSF−+
(T ). Following [14], T satisfies property

(VE) if ∆+(T ) = E(T ). Next, we establish several results related to property (VE) for an
operator T (resp. T ∗) satisfying SVEP at each point that does not belong to the lower
(resp. upper) semi-Weyl spectrum of T and such that Iso σa(T ) = ∅. Later, these results
will be useful to analyze the stability of property (VE) for certain perturbations. Let
VE(X ) := {T ∈ L(X ) : T satisfies property (VE)}.

Theorem 1. Let T ∈ L(X ) with Iso σa(T ) = ∅. If T ∗ ∈ Σ(X ∗, µ) for each µ /∈ σSF−+
(T ),

then T ∈ VE(X ).

Proof. As E(T ) = ∅ whenever Iso σa(T ) = ∅, it remains to show that σ(T ) = σSF−+
(T ).

Now, if µ ∈ σ(T ) and µ /∈ σSF−+
(T ), then q(µI − T ) < ∞ (since T ∗ ∈ Σ(X ∗, µ)) and as

µ /∈ σSF−+
(T ), also p(µI − T ) < ∞. Hence, µ ∈ Iso σ(T ), so then µ ∈ Iso σa(T ), which is

not possible. Thus, σ(T ) = σSF−+
(T ) and hence T ∈ VE(X ).

Corollary 1. T ∈ VE(X ) whenever Int (∆+(T )) = Iso σa(T ) = ∅.

Proof. Let µ /∈ σSF−+
(T ). If µ /∈ σ(T ), obviously T ∗ ∈ Σ(X ∗, µ). If µ ∈ σ(T ), then

µ ∈ ∆+(T ) and since the set of all upper semi-Weyl operators is open in L(X ), from
hypothesis Int (∆+(T )) = ∅ it follows that µ ∈ Fr σ(T ). Hence, T ∗ ∈ Σ(X ∗, µ) again.
Now, by Theorem 1, T ∈ VE(X ).

The following example points out that the converse of the previous theorem is not true.
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Example 1. Let T be the Volterra operator on C[0, 1] given by T (g)(z) :=
∫ z

0
g(w)dw

for each g ∈ C[0, 1]. Observe that T is quasinilpotent and injective. So, σ(T ) = {0},
α(T ) = 0 and hence E(T ) = ∅. As R(T ) is not closed, we have σa(T ) = σSF−+

(T ) = {0}
and σ(T ) \ σSF−+

(T ) = E(T ), i.e., T ∈ VE(X ). However, Iso σa(T ) 6= ∅. Note that
T ∗ ∈ Σ(X ∗), because it is quasinilpotent.

Theorem 2. If T ∈ Σ(X , µ) for each µ /∈ σSF+
−
(T ) and Iso σa(T ) = ∅, then T ∗ ∈ VE(X ∗).

Proof. Clearly, since Iso σa(T ) = ∅, we have E(T ∗) = ∅. Assume that µ ∈ σ(T ∗)
and µ /∈ σSF−+

(T ∗). According to this, µ ∈ σ(T ) and µ /∈ σSF+
−
(T ). As T ∈ Σ(X , µ),

p(µI − T ) < ∞ and since µ /∈ σSF+
−
(T ), q(µI − T ) < ∞. Thus, µ ∈ Iso σ(T ) and therefore

µ ∈ Iso σa(T ), contradicting that Iso σa(T ) = ∅. Therefore, σ(T ∗) = σSF−+
(T ∗) and we

conclude that T ∗ ∈ VE(X ∗).

Corollary 2. For T ∈ L(X ) such that Iso σa(T ) = ∅, we have:

1. If T ∈ Σ(X ), then T ∗ ∈ VE(X ∗).
2. If T ∗ ∈ Σ(X ∗), then T ∈ VE(X ).

Corollary 3. If T ∈ Σ(X , µ) for each µ /∈ σSF+(T ) and Iso σa(T ) = ∅, then we have the
following equalities: σSF+(T ) = σe(T ) = σW(T ) = σSF+

−
(T ) = σub(T ) = σb(T ) = σ(T ) =

σa(T ) = σD(T ) = σSBF+(T ) = σBF(T ) = σSBF−+
(T ) = σBW(T ) = σLD(T )

∗
= σRD(T ) =

σlb(T ) = σSF−+
(T ) = σSF−(T ).

Proof. The equalities before ∗= are followed by [24] (Corollary 2.18). By hypothesis and
Theorem 2, T ∗ ∈ VE(X ∗), so from [24] (Theorem 2.10), σSF−(T ) = σe(T ). Hence, we
deduce that equalities after ∗= are valid (see [14] (Theorem 2.27)).

The exploration of the perturbations is very important in the spectral theory of the
linear operators, because through them is studied the behavior of the spectral properties
when the operators undergo a small change. This topic has occupied a place in applied
mathematics, and over time has evolved into a self-interested mathematical discipline. An
outstanding aspect of conducting studies of operators under commuting perturbations is
that these could be used in harmonic analysis; for example, concerning the Wiener–Pitt
phenomenon. In what follows, we mainly analyze the stable character of property (VE)
through a perturbation that commutes with the operator and is of finite range (resp. Riesz,
compact, algebraic). We say that T ∈ L(X ) is isoloid if each µ ∈ Iso σ(T ) is an eigenvalue
of T ; while T is called finitely isoloid if each µ ∈ Iso σ(T ) is an eigenvalue of T with
finite multiplicity.

Theorem 3. If T ∈ VE(X ) is isoloid and F is a finite rank operator such that T F = FT , then
T +F ∈ VE(X ).

Proof. By hypothesis and [14] (Theorem 2.8), T has the generalized Weyl’s theorem and
σSF−+

(T ) = σBW(T ). Since T is isoloid, by [25] (Theorem 3.4), T +F has the generalized
Weyl’s theorem. Moreover, as F is of finite rank, by [17] (Theorem 3.39), σSF−+

(T +F ) =
σSF−+

(T ), and by [26] (Theorem 3.2), we get that σBW(T ) = σBW(T +F ). Thus, σSF−+
(T +

F ) = σBW(T +F ), and again, by [14] (Theorem 2.8), we deduce that T +F ∈ VE(X ).

Corollary 4. If T ∈ VE(X ) is quasi-nilpotent, which has 0 as an eigenvalue, and F is of finite
rank such that T F = FT , then T +F ∈ VE(X ).

Proof. From hypothesis T is isoloid, so the proof is completed using Theorem 3.
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According to [27] (Theorem 7), R ∈ L(X ) satisfies σub(T +R) = σub(T ) for each
T ∈ L(X ) such that RT = T R if and only if R is a Riesz operator. In addition, σb(T +
R) = σb(T ) by [27] (Corollary 7). In the case that T ∈ VE(X ), σub(T ) = σb(T ) and
σub(T +R) = σb(T +R). In particular, these results hold for finite rank operators.

Theorem 4. Let T ∈ VE(X ) and F be of finite rank such that T F = FT . The following
are equivalent:

1. T +F ∈ VE(X ).
2. E(T +F ) = Π0

+(T +F ).
3. E(T +F ) ∩ σ(T ) ⊆ Π0

+(T ).

Proof. (1)⇔(2) Since T ∈ VE(X ) if and only if E(T ) = Π0
+(T ) and σSF−+

(T ) = σub(T )
(see [14] (Theorem 2.23)), the proof is completed using the fact that for finite rank operators,
σSF−+

(T +F ) = σSF−+
(T ), see [17] (Theorem 3.39).

(2)⇔(3) Assume that E(T + F ) = Π0
+(T + F ). If µ ∈ E(T + F ) ∩ σ(T ), then µ ∈

Π0
+(T +F ) ∩ σ(T ), whereby µ /∈ σub(T +F ). However, we have σub(T +F ) = σub(T ),

so µ ∈ Π0
+(T ). Therefore, E(T + F ) ∩ σ(T ) ⊆ Π0

+(T ). Reciprocally, since T ∈ VE(X ),
σub(T + F ) = σb(T + F ) and hence, Π0

+(T + F ) = Π0(T + F ) ⊆ E(T + F ). Thus, it
remains to show that E(T + F ) ⊆ Π0

+(T + F ). If µ ∈ E(T + F ), then µ ∈ σ(T + F ).
First, we note that F is Riesz, and this way σub(T ) = σub(T +F ). Now, we consider two
cases.

Case 1: µ /∈ σ(T ).
Case 2: µ ∈ σ(T ).
For Case 1, obviously µ /∈ σub(T ) = σub(T + F ), whereby µ ∈ Π0

+(T + F ). For
Case 2, we have µ ∈ E(T + F ) ∩ σ(T ) ⊆ Π0

+(T ) and so, µ /∈ σub(T ) = σub(T + F ),
which implies that µ ∈ Π0

+(T + F ) again. Thus, by both cases, if µ ∈ E(T + F ) then
µ ∈ Π0

+(T +F ) and hence, we deduce that E(T +F ) = Π0
+(T +F ).

Remark 2. The equivalence (1)⇔(2) of Theorem 4 holds if we replace F by K ∈ L(X )
being compact and commuting with T .

Corollary 5. Let T ∈ Σ(X , µ) for each µ /∈ σSF−+
(T ) and F be of finite rank commuting with T .

Then, T ∈ VE(X ) is equivalent to T +F ∈ VE(X ).

Proof. Since T ∈ VE(X ), E(T ) = Π0
+(T ), thus E(T ) ∩ σ(T ) ⊆ Π+

0 (T ). By [28] (Lemma
2.1), µ ∈ Iso σ(T )⇔ µ ∈ Iso σ(T +F ), which implies that E(T ) = E(T +F ). Therefore,
E(T +F ) ∩ σ(T ) ⊆ Π0

+(T ), and by Theorem 4, T + F ∈ VE(X ). Reciprocally, assume
that T +F ∈ VE(X ). So, using symmetry, we have T = (T +F )−F ∈ VE(X ).

It is well known that if N is a nilpotent operator that commutes with T ∈ L(X ), we
have σ(T +N ) = σ(T ) and E(T +N ) = E(T ), see [29]. According to this, we establish
the next result.

Theorem 5. Assume that N ∈ L(X ) is nilpotent and commutes with T . Then, T ∈ VE(X ) is
equivalent to T +N ∈ VE(X ).

Proof. Assume that T ∈ VE(X ). By [30] (Theorem 2.13), σSF−+
(T +N ) = σSF−+

(T ). Since
σ(T +N ) = σ(T ) and E(T +N ) = E(T ), then σ(T +N ) \ σSF−+

(T +N ) = E(T +N )

and hence, T +N ∈ VE(X ). The converse is obtained by symmetry.

In the following example we show that the hypothesis of commutativity cannot be
omitted from Theorem 5.
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Example 2. Let T ,N ∈ L(`2(N)) be defined as

T (a1, a2, . . .) =
(

0,
a1

2
,

a2

3
, . . .

)
and N (a1, a2, . . .) =

(
0,
−a1

2
, 0, 0, . . .

)
.

ObviouslyN is nilpotent andNT 6= T N . As σ(T ) = {0} = σSF−+
(T ) and E(T ) = ∅,

we have T ∈ VE(X ). However, σ(T +N ) = σSF−+
(T +N ) = {0} and E(T +N ) = {0},

whereby T +N /∈ VE(X ).

Corollary 6. Let F ∈ L(X ) be of finite rank and commuting with a quasi-nilpotent operator T
such that 0 /∈ σp(T ). Then, T ∈ VE(X ) is equivalent to T +F ∈ VE(X ).

Proof. The hypothesis about T and F implies that F is nilpotent. Indeed, T is injective
because 0 /∈ σp(T ). As FT = T F and T is quasi-nilpotent, T F is quasi-nilpotent and
of finite rank. Thus, T F is nilpotent, and as T is injective, we have that F is nilpotent.
Therefore, the proof is completed using Theorem 5.

The stable character of property (VE) seen in Theorem 5 does not hold for compact or
quasi-nilpotent operators.

Example 3. Let us consider the operators T and K on `2(N)⊕ `2(N) given by

T = 0⊕ S and K = S ⊕ 0,

with S defined on `2(N) as S(a1, a2, . . .) =
( a2

2 , a3
3 , . . .

)
. Note that K is a compact quasi-

nilpotent operator and T K = KT = 0. On the other hand, T ∈ VE(X ), because σ(T ) =
{0} = σSF−+

(T ) and E(T ) = ∅. However, T +K = S⊕ S /∈ VE(X ), because σ(T +K) =
σSF−+

(T +K) = E(T +K) = {0}.

Theorem 6. If Q ∈ L(X ) is quasi-nilpotent and commutes with the operator T such that
Int (∆+(T )) = Iso σa(T ) = ∅, then T +Q ∈ VE(X ).

Proof. By [31] (Corollary 3.24), σa(T + Q) = σa(T ) and σ(T +Q) = σ(T ). Since Q
is quasi-nilpotent, it follows that Q is of Riesz, and from [31] (Corollary 3.18), we get
that σSF−+

(T +Q) = σSF−+
(T ). Thus, Int (∆+(T +Q)) = Iso σa(T + Q) = ∅ and by

Corollary 1, T +Q ∈ VE(X ).

Corollary 7. Let S ∈ L(X ) commute with T and suppose that there exists k ∈ N such that Sk is
an operator of finite rank. If Int (∆+(T )) = Iso σa(T ) = ∅, then T + S ∈ VE(X ).

Proof. We have σa(T + S) = σa(T ) by [31] (Lemma 5.106), and σ(T + S) = σ(T ) by [31]
(Theorem 3.27). Since S is a Riesz operator, the remainder of the proof follows as the proof
of Theorem 6.

The proof of the following theorem is obtained using the stability of σSF−+
(T ) under

Riesz commuting perturbations, see [31] (Corollary 3.18).

Theorem 7. Let T ∈ VE(X ) be finitely isoloid and let S be a Riesz operator such that T S = ST
and σ(T ) = σ(T + S). Then, T + S ∈ VE(X ) is equivalent to E(T ) = E(T + S).

Theorem 8. Let T ∈ VE(X ) and let S be a Riesz operator such that T S = ST . Then, T + S ∈
VE(X ) is equivalent to E(T + S) = Π0

+(T + S).

Proof. If T + S ∈ VE(X ), then E(T + S) = Π0
+(T + S). For the converse, suppose that

E(T + S) = Π0
+(T + S). As T ∈ VE(X ), it has the a-Browder’s theorem, so from [5]

(Corollary 2.3), T + S has the a-Browder’s theorem. Consequently, T + S ∈ VE(X ).
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Theorem 9. If T ∈ VE(X ) is isoloid and S is a Riesz operator such that T S = ST and
σ(T ) = σ(T + S), then T + S ∈ VE(X ).

Proof. If S is Riesz, then from [31] (Corollary 3.18), we have σSF−+
(T ) = σSF−+

(T + S).
Let µ ∈ E(T ). As T ∈ VE(X ), µ /∈ σSF−+

(T + S) and so, (µI − T − S)(X ) is closed. We
also have µ ∈ Iso σ(T ) = Iso σ(T + S) ⊆ Iso σa(T + S), whereby α(µI − T − S) > 0,
so E(T ) ⊆ E(T + S) and hence σ(T + S) \ σSF−+

(T + S) ⊆ E(T + S), because σ(T ) =
σ(T + S). For the other inclusion, let µ ∈ E(T + S). Then µ ∈ Iso σ(T + S) = Iso σ(T )
and as T is isoloid, α(µI − T ) > 0 and µ ∈ E(T ). Consequently, µ /∈ σSF−+

(T + S) and
hence, µ ∈ σ(T + S) \ σSF−+

(T + S). Thus, E(T + S) ⊆ σ(T + S) \ σSF−+
(T + S).

Recall that T ∈ L(X ) is algebraic [31] (Section 3.5) if p(T ) = 0 for some complex
nontrivial polynomial p. Obviously, each nilpotent operator is algebraic. According to [31]
(Theorem 3.72), if T is an algebraic operator and α(p(T )) < ∞ for each polynomial p, then
there exists k ∈ N such that T k has finite rank and hence, T is Riesz. In addition, T being
algebraic is equivalent to T ∗ being algebraic. Given T ∈ L(X ) and an open subset O of C,
we put

H(σ(T )) := { f : O → C | f is a analytic function and σ(T ) ⊂ O}.

Theorem 10. Suppose that T ∈ L(X ), S is algebraic such that ST = T S and f ∈ H(σ(T +
S)). Then:

1. If T ∗ ∈ Σ(X ∗) and Iso σa(T + S) = ∅, then f (T + S) ∈ VE(X ).
2. If T ∈ Σ(X ) and Iso σa(T + S) = ∅, then f (T ∗ + S∗) ∈ VE(X ∗).

Proof. (1) Suppose that S is an algebraic operator. Then, S∗ is algebraic and since T ∗ ∈
Σ(X ∗), by [32] (Theorem 2.3) it follows that T ∗ + S∗ = (T + S)∗ ∈ Σ(X ∗). Thus, by [17]
(Theorem 2.40), we have f (T ∗ + S∗) ∈ Σ(X ∗), and as Iso σa(T + S) = ∅, by Corollary 2,
we get that f (T + S) ∈ VE(X ).

(2) Can be proved similarly to (1).

Theorem 11. Let T ∈ Σ(X ) and f ∈ H(σ(T )). Then:

1. If Iso σa(T ) = ∅ and Q is quasi-nilpotent such that QT = T Q, then both f (T )∗ +Q∗
and f (T ∗ +Q∗) belong to VE(X ∗).

2. If Iso σa( f (T ) + S) = ∅ and S is algebraic (or Riesz) such that ST = T S , then f (T )∗ +
S∗ belongs to VE(X ∗).

Proof. (1) If T ∈ Σ(X ), then f (T ) ∈ Σ(X ), by [17] (Theorem 2.40). Since Q is quasi-
nilpotent and commutes with T , from [17] (Corollary 2.12), we have that both T +Q and
f (T ) +Q belong to Σ(X ). By [31] (Corollary 3.24), σ(T +Q) = σ(T ) and so f (T +Q) ∈
Σ(X ). Observe that Iso σa( f (T )) = ∅. Again, by using [31] (Corollary 3.24), we have
σa(T +Q) = σa(T ) and σa( f (T ) +Q) = σa( f (T )), which implies that Iso σa(T +Q) = ∅
and hence, Iso σa( f (T +Q)) = Iso σa( f (T ) +Q) = ∅. By Corollary 2, we conclude that
both f (T )∗ +Q∗ and f (T ∗ +Q∗) belong to VE(X ∗).

(2) Since S is algebraic (resp. Riesz) commuting with T and f (T ) ∈ Σ(X ), by [33]
(Theorem 2.14) (resp. [31] (Theorem 2.129)) we get that f (T ) + S belongs to Σ(X ). Thus,
by Corollary 2, f (T )∗ + S∗ belongs to VE(X ∗).

We say that T ∈ L(X ) is called polaroid if Iso σ(T ) = Π(T ); while T is called
hereditary polaroid if each part of T is polaroid, where a part of T means the restriction of T
to a closed T -invariant subspace. LetHnc(σ(T )) := { f ∈ H(σ(T )) : f is non-constant on
each component of its domain.
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Theorem 12. Suppose that T ∈ L(X ), S is algebraic commuting with T and f ∈ Hnc(σ(T +
K)). If T +K is finitely isoloid, then we have:

1. If T ∗ is hereditarily polaroid, then f (T +K) ∈ VE(X ).
2. If T is hereditarily polaroid, then f (T ∗ +K∗) ∈ VE(X ∗).

Proof. (1) Since T ∗ is hereditarily polaroid, T ∗ ∈ Σ(X ∗) by [31] (Theorem 4.31), and as K∗
is algebraic, by [32] (Theorem 2.3), we get that T ∗ +K∗ = (T +K)∗ ∈ Σ(X ∗). In addition,
T ∗ is polaroid, which is equivalent to saying that T is polaroid, which implies, by [31]
(Theorem 4.24), that T + K is polaroid, or equivalently, f (T + K) is polaroid, by [31]
(Theorem 4.19). Now, T + K polaroid and (T + K)∗ ∈ Σ(X ∗) entails that f (T + K)
satisties properties (w) and (gw), by [34] (Theorem 3.12). Since T +K is finitely isoloid
and polaroid, σLD(T +K) = σb(T +K) and hence, σLD( f (T +K)) = f (σLD(T +K)) =
f (σb(T +K)) = σb( f (T +K)). However, f (T +K) polaroid implies, by [15] (Theorem
4.12), that f (T +K) satisfies property (VΠ), or equivalently, f (T +K) ∈ VE(X ), by [15]
(Theorem 4.5).

(2) This is proved similar to (1).

Following the proof of [32] (Theorem 2.3) we can get:

Lemma 1. Let S , T ∈ L(X ) be such that T S = ST . If S is algebraic, we have:

1. If µ ∈ σ(S) and T ∗ ∈ Σ(X ∗, µ), then T ∗ + S∗ ∈ Σ(X ∗, µ).
2. If µ ∈ σ(S) and T ∈ Σ(X , µ), then T + S ∈ Σ(X , µ).

Theorem 13. Suppose that T ∈ L(X ), S is algebraic such that ST = T S and σSF−+
(T )⋂

σ(S) = ∅. If T ∈ VE(X ) with Iso σa(T + S) = ∅ and σSF−+
(T ) = σSF−+

(T + S), then
T + S ∈ VE(X ).

Proof. If T ∈ VE(X ), then T ∗ satisfies SVEP at µ /∈ σSF−+
(T ). Since S is algebraic and

σSF−+
(T )⋂ σ(S) = ∅, from Lemma 1 it follows that T ∗ + S∗ = (T + S)∗ satisfies SVEP at

µ /∈ σSF−+
(T + S). Thus, by Theorem 1, we conclude that T + S satisfies property (VE).

Theorem 14. Suppose that T ∈ L(X ), S is algebraic such that ST = T S and σSF+
−
(T )⋂

σ(S) = ∅. If T ∗ ∈ VE(X ∗) with Iso σa(T + S) = ∅ and σSF+
−
(T ) = σSF+

−
(T + S), then

T + S ∈ VE(X ).

4. Property (VE) under Tensor Products

Let X and Y be two Banach spaces and X ⊗Y be the algebraic completion (in some
reasonable uniform cross norm) of the tensor product of X and Y . The tensor product
of T ∈ L(X ) and S ∈ L(Y) on X ⊗ Y is the operator defined as (T ⊗ S)(∑i xi ⊗ yi) =

∑i T xi ⊗ Syi for each ∑i xi ⊗ yi ∈ X ⊗ Y . In this section, we analyze some conditions
that allow property (VE) to be transmitted from the tensor factors T and S to the tensor
product T ⊗ S and vice versa. For this, we consider the following three lemmas.

Lemma 2 ([35], Theorem 3). If T ∈ L(X ) and S ∈ L(Y) have the Browder’s theorem, then the
following statements are equivalent:

1. T ⊗ S has the Browder’s theorem.
2. σW(T ⊗ S) = σ(T )σW(S) ∪ σW(T )σ(S).

Lemma 3. If T ∈ L(X ) and S ∈ L(Y), then

σSF−+
(T ⊗ S) ⊆ σSF−+

(T )σ(S) ∪ σSF−+
(S)σ(T )

⊆ σb(T )σ(S) ∪ σb(S)σ(T ) = σb(T ⊗ S).
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Proof. By virtue of [35] (Lemma 5), σSF−+
(T ⊗ S) ⊆ σSF−+

(T )σa(S) ∪ σSF−+
(S)σa(T ). Thus,

the proof follows from the facts that σa(R) ⊆ σ(R) and σSF−+
(R) ⊆ σb(R) for every

operatorR.

Lemma 4. If T ∈ L(X ) and S ∈ L(Y) are isoloid and 0 /∈ σp(T ⊗ S), then

E(T ⊗ S) ⊆ E(T )E(S).

Proof. Since T ∈ L(X ) and S ∈ L(Y) are isoloid, then T ⊗ S is an isoloid operator.
According to this, we have E(T ) = Isoσ(T ), E(S) = Isoσ(S) and E(T ⊗ S) = Isoσ(T ⊗
S).

Suppose that Isoσ(T ) ⊆ {0} or Isoσ(S) ⊆ {0}. By [36] (Proposition 3), Isoσ(T ⊗
S) ⊆ {0}, and as 0 /∈ σp(T ⊗ S), whereby E(T ⊗ S) = ∅, and so E(T ⊗ S) ⊆ E(T )E(S)
holds. Now, suppose that Isoσ(T ) * {0} and Isoσ(T ) * {0}. Then, by [36] (Proposition
3(a)), E(T ⊗ S) ⊆ E(T )E(S).

The following Theorem was proved in [13], but here we give a simpler proof.

Theorem 15. Let T ∈ L(X ) and S ∈ L(Y) satisfy property (Sb). Then, T ⊗ S satisfies
property (Sb), which is equivalent to

σSBF−+
(T ⊗ S) = σ(T )σSBF−+

(S) ∪ σSBF−+
(T )σ(S).

Proof. It is well known that properties (Sb) and (VΠ) are equivalent (see [3] (Corollary
2.5)). In addition, property (VΠ) implies the equality of the Browder spectrum and the
upper semi B-Weyl spectrum (see [3] (Theorem 2.27)). Thus, the proof follows from the
identity σb(T ⊗ S) = σ(T )σb(S) ∪ σb(T )σ(S) (see [37] (Theorem 4.2(a))).

Theorem 16. Let T ∈ VE(X ) and S ∈ VE(Y) be two isoloid operators and 0 /∈ σp(T ⊗ S).
Then, T ⊗ S ∈ VE(X ⊗Y) is equivalent to

σSF−+
(T ⊗ S) = σSF−+

(T )σ(S) ∪ σSF−+
(S)σ(T ).

Proof. Since property (VE) implies the equality between upper semi-Weyl and Browder
spectra (see [3], Theorem 2.27), the direct sense is immediate from [37] (Theorem 3.5).

Conversely, suppose that the identity

(1) σSF−+
(T ⊗ S) = σSF−+

(T )σ(S) ∪ σSF−+
(S)σ(T )

holds. Then, again by [3] (Theorem 2.27), we get that

σSF−+
(T ⊗ S) = σb(T )σ(S) ∪ σb(S)σ(T ) = σb(T ⊗ S).

Thus, we obtain that ∆+(T ⊗ S) = Π0(T ⊗ S) ⊆ E(T ⊗ S). However, we will show
that E(T ⊗ S) ⊆ ∆+(T ⊗ S). If µ ∈ E(T ⊗ S), then µ ∈ E(T )E(S) by Lemma 4. Hence, if
µ = ξν with ξ ∈ σ(T ) and ν ∈ σ(S), then ξ ∈ σ(T ) \σSF−+

(T ) and ν ∈ σ(S) \σSF−+
(S), and

since the identity (1) holds, we get that µ ∈ ∆+(T ⊗ S). Hence, T ⊗ S ∈ VE(X ⊗Y).

Recall that, if A1 ∈ L(X ) and A2 ∈ L(Y) are quasinilpotent commuting with T and
S , respectively, then

(T +A1)⊗ (S +A2) = (T ⊗ S) +Q,

where Q = A1 ⊗ S + T ⊗A2 +A1 ⊗A2 ∈ L(X ⊗Y) is quasinilpotent.

Theorem 17. Let A1 ∈ L(X ) and A2 ∈ L(Y) be quasinilpotent commuting with T and S ,
respectively. If T ⊗ S ∈ VE(X ⊗Y) is isoloid, then (T +A1)⊗ (S +A2) ∈ VE(X ⊗Y).
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Proof. We know that

σ((T +A1)⊗ (S +A2)) = σ(T ⊗ S),

σSF−+
((T +A1)⊗ (S +A2)) = σSF−+

(T ⊗ S).

We also have that an operator satisfies SVEP if and only if any perturbation of it by
a commuting quasinilpotent operator satisfies SVEP. Assume that T ⊗ S ∈ VE(X ⊗ Y).
Then

E(T ⊗ S) = σ(T ⊗ S) \ σSF−+
(T ⊗ S)

= σ((T +A1)⊗ (S +A2)) \ σSF−+
((T +A1)⊗ (S +A2)).

We will show that E(T ⊗ S) = E((T +A1)⊗ (S +A2)). Indeed, if µ ∈ E(T ⊗ S),
then µ ∈ σ((T +A1)⊗ (S +A2)) \ σSF−+

((T +A1)⊗ (S +A2)), and also µ ∈ Iso σ(T ⊗
S). Since µ ∈ Iso σ(T ⊗ S) implies that (T ∗ +A∗1) ⊗ (S∗ +A∗2) satisfies SVEP at µ, if
follows that µ /∈ σW((T +A1)⊗ (S +A2)) and µ ∈ Iso σ((T +A1)⊗ (S +A2)). Hence,
µ ∈ E((T +A1)⊗ (S +A2)) and so, E(T ⊗ S) ⊆ E((T +A1)⊗ (S +A2)). To show the
inclusion E((T +A1)⊗ (S +A2)) ⊆ E(T ⊗ S), let µ ∈ E((T +A1)⊗ (S +A2)). Then
µ ∈ Iso σ(T ⊗ S), and as T ⊗ S is isoloid, µ ∈ E(T ⊗ S). Therefore, E((T +A1) ⊗
(S +A2)) ⊆ E(T ⊗ S) and consequently (T +A1)⊗ (S +A2) ∈ VE(X ⊗Y).

Theorem 18. Let T ∈ VE(X ) and S ∈ VE(Y) be two isoloid operators and let B1 ∈ L(X )
and B2 ∈ L(Y) be two Riesz operators commuting with T and S , respectively. Suppose
that σ(T + B1) = σ(T ), σ(S + B2) = σ(S) and T ⊗ S ∈ VE(X ⊗ Y). The following
are equivalent:

1. a-Browder’s theorem transfers from T + B1 and S + B2 to their tensor product.
2. (T + B1)⊗ (S + B2) ∈ VE(X ⊗Y).

Proof. First of all, let us observe that according to the hypothesis and Theorem 9, we
have that both T + B1 and S + B2 satisfy property (VE), which implies that σ(T + B1) =
σa(T + B1), σ(S + B2) = σa(S + B2), σSF−+

(T + B1) = σb(T + B1) and σSF−+
(S + B2) =

σb(S + B2). In addition, as T , S and T ⊗ S satisfy property (VE), we get that

σSF−+
(T ⊗ S) = σb(T ⊗ S) = σ(T )σb(S) ∪ σb(T )σ(S)

= σ(T )σSF−+
(S) ∪ σSF−+

(T )σ(S)

= σ(T + B1)σSF−+
(S + B2) ∪ σSF−+

(T + B1)σ(S + B2).

Now, we will prove the required equivalences in the theorem.
(1)⇒ (2) Assume that a-Browder’s theorem transfers from T + B1 and S + B2 to

(T + B1)⊗ (S + B2). Then, from the above and by [11] (Lemma 1), we have

σSF−+
(T ⊗ S) = σ(T + B1)σSF−+

(S + B2) ∪ σSF−+
(T + B1)σ(S + B2)

= σa(T + B1)σSF−+
(S + B2) ∪ σSF−+

(T + B1)σa(S + B2)

= σSF−+
((T + B1)⊗ (S + B2))

and
E(T ⊗ S) = σ((T + B1)⊗ (S + B2)) \ σSF−+

((T + B1)⊗ (S + B2)).

Thus, to conclude this part of the proof, we will show that E(T ⊗ S) =
E((T + B1)⊗ (S + B2)) holds. Let µ ∈ E(T ⊗ S). Then, there exist ξ ∈ σ(T + B1) \
σSF−+

(T + B1) and ν ∈ σ(S + B2) \ σSF−+
(S + B2) with µ = ξν. As both T + B1 and

S + B2 satisfy property (VE), it follows that ξ ∈ E(T + B1) and ν ∈ E(S + B2). Thus,
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µ = ξν ∈ σp(T + B1)σp(S + B2) ⊆ σp((T + B1) ⊗ (S + B2)), and using the fact that
µ ∈ σ(T ⊗ S) = σ((T + B1)⊗ (S + B2)), we get that µ ∈ E((T + B1)⊗ (S + B2)).
Conversely, if µ ∈ E((T + B1)⊗ (S + B2)) then µ ∈ Iso σ((T + B1)⊗ (S + B2)). Since
σ((T + B1)⊗ (S + B2)) = σ(T ⊗ S), we have µ ∈ Iso σ(T ⊗ S), and as T ⊗ S is isoloid
(because both T and S are isoloid), it follows that µ ∈ E(T ⊗ S).

(2)⇒ (1) As property (VE) implies a-Browder’s theorem, (T + B1)⊗ (S + B2) has the
Browder’s theorem. As both T + B1 and S + B2 satisfy property (VE), this tells us that
a-Browder’s theorem is transmitted from T + B1 and S + B2 to (T + B1)⊗ (S + B2).

Remark 3. Let X be a Banach space andM be a proper closed subspace of X . We consider
the set P(X ,M) = {T ∈ L(X ) : T (M) ⊆M and there exists an integer k ≥ 1 for which
T k(X ) ⊆M}. For every T ∈ P(X ,M), let TM be the restriction of T onM. According
to the results established in [38], if T ∈ P(X ,M) and 0 /∈ Iso σ(T ), then T ∈ VE(X ) is
equivalent to TM ∈ VE(M). Hence, if T ∈ P(X ,M) and 0 /∈ Iso σ(T ), then the results
given in this work can be preserved from T to TM and reciprocally.

5. Conclusions

The spectral property (VE) implies a range of spectral properties, including the classi-
cal Weyl’s theorems, so this property is somewhat strong. Some necessary conditions were
obtained that guarantee the stable character of property (VE) under the classic perturba-
tions. Among other things, it was concluded that property (VE) is stable under commuting
perturbations: nilpotent, of finite range “but the operator is isoloid”, of Riesz “but the
operator is isoloid and the spectrum of the operator coincides with the spectrum of the
sum of the operator with the Riesz perturbation”, and algebraic when the operator satisfies
SVEP at all points of the spectrum of the algebraic perturbation. Finally, the tensor product
between two operators that satisfy the property (VE) was analyzed and we concluded
that under certain conditions it is stable for quasinilpotent (or Riesz) perturbations in the
factors.
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