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Abstract: While researchers and practitioners may seamlessly develop methods of detecting outliers 
in control charts under a univariate setup, detecting and screening outliers in multivariate control 
charts pose serious challenges. In this study, we propose a robust multivariate control chart based 
on the Stahel-Donoho robust estimator (SDRE), whilst the process parameters are estimated from 
phase-I. Through intensive Monte-Carlo simulation, the study presents how the estimation of pa-
rameters and presence of outliers affect the efficacy of the Hotelling T2 chart, and then how the 
proposed outlier detector brings the chart back to normalcy by restoring its efficacy and sensitivity. 
Run-length properties are used as the performance measures. The run length properties establish 
the superiority of the proposed scheme over the default multivariate Shewhart control charting 
scheme. The applicability of the study includes but is not limited to manufacturing and health in-
dustries. The study concludes with a real-life application of the proposed chart on a dataset ex-
tracted from the manufacturing process of carbon fiber tubes. 

Keywords: multivariate control charts; Mahalanobis distance; control chart; Hotelling T2;  
Stahel-Donoho robust estimators; outlier detection 
 

1. Introduction 
Outliers are those observations at both extremes, which do not follow the majority of 

observations pattern in a dataset. Outlier detection is of concern in data analysis and sci-
entific areas, of which statistical process control (SPC) is not an exemption [1]. This is be-
cause outliers have a major influence on any statistical analysis as they increase the error 
variance, reduce the power of statistical tests, and cause bias in estimation, hence leading 
to incorrect inferences and conclusions, and sometimes, ending with deadly decisions, 
take the health sector as an example. With little percentage and magnitude present in data 
(big or small), outliers will grossly distort the performance and analysis of the data. There-
fore, the art of outlier detection is a prominent and important aspect of data analysis, even 
more so now that more and more data are being analyzed simultaneously, such as with 
multivariate control charting. 

Control charts are the most widely used tool amongst the seven tools of SPC [2]. Their 
vast applicability in different fields and sectors give them an edge over other tools of SPC 
for process monitoring. Control charts, however, can have a univariate or multivariate 
setup, a memory or memory-less type, and/or monitoring location or dispersion in an 
ongoing process. Readers are referred to [2] for more information about control charts and 
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their types. Furthermore, control charts are of two stages: phase-I (the prospective stage) 
and phase-II (the retrospective stage). The process parameters are used to set the chart’s 
control limits in phase-I. Moreover, if the process parameters are unknown, they are esti-
mated with some preliminary samples, whereas the monitoring and correction of unnat-
ural causes of variation occur in the retrospective stage. The choice and amount of prelim-
inary sample employed in estimating the unknown parameters in phase-I vary among 
practitioners and as result affect the performance of the chart in the monitoring stage. 
These samples often contain some unusual observations and outliers, which exert a dis-
proportionate pull on the parameter estimated, making the chart less efficient in detecting 
anomalies. The multivariate Shewhart chart that has been studied in this paper is a 
memory-less type for monitoring location parameters, while the process parameters are 
known and estimated from phase-I samples. Over the years, SPC researchers have inves-
tigated the effect of parameter estimation on control charts in both univariate and multi-
variate setups. To mention a few, reference [3] gave an up-to-date review on parameter 
estimation effects on control charts. Saleh et al. [4] evaluated the parameter estimation’s 
effect on an exponentially weighted moving average (EWMA) control chart with its run 
length properties. A similar study was conducted by Jones [5]. 

Many research works in the literature have studied outlier detection in the univariate 
setup, some of which are applied to control charts in the univariate setup. References [6–
8] have independently proposed outlier detection models in the univariate setup of con-
trol charts either for location or dispersion monitoring. They found that the control charts 
based on detection models require fewer phase-I samples to detect anomalies, as these 
charts are quicker and more sensitive to contamination. Guarnieri et al.  [9] developed con-
trol charts for individual observation and exponentially weighted moving averages based 
on residues to detect outliers in autoregressive models. Bakar et al. [10] also conducted a 
comparative study for outlier detection techniques in control charts with application in 
data mining. As Vidmar and Blagus [11] applied different outlier detection approaches to 
healthcare quality monitoring. Zhang and Albin [12] employed a chi-square chart method 
for detecting outliers in complex profiles. Other research in this direction include, among 
others, [13,14]. While there are models for detecting multivariate outliers, few of them 
have been applied to SPC. Examples include the robust multivariate control chart for out-
lier detection by Fan et al. [15] and robust estimates, residuals, and outlier detection with 
multi-response data by Gnanadesikan and Kettenring [16]. The authors of [17] considered 
minimum volume ellipsoid (MVE) and/or weighted mean vector and mean square suc-
cessive differences (WD) to decrease the impact of outliers on multivariate control charts. 
Hubert et al. [18] reviewed the minimum covariance determinant (MCD) methods and 
their extension as competent tools for outlier detection. Other researchers have ap-
proached the outlier detection problem with robust multivariate estimators. The pioneer 
of this idea was Stahel [19] where he studied the breakdown of covariance estimators; 
Maronna and Yohai [20] further extended the research of Stahel. Rousseeuw and Hubert 
[21] also studied the robust multivariate location and scatter estimators. Similar studies 
include but are not limited to [22–24]. 

In the aforementioned references, none of the studies that applied multivariate robust 
estimators to control charts have focused on detecting and screening outliers of the phase-
I samples. Therefore, this paper focuses on detecting multivariate outliers in the multivar-
iate Shewhart control chart. It employs a Stahel-Donoho robust estimator incorporated 
with the Mahalanobis distance for detecting and screening out the outlying observations 
in the preliminary samples, from which the process parameters are estimated. This paper 
reports the effect of parameter estimations on a multivariate Shewhart chart’s control lim-
its and performance. Reporting parameter estimations’ effect is not the main goal of this 
study; however, it helps readers to better understand the positive impact of the outlier 
detection process. 
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The remainder of this article is organized as follows. Section 2 entails the methodol-
ogy with an insight to the multivariate Shewhart control chart when the process parame-
ters are known and estimated, the presence of outliers in the preliminary samples, and the 
proposed multivariate outlier detection process. Results and discussion appear in Section 
3, while Section 4 gives an illustrative example with a real-life dataset extracted from the 
manufacturing process of carbon fiber tubes. Section 5 concludes the study with a sum-
mary of the findings and future recommendations. 

2. Methodology 
The aim of this study is to detect and screen outliers of the 𝑚𝑚 preliminary samples 

employed for parameter estimation, especially when the samples are outlier prone. This 
section explains in detail the multivariate Shewhart control chart for location monitoring, 
both when the parameters are known and estimated from phase-I preliminary samples. 
Then it demonstrates the effect of practitioners’ variability in the samples employed for 
estimation, and its effect on the chart’s performance. In addition, this section presents how 
outliers in those samples distort the chart’s efficacy and become less sensitive, then con-
cludes the section with the proposed outlier detection-based multivariate Shewhart chart, 
and its application on a real-life data set extracted from the carbon fiber tubes manufac-
turing industry. 

2.1. Multivariate Shewhart Control Chart 
Let 𝑿𝑿 =  (𝑋𝑋1,𝑋𝑋2 ,𝑋𝑋3 … ,𝑋𝑋𝑝𝑝), a vector of p-correlated quality characteristics, each of 

size 𝑛𝑛 subgroups, drawn from a p-variate normal distribution be the characteristic of in-
terest for monitoring in a multivariate process. The probability distribution function of 𝑿𝑿 
is given as follows: 

𝑓𝑓(𝑿𝑿) = 1
(2𝜋𝜋)𝑝𝑝 2⁄  |𝜮𝜮|1 2⁄  𝑒𝑒(−12( 𝑿𝑿− 𝝁𝝁)𝑇𝑇𝜮𝜮 −1( 𝑿𝑿− 𝝁𝝁)); −∞ < 𝑋𝑋𝑖𝑖 < ∞, 𝑖𝑖 = 1, 2, … , 𝑝𝑝.  (1) 

The resulting multivariate Shewhart chart statistic termed Hotelling 𝑇𝑇2, for monitor-
ing the location parameter of the random process 𝑋𝑋~𝑁𝑁𝑝𝑝(𝝁𝝁,𝚺𝚺) X, is given as follows: 

𝑇𝑇𝑖𝑖2 = 𝑛𝑛(𝑿𝑿�𝑖𝑖 −  𝝁𝝁)′𝜮𝜮−1(𝑿𝑿�𝑖𝑖 −  𝝁𝝁). (2) 

where 𝑿𝑿�𝑖𝑖  is the mean vector of the 𝑖𝑖th  observation, 𝑛𝑛  is the sample size, 𝝁𝝁′ =
(𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑝𝑝) and 

𝜮𝜮 =  �

𝜎𝜎11 𝜎𝜎12 ⋯ 𝜎𝜎1𝑝𝑝
𝜎𝜎21 𝜎𝜎22 ⋯ 𝜎𝜎2𝑝𝑝
⋮ ⋮ ⋮ ⋮
𝜎𝜎𝑝𝑝1 𝜎𝜎𝑝𝑝2 ⋯ 𝜎𝜎𝑝𝑝𝑝𝑝

�  

is the mean vector and variance-covariance matrix of the process. The chart signals an 
alarm when the 𝑇𝑇𝑖𝑖2 statistic is plotted beyond the upper control limit (UCL) of the chart, 
i.e., (𝑇𝑇𝑖𝑖2 > UCL = 𝜒𝜒𝛼𝛼,𝑝𝑝

2 ). This is the case when the process parameters (𝜇𝜇,𝛴𝛴) are known. 
However, when the parameters are unknown, they are estimated from 𝑚𝑚 phase-I prelim-
inary samples. The Hotelling T2 statistics then become 

𝑇𝑇𝑖𝑖2 = 𝑛𝑛(𝑿𝑿�𝑖𝑖 −  𝝁𝝁�)′𝑺𝑺−1(𝑿𝑿�𝑖𝑖 −  𝝁𝝁�), (3) 

where  𝝁𝝁� =  ∑ ∑ 𝑿𝑿𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 𝑚𝑚𝑛𝑛⁄ and 𝑺𝑺 =  ∑ ∑ (𝑿𝑿𝑖𝑖,𝑗𝑗 − 𝑿𝑿�𝒊𝒊)(𝑿𝑿𝑖𝑖,𝑗𝑗 − 𝑿𝑿�𝑖𝑖)𝑇𝑇𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1 𝑚𝑚(𝑛𝑛 − 1)⁄  are the 

estimates of the in-control mean vector and variance-covariance matrix emerging from 
the phase-I samples. It is important to note that the amount of 𝑚𝑚 phase-I sample and the 
choice of estimators employed for estimating the parameters vary amongst practitioners, 
hence the variability in the efficacy and performance of their charts. Subsequently, the 
corresponding UCL of the 𝑇𝑇𝑖𝑖2 statistic in (3), for the monitoring stage, phase-II, is given 
as follows: 
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UCL =
𝑝𝑝(𝑚𝑚 + 1)(𝑛𝑛 − 1)
𝑚𝑚𝑛𝑛 −𝑚𝑚 − 𝑝𝑝 + 1

𝐹𝐹𝛼𝛼,𝑝𝑝,𝑚𝑚𝑛𝑛−𝑚𝑚−𝑝𝑝+1 (4) 

Again, if  𝑇𝑇2 > UCL, the chart sends a signal, so the practitioner tends to the unnatural 
cause of variation. The ith observation on which a signal was sent is the run length. The 
run length is simply the number of observations plotted within the limit before recording 
the first out-of-control (OoC). With many iterations, run length becomes a variable whose 
properties will be used for evaluating the chart. 

All this explains the traditional method for constructing the multivariate Shewhart 
chart for location monitoring. The next section establishes parameter estimation effects on 
the multivariate Shewhart chart. Section 2.3, on the other hand, reveals how the outliers 
emanating from the phase-I sample negatively affect the chart’s performance, while Sec-
tion 2.4 highlights the need for incorporating multivariate robust estimators for outlier 
detection. 

2.2. Effect of Practitioners’ Variabilities on the Multivariate Shewhart Chart 
In this section, the study reveals how the practitioners’ variability in the choice of 𝑚𝑚 

samples affects the multivariate Shewhart chart’s performance. Through intensive Monte-
Carlo simulation, we demonstrate how different 𝑚𝑚 phase-I samples for estimating the 
unknown parameters play a vital role in the performance of the multivariate Shewhart 
chart as compared to the known parameter case. This study considers 𝑚𝑚 of 25, 100, and 
500 to represent small, medium, and large samples, respectively. An algorithm was de-
veloped in R language to simulate the multivariate Shewhart chart defined in (2) for the 
known parameter case and in (3) for the unknown case. For the known case, it was as-
sumed that the mean vector was zero, variances were unity, and the covariance was 50% 
(i.e., 𝜎𝜎𝑖𝑖𝑖𝑖 = 1  and  𝜎𝜎𝑖𝑖𝑗𝑗 = 0.5). With 𝑝𝑝 = 2, 3,𝛼𝛼 = 0.0027 , the in-control (IC) average run 
length (ARL0) corresponded to 370. While for the unknown cases, the process parameters 
were estimated from 𝑚𝑚 = 25, 100, 500 samples with sample mean vector 𝝁𝝁� and covari-
ance matrix  𝑺𝑺. The algorithm also considered the OoC situations, when the mean vector 
increased over a range of shift 𝛿𝛿 ∈ [0,5]. The first effect of estimation began with the UCL; 
the UCL varied as the 𝑚𝑚 sample varied, to yield the nominal ARL0 of 370 as in the known 
case. The simulation results are presented in Tables 1 and 2. The detailed discussion of 
these results is in Section 3. 

Table 1. ARL and SDRL values of the multivariate Shewhart control chart with 𝑝𝑝 = 2. 

 Unknown Case: Parameters Estimated 
Known Case 

 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜹𝜹 ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

0.00 369.38 529.24 369.101 392.986 370.2419 392.7475 370.50 370.19 
0.50 230.28 338.60 207.208 228.794 207.52 210.96 201.90 202.24 
1.00 85.73 128.35 72.408 79.334 68.79 69.71 67.28 66.57 
1.50 29.91 42.31 25.617 27.083 23.58 23.57 23.28 22.94 
2.00 11.82 15.50 9.918 10.088 9.63 9.37 9.45 8.92 
2.50 5.20 5.84 4.733 4.482 4.66 4.12 4.59 4.12 
3.00 2.87 2.72 2.653 2.124 2.57 2.01 2.57 1.97 
3.50 1.86 1.42 1.756 1.173 1.71 1.13 1.70 1.09 
4.00 1.39 0.80 1.351 0.693 1.33 0.66 1.32 0.65 
4.50 1.16 0.45 1.143 0.412 1.14 0.40 1.13 0.38 
5.00 1.06 0.27 1.053 0.239 1.05 0.23 1.05 0.22 

 UCL = 12.27 UCL = 11.96 UCL = 11.87 UCL = 11.83 
Note: 𝑝𝑝 is the number of charactrsitics, 𝛿𝛿 is the shift, 𝑚𝑚 is the phase-I sample, UCL is the upper control limit, ARL is the 
average run length, and SDRL is the standard deviation run length. 
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Table 2. ARL and SDRL values of the multivariate Shewhart control chart with 𝑝𝑝 = 3. 

 Unknown Case: Parameters Estimated 
Known Case 

 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜹𝜹 ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

0.00 369.71 511.73 370.28 404.67 370.85 375.25 370.35 368.60 
0.50 252.41 354.01 237.52 264.45 233.12 236.52 229.50 229.21 
1.00 108.87 158.98 89.98 96.39 87.09 89.19 86.11 85.38 
1.50 40.93 57.93 33.15 36.22 31.57 32.24 30.98 30.38 
2.00 16.28 21.76 13.38 13.94 12.52 12.29 12.37 11.90 
2.50 7.20 8.63 6.12 5.94 5.80 5.29 5.71 5.21 
3.00 3.71 3.81 3.23 2.76 3.10 2.58 3.10 2.55 
3.50 2.25 1.94 2.06 1.53 2.02 1.42 1.98 1.39 
4.00 1.57 1.05 1.49 0.86 1.46 0.83 1.45 0.81 
4.50 1.26 0.60 1.21 0.50 1.21 0.49 1.19 0.48 
5.00 1.11 0.36 1.08 0.30 1.08 0.29 1.08 0.29 

 UCL = 15.16 UCL = 14.43 UCL = 14.22 UCL = 14.16 
Note: 𝑝𝑝 is the number of charactrsitics, 𝛿𝛿 is the shift, 𝑚𝑚 is the phase-I sample, UCL is the upper control limit, ARL is the 
average run length, and SDRL is the standard deviation run length. 

2.3. Effect of Outliers on the Multivariate Shewhart Control Chart with Estimated Parameters 
Having noticed the estimation effect on the multivariate Shewhart chart’s perfor-

mance in the previous section, we demonstrate how outliers in the 𝑚𝑚 phase-I samples 
worsen the chart’s performance in the monitoring stage. To achieve this aim, we generated 
𝑚𝑚 phase-I samples from a mixed distribution, a(1 − 𝜃𝜃)100% from the normal distribution 
and the remaining 𝜃𝜃100% from a chi-square distribution with 𝑣𝑣 degrees of freedom as 
follows: 

𝑿𝑿 ~ (1 − 𝜃𝜃)𝑁𝑁𝑝𝑝(𝝁𝝁,𝜮𝜮) + 𝜃𝜃[𝑁𝑁𝑝𝑝(𝝁𝝁,𝜮𝜮) +  𝜔𝜔𝝌𝝌(𝒗𝒗)
𝟐𝟐 ] (5) 

where 𝜃𝜃 > 0  represents the percentage of outliers present in the data, 𝜔𝜔 ≥ 1  is the 
magnitude of the outliers, and 𝝌𝝌(𝒗𝒗)

𝟐𝟐  represents the outlier added to the normal distribution. 
The study estimated the parameters 𝝁𝝁� and 𝑺𝑺 from the 𝑚𝑚 sample, and then computed the 
Hotelling 𝑇𝑇2 statistic as in (3). The same algorithm, process parameters, and control limits 
employed in Section 2.2 were used to compute the IC run length properties alone to observe 
the outliers’ effect. The results are presented in Tables 3 and 4 for magnitudes 𝜔𝜔 = 1,2, 
respectively. With just 10% of outliers (𝜃𝜃 = 0.10), the ARL0 increased by more than 600% 
of its expected value when 𝜔𝜔 = 1 and close to 3000% when 𝜔𝜔 = 2. 

The findings from the results in this section and the previous section suggest the fol-
lowing options: 
• The 𝑚𝑚 phase-I sample should be sufficiently increased until results similar to those 

of the known case are achieved.  
• The process should prevent the occurrence of unnatural variations and outliers with 

smaller 𝑚𝑚 phase-I samples 
These options are practically impossible in real life scenarios, because increasing 

samples is typically uneconomical. More so, a process cannot be freed from variations 
with a natural or assignable cause. Hence, there is the need to incorporate robust multi-
variate estimators for better estimation and screening of the outliers. 
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Table 3. ARL0 and SDRL0 values of the multivariate Shewhart control chart with outliers (𝜔𝜔 = 1). 

𝝎𝝎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜽𝜽 ARL SDRL ARL SDRL ARL SDRL 

0.00 370.22 506.49 369.05 406.10 370.39 376.06 
0.01 479.59 824.67 486.10 549.93 494.51 503.12 
0.02 630.37 1301.69 648.14 775.72 653.54 677.66 
0.03 780.66 1614.26 816.27 1045.23 832.28 866.55 
0.04 959.31 2445.42 1041.62 1316.05 1041.87 1111.20 
0.05 1167.80 2772.21 1267.57 1754.63 1312.05 1400.20 
0.06 1492.42 3676.36 1526.53 1987.07 1591.60 1692.19 
0.07 1844.59 5011.12 1778.28 2371.01 1841.32 1978.55 
0.08 2053.30 4823.31 2098.60 2889.33 2169.25 2256.39 
0.09 2349.65 5314.44 2523.52 3514.10 2476.13 2649.50 
0.10 2766.19 6210.28 2736.63 3800.61 2749.25 2914.35 

 UCL = 15.16 UCL = 14.43 UCL = 14.22 
Note: 𝜔𝜔 and 𝜃𝜃 are the magnitude and percentage of outliers, respectively; 𝑚𝑚 is the phase-I sample; ARL is the average 
run length; and SDRL is the standard deviation run length. 

Table 4. ARL0 and SDRL0 values of the multivariate Shewhart control chart with outliers (𝜔𝜔 = 2). 

𝝎𝝎 = 𝟐𝟐 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜽𝜽 ARL SDRL ARL SDRL ARL SDRL 

0.00 373.15 528.37 370.30 407.83 376.98 382.58 
0.01 810.48 1994.63 945.97 1420.80 1084.37 1246.99 
0.02 1600.06 4562.27 2142.58 4030.07 2449.51 2999.48 
0.03 2772.41 7427.22 4021.04 7220.47 4876.12 6078.31 
0.04 3957.63 9442.19 6533.33 10,703.47 7752.17 9110.05 
0.05 5523.83 11,857.39 9510.68 14,211.41 11,506.65 13,324.94 
0.06 6896.48 13,435.25 11,889.15 16,306.08 15,134.80 16,454.69 
0.07 8376.87 15,180.61 14,364.71 18,529.89 18,707.26 19,675.92 
0.08 9705.77 16,708.27 16,011.60 19,649.58 21,367.60 21,353.52 
0.09 10,826.71 18,000.62 17,978.87 21,409.00 23,325.17 22,914.61 
0.10 11,452.42 18,314.76 19,179.15 22,606.24 25,097.16 24,509.93 

 UCL = 15.16 UCL = 14.43 UCL = 14.22 
Note: 𝜔𝜔 and 𝜃𝜃 are the magnitude and percentage of outliers, respectively; 𝑚𝑚 is the phase-I sample; ARL is the average 
run length; and SDRL is the standard deviation run length. 

2.4. Proposed Multivariate Shewhart Chart Based on Stahel-Donoho Robust Estimators (SDRE) 
From the results in Tables 3 and 4, it is apparent that increasing the 𝑚𝑚 samples can-

not suppress the negative impact of the outliers on the chart. Hence, there is a need to 
employ robust location and dispersion estimators as substitutes to the default 𝝁𝝁� and  𝑺𝑺 
that are not sensitive to outliers. Therefore, this study proposes a multivariate Shewhart 
chart based on the Stahel-Donoho robust estimator. Like any robust estimator, the SDRE 
estimators were able to retain their efficiency in the presence of outliers. This feature 
makes them able to detect the presence of outliers no matter how small or large the 𝑚𝑚 
samples are. Readers are referred to [25–27] for more information about the merits of ro-
bust estimators. 

Stahel [19] and Donoho [22] were the first to develop a robust equivariant estimator 
of multivariate location and dispersion with a considerable high breakdown point of any 
p-variate multivariate data. However, it became well known with the analysis of Maronna 
and Yohai [20]. Maronna and Yohai [20] assumed 𝑿𝑿 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 � to be a set of n data 
points in ℜ𝑝𝑝, and defined the “outlyingness” 𝑟𝑟 for any 𝑦𝑦 𝜖𝜖 ℜ𝑝𝑝as 𝑟𝑟(𝒚𝒚,𝑿𝑿) = sup

𝒂𝒂
𝑟𝑟1(𝒚𝒚,𝒂𝒂,𝑿𝑿), 
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where 𝑟𝑟1(𝒚𝒚,𝒂𝒂,𝑿𝑿) = |𝑎𝑎′𝑦𝑦 − 𝜇𝜇(𝒂𝒂′𝑿𝑿)| 𝜎𝜎(𝒂𝒂′𝑿𝑿)⁄  and 𝜇𝜇()  and 𝜎𝜎()  are the robust univariate 
location and dispersion statistics. The Stahel-Donoho robust estimators (SDRE), denoted 
as (𝒕𝒕,𝑽𝑽) , are defined as weighted mean and weighted covariance matrix, each with 
weights of the form 𝑤𝑤(𝑟𝑟), where 𝑤𝑤𝑖𝑖  is the weight function of each observation and in-
verse proportional to the “outlyingness” of the observation, 𝑟𝑟, obtained by considering 
all univariate projections of the data. Mathematically, SDRE is written as follows: 

𝒕𝒕(𝑿𝑿) =  
∑ 𝑤𝑤𝑖𝑖𝑿𝑿𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ 𝑤𝑤𝑖𝑖𝒏𝒏
𝒊𝒊=𝟏𝟏

 𝑎𝑎𝑛𝑛𝑎𝑎 𝑽𝑽(𝑿𝑿) =  
∑ 𝑤𝑤𝑖𝑖(𝑿𝑿𝒊𝒊 − 𝒕𝒕)(𝑿𝑿𝒊𝒊 − 𝒕𝒕)𝑻𝑻𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ 𝑤𝑤𝑖𝑖𝒏𝒏
𝒊𝒊=𝟏𝟏

 (6) 

where  𝑤𝑤𝑖𝑖 = 𝑤𝑤(𝑟𝑟(𝑥𝑥𝑖𝑖 ,𝑿𝑿)). The SDRE is then used to estimate the process parameters from 
the 𝑚𝑚 phase-I samples instead of 𝝁𝝁� and 𝑺𝑺. Furthermore, (𝒕𝒕,𝑽𝑽) estimators are employed 
in the Mahalanobis distance to screen out the potential outliers present in the 𝑚𝑚 samples as 
in (7). 

𝐷𝐷(𝑿𝑿, 𝒕𝒕) =  𝑛𝑛 ∗ �(𝑿𝑿 − 𝒕𝒕)𝑇𝑇𝑽𝑽−1(𝑿𝑿 − 𝒕𝒕) (7) 

2.5. The Algorithm 
This section explains in detail the algorithm and performance evaluation adopted in 

this study. The major performance measure of a control chart is the run length properties: 
average run length (ARL) and the standard deviation of the run length (SDRL). Through 
the Monte-Carlo simulation approach, the run length properties of both the IC (ARL0 
and SDRL0) and OoC (ARL1 and SDRL1) of the scheme were computed. The following is 
the algorithm developed in R language to achieve this aim: 
1. Generate 106 random variables of p-variate quality characteristics, each of sample size 

𝑛𝑛 = 5 from a multivariate normal distribution to be monitored in the phase-II stage. 
2. (a) Known case: Define the mean vectors and covariance matrix, then proceed to step 3. 

(b) Unknown case: Generate some 𝑚𝑚 phase-I samples from the same distributions 
to compute the default mean vector and covariance matrix estimators (𝝁𝝁� and 𝑺𝑺), then 
proceed to step 3 (see Section 2.2). 
(c) Unknown case with outliers: Generate some 𝑚𝑚 phase-I samples from a mixed 
distribution as defined in (5), then compute the default mean vector and covariance 
matrix estimators (𝝁𝝁� and 𝑺𝑺) and then proceed to step 3 (see Section 2.3). 
(d) Unknown case with outliers screened: Generate some 𝑚𝑚 phase-I samples from 
a mixed distribution as defined in (5), compute the SDRE (𝒕𝒕,𝑽𝑽) in (6), employ the 
SDRE to screen the outliers as explained in (7), and then compute 𝝁𝝁� and 𝑺𝑺 of the 
remaining dataset after screening. Then, proceed to step 3 (see Section 2.4). 

3. Calculate the 𝑇𝑇𝑖𝑖2 statistic in (2) for the known parameter case and (3) for the un-
known cases, as the case may be. 

4. Plot the 𝑇𝑇𝑖𝑖2  statistic against the control limit, UCL, until the first 𝑖𝑖th observation 
plots beyond UCL. For known cases, 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜒𝜒𝛼𝛼,𝑝𝑝

2 , while for the unknown cases, use 
the UCL defined in (4). 

5. Record the 𝑖𝑖𝑖𝑖ℎ observation where the signal occurred as the run length. 
6. Repeat the steps from 1–5 for 105 iterations. Record the run length for each iteration. 

Then, calculate the average and standard deviation of the run length as ARL0 
and SDRL0, respectively. 
The algorithm is summarized with a flowchart presented in Figure 1 for easy readability. 
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Figure 1. The flowchart of the methodology.  

3. Results and Discussions 
This section presents and discusses the results and findings of the methodologies ex-

plained in Section 2, in three categories: (a) the effect of practitioners’ variabilities on the 
chart, (b) the effect of outliers on the chart’s performance, and (c) the improvement of the 
proposed SDRE-based multivariate chart. The performance measure of this study was the 
run-length properties. The IC ARL0 and SDRL0 were expected to be sufficiently large as 
the nominal ARL0  = 370, while the OoC ARL1 and SDRL1 were expected to be signifi-
cantly small, implying the chart’s ability to quickly detect anomalies in the process. 

3.1. Practitioners’ Variability Effect on Multivariate Shewhart Chart 
Following the algorithm in Section 2.5, Tables 1 and 2 contain the ARLs of the multi-

variate Shewhart chart for the known parameter case and the estimated parameters with 
𝑝𝑝 = 2 and 3, respectively. The parameter estimation effect on the chart’s performance is 
evident from the ARL and SDRL values. The different 𝑚𝑚 phase-I samples represent the 
variabilities in practitioners’ choice, ranging from small to medium to large. The larger 
the 𝑚𝑚 samples, the better the chart’s performance as compared to the known case. When 
𝛿𝛿 = 0, both the ARL0 and SDRL0 were expected to cluster around the nominal value 370. 
The ARL values did so, but the SDRLs of the estimated parameter scenarios did not. They 
dispersed from 370, and the disparity became even wider as the m samples got smaller. 
Another major effect was how the charts with the estimated parameters were less sensitive 
to shift as their ARL1 and SDRL1 imply. This effect also worsened as the m samples re-
duced (see Tables 1 and 2). 

3.2. Effect of Outliers on the Multivariate Shewhart Chart’s Performance 
Tables 3 and 4 depict the in-control ARL0 and SDRL0 of the multivariate Shewhart 

chart from the mixed distribution in (5), with 𝑝𝑝 = 3, some percentages of outliers 𝜃𝜃 =
[0%, 10%], and the magnitude 𝜔𝜔 = 1,2. Here, all values should be approximate to the 
nominal ARL of 370, since the environment was IC. When 𝜃𝜃 = 0%, it implies the absence 
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of outliers in the process, so the ARL values for all different 𝑚𝑚 samples clustered around 
370, while their SDRL values did not. It can be easily observed from the two tables that 
the outliers’ effect on the chart worsened as the percentage and magnitude of outliers in-
creased. Also, the effect on the ARL values was more obvious as the 𝑚𝑚 sample increased, 
and vice-versa for the SDRL values. In general, there was more than a 600% increment in 
the ARL and SDRL values when 𝜔𝜔 = 1 and a more than 3000% increment when 𝜔𝜔 = 2. 
All of these were due to less than 10% outliers in the data. 

3.3. Improvement of the Proposed SDRE-Based Multivariate Shewhart Chart 
Here, we present and discuss the results of the proposed multivariate Shewhart chart 

based on SDRE and Mahalanobis distance for detecting and screening out the multivariate 
outliers, as described in Section 2.4. Tables 5 and 6 contain the IC ARL and SDRL as a 
remedy to the results in Tables 3 and 4, respectively. These results were obtained by ap-
plying the algorithm given in Section 2.5 (with part (d) of step 2). The improvement in the 
multivariate Shewhart chart’s performance is easily noticeable. When magnitude 𝜔𝜔 = 1, 
there was a more than a 25% decrement in comparison with when the outliers were not 
screened, while a decrement of more than 70% was achieved when 𝜔𝜔 = 2 for the ARL 
values; the recoveries in the SDRL were even better. The SDRE-based multivariate 
Shewhart could not restore the chart’s performance clustering around the nominal 
ARL=370; however, the recorded improvements are remarkable. 

Table 5. ARL0  and SDRL0  values of the proposed SDRE multivariate Shewhart control chart 
(𝜔𝜔 = 1). 

𝝎𝝎 = 𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜽𝜽 ARL SDRL ARL SDRL ARL SDRL 

0.00 361.92 495.73 375.75 406.13 369.15 372.24 
0.01 449.23 701.48 457.44 506.28 458.50 464.16 
0.02 517.30 786.42 566.53 646.91 559.66 569.57 
0.03 652.16 1304.65 648.51 751.88 689.62 714.77 
0.04 769.83 1581.16 803.33 948.51 802.49 821.11 
0.05 899.75 1853.83 943.29 1110.27 950.73 991.70 
0.06 1079.96 2177.20 1126.66 1421.11 1124.37 1179.38 
0.07 1260.20 2722.94 1285.69 1573.09 1325.64 1377.60 
0.08 1375.70 2832.76 1463.11 1810.17 1532.29 1626.18 
0.09 1638.25 3739.77 1686.52 2192.34 1690.58 1752.70 
0.10 1858.54 4088.50 1856.54 2425.25 1889.24 1968.77 

 UCL = 15.16 UCL = 14.43 UCL = 14.22 
Note: 𝜔𝜔 and 𝜃𝜃 are the magnitude and percentage of outliers, respectively; 𝑚𝑚 is the phase-I sam-
ple; ARL is the average run length; and SDRL is the standard deviation run length. 

Table 6. ARL0  and SDRL0  values of the proposed SDRE multivariate Shewhart control chart 
(𝜔𝜔 = 2). 

𝝎𝝎 = 𝟐𝟐 𝒎𝒎 = 𝟐𝟐𝟐𝟐 𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏 
𝜽𝜽 ARL SDRL ARL SDRL ARL SDRL 

0.00 361.78 499.51 370.12 400.86 375.70 384.66 
0.01 549.31 1196.01 568.50 655.42 565.91 573.83 
0.02 751.84 1868.04 815.21 1003.31 840.93 887.36 
0.03 1066.50 2371.92 1147.92 1560.90 1204.67 1248.53 
0.04 1461.44 3778.42 1584.77 2122.19 1652.91 1775.20 
0.05 1933.98 4755.13 2115.68 3075.28 2239.99 2431.66 
0.06 2457.79 6024.81 2795.44 3957.07 2837.89 2999.14 
0.07 2997.34 7025.49 3539.72 5263.74 3533.50 3838.51 
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0.08 3645.17 8120.49 4207.78 6211.58 4222.54 4591.99 
0.09 4499.18 9722.21 4962.75 7126.19 4958.27 5442.69 
0.10 5206.90 10,638.48 5948.82 8550.87 5682.24 6336.62 

 UCL = 15.16 UCL = 14.43 UCL = 14.22 
Note: 𝜔𝜔 and  𝜃𝜃 are the magnitude and percentage of outliers, respectively; 𝑚𝑚 is the phase-I sam-
ple; ARL is the average run length; and SDRL is the standard deviation run length. 

Furthermore, the rate of improvements appreciated as the percentage and magnitude 
of outliers increased. Figures 2–5 depict the results in Tables 3 and 4 (outliers without 
screening) side-by-side with Tables 5 and 6 (SDRE outliers screening) to closely observe the 
improvements. Tables 3 and 4 depict the IC ARL0 and SDRL0 of the multivariate Shewhart 
chart from the mixed distribution in (5), with some percentages of outliers, 𝜃𝜃 = [0%, 10%] 
and the magnitude 𝜔𝜔 = 1, 2. Here, all values should approximate to the nominal ARL of 
370, since the environment was IC. When 𝜃𝜃 = 0%, it implies the absence of outliers in the 
process, so the ARL values for all the different m samples clustered around 370, although 
their SDRL values did not. It can be easily observed from the two tables that the outliers’ 
effect on the chart worsened as the percentage and magnitude of the outliers increased. Also, 
the effect on the ARL values was more obvious as the 𝑚𝑚 sample increased, and vice-versa 
for the SDRL values. In general, there was more than a 600% increment in the ARL and 
SDRL values when 𝜔𝜔 = 1 and a more than 3000% increment when 𝜔𝜔 = 2. All of these were 
due to less than 10% outliers in the data. 

The standard errors of the run length properties results reported in Tables 1–6 were 
between 0.066% and 0.506%. These values validate the precision of the ARL and SDRL 
values. In addition, in Tables 1 and 2, the results of the known cases are the best and the 
ideal results. However, the unknown case results improved and converged to those of the 
known cases as the 𝑚𝑚 phase-I sample increased. For the results of the outlier cases in 
Tables 3–6, the outliers’ effect was more pronounced as the percentage, 𝜃𝜃, and magnitude, 
𝜔𝜔, of outliers increased. These points further justify and validate the precision and con-
sistency reported results. 

 
Figure 2. In-control ARL values of the multivariate Shewhart chart from mixed distribution with 
and without SDRE multivariate outliers screening (𝜔𝜔 = 1). 
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Figure 3. In-control SDRL values of the multivariate Shewhart chart from a mixed distribution with 
and without SDRE multivariate outliers screening (𝜔𝜔 = 1). 

 
Figure 4. In-control ARL values of the multivariate Shewhart chart from a mixed distribution with 
and without SDRE multivariate outliers screening (𝜔𝜔 = 2). 
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Figure 5. In-control SDRL values of the multivariate Shewhart chart from a mixed distribution with 
and without SDRE multivariate outliers screening (𝜔𝜔 = 2). 

4. Illustrative Example with Real-Life Dataset 
In the manufacturing industry, carbon fiber tubes are a crucial and widely used ma-

terial in numerous applications. They are preferred over many traditional materials such 
as aluminum, titanium, and steel, because of their unique features: resistance to fatigue, 
high strength and fitness to weight, resistance to corrosion, dimensional stability, and 
many more. This has resulted in carbon fiber gaining vast application in the manufactur-
ing industry. The manufacturing process of carbon fibers is partly chemical and mechan-
ical. They are mostly made of carbon atoms which bound together in microscopic crystals. 
The manufacturing process goes through spinning, stabilizing, carbonizing, surface treat-
ing, and sizing. The tubes are thin strands of material which are long in diameter. The 
minute size of carbon fibers requires close monitoring of the manufacturing process. In 
this study, we monitored three quality characteristics in the manufacturing process of a 
specific carbon fiber tubing. The characteristics are the inner diameter, thickness, and 
length of the tubes in inches. 

The data were of two stages: in phase-I, each quality characteristic consisted of 𝑚𝑚 = 25 
sample points each with a size of 𝑛𝑛 = 5. Phase-II consisted of 20 observations each of size 
𝑛𝑛 = 5 for every quality characteristic. Without any loss of generality, and for conformity 
with the aim of the study, the illustrative example was categorized into three cases: 
• Case 1-Parameter estimation: Here, we employed the phase-I data to compute the 

default mean vector and covariance matrix (𝝁𝝁� and 𝑺𝑺), assuming the process param-
eters were unknown, and then used the estimates to compute the plotting statistics 
𝑇𝑇𝑖𝑖2 for monitoring the phase-II data as explained in (3) and plotted it against the UCL. 

• Case 2-Parameter estimation with outliers: We infused 𝜃𝜃 = 7% of outliers with a mag-
nitude 𝜔𝜔 = 3 and degrees of freedom 𝑣𝑣 = 5 in the phase-I data, to simulate the mixed 
distribution described in (5), obtained the default parameter estimates (𝝁𝝁� and 𝑺𝑺), and 
then used the estimates to compute the plotting statistics 𝑇𝑇𝑖𝑖2 for monitoring the phase-
II dataset and plotted it against the UCL 

• Case 3-Parameter estimation with outliers and screening: The third case was similar to 
the second case, but we used the SDRE (𝒕𝒕,𝑽𝑽) as in (6) to estimate the process parameters 
from 25 phase-I samples, and to employ the SDRE in the Mahalanobis distance to detect 
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and screen out the outliers. Then, we computed the default parameter estimates (𝝁𝝁� 
and 𝑺𝑺) from the remaining screened data, and then computed the plotting 𝑇𝑇𝑖𝑖2for mon-
itoring the phase-II dataset and plotted it against the same UCL. 
The summaries of the estimations of the parameters for these three cases are given in 

Table 7, while their plotting statistics 𝑇𝑇𝑖𝑖2 and corresponding decisions are given in Table 
8. In case 1, all observations are IC as they are all below the UCL = 15.16, except the fourth 
observation 19.4183, which plots beyond the UCL. This case represents when the process 
parameters are estimated from some preliminary samples without outliers. For case 2, all 
the plotting 𝑇𝑇𝑖𝑖2s were below the control limit despite the presence of outliers. The fourth 
observation that was plotted beyond the UCL in case 1 was masked due to the outliers’ 
effect. Case 2 reveals the effect of outliers in the preliminary samples. It also shows the 
inferiority of using the default mean vector and covariance matrix for estimating param-
eters, especially when the samples are prone to outliers. In case 3, the OoC fourth obser-
vation in case 1 is was detected OoC in this case. With the same magnitude and percentage 
of outliers as in case 2, case 3 was as efficient as case 1 when there were no outliers. This 
substantiates the improvement of the proposed SDRE and Mahalanobis distance’s proce-
dures of estimating parameters and detecting outliers as claimed by the simulation results. 
Figure 6 depicts a visual representation of Table 8. 

Table 7. 𝝁𝝁� and 𝑺𝑺 estimates from the phase-I sample for the three cases under study. 

 Case 1 Case 2 Case 3 
𝝁𝝁� 0.9927 1.0357 50.0120 1.0000 1.0412 50.0844 0.9946 1.0406 50.0172 

 0.0022 0.0026 0.0040 0.0034 0.0029 0.0045 0.0027 0.0040 0.0053 
𝑺𝑺 0.0026 0.0128 0.0038 0.0029 0.0140 0.0023 0.0040 0.0165 0.0079 

 0.0040 0.0038 0.0495 0.0045 0.0023 0.2391 0.0053 0.0079 0.0507 

Table 8. 𝑇𝑇𝑖𝑖2values and decisions of the three cases with 𝜃𝜃 = 0.07, 𝜔𝜔 = 3, and 𝑣𝑣 = 5. 

𝒊𝒊 
Case 1 Case 2 Case 3 

𝑻𝑻𝒊𝒊𝟐𝟐 Decision 𝑻𝑻𝒊𝒊𝟐𝟐 Decision 𝑻𝑻𝒊𝒊𝟐𝟐 Decision 
1 4.6350 IC 3.1616 IC 4.4034 IC 
2 2.7626 IC 2.8659 IC 2.6736 OoC 
3 6.5246 IC 3.2198 IC 6.0763 IC 
4 19.4183 OoC 12.2758 IC 15.9676 OoC 
5 2.8439 IC 0.8071 IC 2.6362 IC 
6 2.7068 IC 0.6549 IC 2.4079 IC 
7 4.8002 IC 0.9782 IC 4.1318 IC 
8 0.8486 IC 0.5265 IC 0.8318 IC 
9 1.0873 IC 1.1708 IC 1.1421 IC 

10 1.1025 IC 1.5938 IC 1.0298 IC 
11 0.3968 IC 0.2688 IC 0.2967 IC 
12 1.9768 IC 0.9525 IC 1.9403 IC 
13 7.4164 IC 2.8188 IC 6.8404 IC 
14 12.0136 IC 5.5007 IC 9.4973 IC 
15 3.7087 IC 1.9715 IC 2.8400 IC 
16 2.7188 IC 1.3448 IC 2.2457 IC 
17 5.7081 IC 1.4230 IC 4.6036 IC 
18 3.4934 IC 3.5898 IC 3.6257 IC 
19 10.6969 IC 10.1956 IC 10.5667 OoC 
20 8.1595 IC 2.7431 IC 7.4650 IC 
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Figure 6. The multivariate Shewhart charts from real life data extracted from carbon fiber tubes. 

5. Conclusions 
This research paper evaluated the in-control performance of the multivariate 

Shewhart control chart when the parameters were estimated from phase-I samples that 
were prone to outliers. The study observed the negative effect of estimation and outliers 
on the chart’s performance. Hence, we proposed a more efficient and robust multivariate 
Shewhart chart based on the Stahel-Donoho robust estimators and Mahalanobis distance 
to detect and screen outliers from the phase-I samples. Through the Monte-Carlo simula-
tion approach, the ARL and SDRL for a different number of phase-I samples from small 
to medium to large were computed. The findings show that with the presence of outliers, 
even with large phase-I samples, the effect on the chart’s performance was severe. The re-
sults further show that the proposed chart based on SDRE and Mahalanobis distance re-
stored the efficiency of the multivariate Shewhart chart with smaller phase-I samples. There-
fore, it is rational to incorporate the SDRE and Mahalanobis distance in default multivariate 
Shewhart structures, especially when the process parameters are estimated from phase-I 
samples prone to outliers. The findings of this study were substantiated with real-life appli-
cation in the manufacturing industry, where three qualities of carbon fiber tubes were mon-
itored. The scope of this study was limited to monitoring the location parameter in a multi-
variate Shewhart chart. However, the study can be extended to monitoring dispersion pa-
rameters in multivariate Shewhart charts and other charting schemes, such as multivariate 
cumulative sum (MCUSM) and exponentially weighted moving average (MEWMA). 
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