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1. Introduction

For nearly sixty years now, there has been a lot of research activity regarding the
fixed point theory of nonexpansive (that is, 1-Lipschitz) and contractive mappings. See,
for example, Refs. [1–14] and references cited therein. This activity stems from Banach’s
classical theorem [15] concerning the existence of a unique fixed point for a strict contraction.
It also concerns the convergence of (inexact) iterates of a nonexpansive mapping to one
of its fixed points. Since that seminal result, many developments have taken place in
this field including, in particular, studies of feasibility, common fixed point problems,
nonlinear operator theory and variational inequalities, which find important applications
in engineering, medical and the natural sciences [13,14,16–19]. In particular, the study
of nonexpansive and contractive mappings on complete metric spaces with graphs has
recently become a rapidly growing area of research. See, for instance, Refs. [9,10,20]. In
the present paper we establish fixed point, stability and genericity theorems for strict
contractions on complete metric spaces with graphs (see Sections 3 and 4 below).

2. Preliminaries

Let (X, ρ) be a complete metric space and let G be a (directed) graph. Let V(G) be the
set of its vertices and let E(G) be the set of its edges. We identify the graph G with the pair
(V(G), E(G)).

Denoted byMne is the set of all mappings T : X → X such that for each x, y ∈ X
satisfying (x, y) ∈ E(G), we have

(T(x), T(y)) ∈ E(G) and ρ(T(x), T(y)) ≤ ρ(x, y). (1)

A mapping T ∈ Mne is called G-nonexpansive. If T ∈ Mne, α ∈ (0, 1) and for each
x, y ∈ X satisfying (x, y) ∈ E(G), we have

ρ(T(x), T(y)) ≤ αρ(x, y), (2)

then T is called a G-strict contraction.
Fix θ ∈ X. For each x ∈ X and each r > 0, set

Bρ(x, r) := {y ∈ X : ρ(x, y) ≤ r}.
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We may assume without loss of generality that if x, y ∈ X satisfies (x, y) ∈ E(G), then

(y, x) ∈ E(G).

In this paper, we assume the following assumption:
(P) For each x, y ∈ X, there exist an integer q ≥ 1 and points xi ∈ X, i = 0, . . . , q,

such that
x0 = x, xq = y, (xi, xi+1) ∈ E(G), i = 0, . . . , q− 1.

Thus, V(G) = X and the graph G is connected.
Let T ∈ Mne be a G-strict contraction. It is known [20] that under certain mild

assumptions, the mapping T has a unique fixed point which attracts all the iterates of T.
In the present paper we provide a very simple proof of this fact by using a certain metric
on X which is defined below (see Theorem 1). Then we establish (see Theorem 2) uniform
convergence of the iterates of T on bounded subsets of X and show that this convergence
is stable under small perturbations of these iterates (Theorems 3 and 4). All these results
are stated and proved in Section 3. In Section 4, under certain assumptions, we show that a
typical G-nonexpansive mapping has a unique fixed point which attracts all its iterates,
uniformly on bounded subsets of X.

For each x, y ∈ X, define

ρ1(x, y) := inf{
q−1

∑
i=0

ρ(xi, xi+1) : q ≥ 1 is an integer,

xi ∈ X, i = 0, . . . , q, x0 = x, xq = y, (xi, xi+1) ∈ E(G), i = 0, . . . , q− 1}. (3)

It is easy to see that for each x, y, z ∈ X, ρ1(x, y) is finite,

ρ1(x, y) ≥ ρ(x, y), (4)

ρ1(x, y) = ρ1(y, x),

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z),

and if ρ1(x, y) = 0, then x = y. However, ρ1 is a metric only if (x, x) ∈ E(G) for all x ∈ X.
This pseudometric ρ1 plays an important role in this paper because it turns out that if a
mapping T is G-nonexpansive (respectively, a G-strict contraction), then it is nonexpansive
(respectively, a strict contraction) with respect to the pseudometric ρ1.

Given a mapping S : X → X, we define S0 = I, the identity self-mapping on X,
S1 = S, and Si+1 = S ◦ Si for all integers i ≥ 0. For each x ∈ X and each r > 0, we set

Bρ1(x, r) := {y ∈ X : ρ1(x, y) ≤ r}.

3. Strict Contractions

In this section, we are concerned with mappings T ∈ Mne which are G-strict contrac-
tions. For such a mapping T, we establish the existence of a unique fixed point and show
that the (inexact) iterates of T converge to this unique fixed point, uniformly on bounded
subsets of the space (X, ρ).

Theorem 1. Let T ∈ Mne, α ∈ (0, 1) and assume that for each x, y ∈ X satisfying (x, y) ∈ E(G),
inequality (2) holds. Then for each x, y ∈ X, we have

ρ1(T(x), T(y)) ≤ αρ1(x, y).
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If T is continuous as a self-mapping of (X, ρ), then there exists a unique point x∗ ∈ X
satisfying T(x∗) = x∗ and for each x ∈ X,

lim
i→∞

Ti(x) = x∗ in (X, ρ).

Proof. Assume that x, y ∈ X, q is an integer, and that

xi ∈ X, i = 0, . . . , q, x0 = x, xq = y, (xi, xi+1) ∈ E(G), i = 0, . . . , q− 1. (5)

By (2) and (5), we have

T(x) = T(x0), T(y) = T(xq), (T(xi), T(xi+1)) ∈ E(G), i = 0, . . . , q− 1,

and
ρ(T(xi), T(xi+1)) ≤ αρ(xi, yi), i = 0, . . . , q− 1.

When combined with (3), these relations imply that

ρ1(T(x), T(y)) ≤
q−1

∑
i=0

ρ(T(xi), T(xi+1)) ≤ α
q−1

∑
i=0

ρ(xi, xi+1).

Since the above inequalities hold for each integer q ≥ 1 and every finite sequence
{xi}

q
i=0 satisfying (5), we conclude that

ρ1(T(x), T(y)) ≤ αρ1(x, y). (6)

Assume now that T is continuous, x ∈ X and consider the sequence of iterates
{Ti(x)}∞

i=0. By (6), for each integer i ≥ 0, we have

ρ1(Ti+1(x), Ti+2(x)) ≤ αρ1(Ti(x), Ti+1(x))

and
∞

∑
i=0

ρ1(Ti(x), Ti+1(x)) < ∞.

When combined with (4), this implies that

∞

∑
i=0

ρ(Ti(x), Ti+1(x)) < ∞

and that {Ti(x)}∞
i=0 is a Cauchy sequence in (X, ρ). Thus, there exists

x∗ = lim
i→∞

Ti(x)

in (X, ρ). Since T is assumed to be continuous, it follows that T(x∗) = x∗. If a point y∗ ∈ X
also satisfies T(y∗) = y∗, then in view of (6),

ρ1(x∗, y∗) = ρ1(T(x∗), T(y∗)) ≤ αρ1(x∗, y∗)

and
ρ1(x∗, y∗) = 0.

When combined with (4) this equality implies that x∗ = y∗. This completes the proof
of Theorem 1.
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Theorem 2. Let all the assumptions of Theorem 1 hold, let the mapping T be continuous as a
self-mapping of (X, ρ) and let x∗ ∈ X be as guaranteed by Theorem 1 and satisfy

x∗ = T(x∗).

Suppose that the following assumption holds.
(A1) For each M0 > 0, there exists M1 > 0 such that for each point x ∈ Bρ(θ, M0), we have

ρ1(x, θ) ≤ M1.

Then Ti(x)→ x∗ as i→ ∞ in (X, ρ), uniformly on all bounded subsets of (X, ρ).

Proof. Let ε, M0 > 0 be given. By (A1), there exists M1 > 0 such that

Bρ(θ, M0) ⊂ Bρ1(θ, M1). (7)

We may assume without any loss of generality that

x∗ ∈ Bρ(θ, M0). (8)

Choose a natural number n0 such that

2M1αn0 < ε. (9)

Next, assume that
x ∈ Bρ(θ, M0). (10)

By (8) and (10),
ρ1(x, θ) ≤ M1, ρ1(x∗, θ) ≤ M1,

ρ1(x, x∗) ≤ 2M1. (11)

It now follows from Theorem 1, (2), (9) and (11) that for all natural numbers n ≥ n0,
we have

ρ(Tn(x), x∗) ≤ ρ1(Tn(x), x∗) ≤ αnρ1(x, x∗) ≤ 2αn0 M1 < ε.

This completes the proof of Theorem 2.

Theorem 3. Let all the assumptions of Theorem 2 hold and let x∗ ∈ X be as guaranteed by
Theorem 1 and satisfy

x∗ = T(x∗).

Suppose that T is uniformly continuous and bounded on bounded sets as a self-mapping of
(X, ρ) and let ε, M > 0 be given. Then there exist δ > 0 and a natural number n0 such that for
each integer n ≥ n0 and every finite sequence {xi}n

i=0 ⊂ X satisfying

x0 ∈ Bρ(θ, M)

and
ρ(xi+1, T(xi)) ≤ δ, i = 0, . . . , n− 1,

the inequality ρ(xi, x∗) ≤ ε holds for all i = n0, . . . , n.

Theorem 3 follows from Theorem 2 and Theorem 2.65 of [12], which was obtained
in [21].

Denoted byM is the set of all mappings S ∈ Mne which are uniformly continuous
and bounded on bounded sets as self-mappings of (X, ρ). We equip the spaceM with the
uniformity which has the base

E(ε, M) = {(S1, S2) ∈ M×M : ρ(S1(x), S2(x)) ≤ ε for all x ∈ B(θ, M)},
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where M, ε > 0. It is not difficult to see that the uniform space M is metrizable and
complete (by a metric d).

Our next theorem follows from Theorem 2 and Theorem 2.68 of [12], which was
obtained in [21].

Theorem 4. Let all the assumptions of Theorem 2 hold and let x∗ ∈ X be as guaranteed by
Theorem 1 and satisfy

x∗ = T(x∗).

Suppose that T ∈ M and that ε, M > 0 are given. Then there exist a neighborhood U of T
inM and a natural number n0 such that for each C ∈ U , each x ∈ Bρ(θ, M) and each integer
n ≥ n0, we have

ρ(Cn(x), x∗) ≤ ε.

4. Generic Results

In this section, we assume that X is a closed subset of a complete hyperbolic space
(Y, ρ, M), the definition of which we now recall.

Let (Y, ρ) be a metric space and let R1 denote the real line. We say that a mapping
c : R1 → Y is a metric embedding of R1 into Y if ρ(c(s), c(t)) = |s− t| for all real s and t.
The image of R1 under a metric embedding will be called a metric line. The image of a real
interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping will be called a metric segment.

Assume that (Y, ρ) contains a family M of metric lines such that for each pair of
distinct points x and y in Y, there is a unique metric line in M which passes through x and
y. This metric line determines a unique metric segment joining x and y. We denote this
segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point will be denoted by (1− t)x ⊕ ty. We will say that Y, or more precisely
(Y, ρ, M), is a hyperbolic space if

ρ(
1
2

x⊕ 1
2

y,
1
2

x⊕ 1
2

z) ≤ 1
2

ρ(y, z)

for all x, y and z in Y. An equivalent requirement is that

ρ(
1
2

x⊕ 1
2

y,
1
2

w⊕ 1
2

z) ≤ 1
2
(ρ(x, w) + ρ(y, z))

for all x, y, z and w in Y. A set K ⊂ Y is called ρ-convex if [x, y] ⊂ K for all x and y in K.
It is clear that all normed linear spaces are hyperbolic. A discussion of more examples

of hyperbolic spaces and, in particular, of the Hilbert ball can be found, for example,
in [4,22].

Now let X be a closed subset of a complete hyperbolic space (Y, ρ, M), let θ ∈ X
and let assumption (A1) hold. In addition, we assume in the sequel that the following
assumption also holds true.

(A2) For each x ∈ X, each (y, z) ∈ E(G) and each γ ∈ (0, 1), we have

γθ ⊕ (1− γ)x ∈ X

and
(γθ ⊕ (1− γ)y, γθ ⊕ (1− γ)z) ∈ E(G).

Let T ∈ M and γ ∈ (0, 1). Define

Tγ(x) := (1− γ)T(x)⊕ γθ, x ∈ X. (12)
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Clearly, Tγ ∈ M and for each x, y ∈ X such that (x, y) ∈ E(G), we have

ρ(Tγ(x), Tγ(y)) ≤ (1− γ)ρ(T(x), T(y)) ≤ (1− γ)ρ(x, y). (13)

By (12), for each x ∈ X, we have

ρ(Tγ(x), T(x)) ≤ γρ(θ, T(x)).

In view of the above inequality, the set

{Tγ : T ∈ M, γ ∈ (0, 1)}

is an everywhere dense subset of (M, d).

Theorem 5. There exists a set F ⊂M, which is a countable intersection of open and everywhere
dense sets in (M, d) so that for each C ∈ F , there exists a unique point xC ∈ X such that
C(xC) = xC and Ci(x)→ xC in (X, ρ) as i→ ∞, uniformly on bounded subsets of (X, ρ).

Proof. Let T ∈ M, γ ∈ (0, 1) and let n ≥ 1 be an integer. Theorem 1 and (13) imply that
there exists a unique point xT,γ ∈ X such that

Tγ(xT,γ) = xT,γ. (14)

By Theorem 4, there exist an open neighborhood U (T, γ, n) of Tγ inM and a natural
number p(T, γ, n) such that the following property holds:

(a) for each C ∈ U (T, γ, n), each x ∈ Bρ(θ, n) and each integer k ≥ p(T, γ, n), we have

ρ(Ck(x), xT,γ) ≤ 1/n.

Define
F := ∩∞

n=1 ∪ {U (T, γ, n) : T ∈ M, γ ∈ (0, 1)}. (15)

Clearly, F is a countable intersection of open and everywhere dense subsets of (M, d).
Assume now that

C ∈ F , (16)

x ∈ X and that n is a natural number such that

B(θ, x) ≤ n. (17)

By (15) and (16), there are T ∈ M and γ ∈ (0, 1) such that

C ∈ U (T, γ, n). (18)

Property (a), (17) and (18) imply that for each integer k ≥ p(T, γ, n), we have

ρ(Ck(x), xT,γ) ≤ 1/n. (19)

Since n is any natural number satisfying (17), we conclude that {Ci(x)}∞
i=0 is a Cauchy

sequence and there exists
lim
i→∞

Ci(x) in (X, ρ).

In view of (19), we have

ρ( lim
i→∞

Ci(x), xT,γ) ≤ 1/n. (20)
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Since n is any sufficiently large natural number, we infer that

lim
i→∞

Ci(x) = lim
i→∞

Ci(y)

for each y ∈ X. Next, set
xC = lim

i→∞
Ci(x). (21)

Obviously,
C(xC) = xC.

In view of (20) and (21), we have

ρ(xC, xT,γ) ≤ 1/n. (22)

It now follows from (17) and (22) that for each point x ∈ B(θ, n) and each integer
k ≥ p(T, γ, n), we have

ρ(Ck(x), xC) ≤ 2n−1.

Since n is any sufficiently large natural number, this completes the proof of
Theorem 5.
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