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Abstract: While researchers and practitioners may seamlessly develop methods of detecting outliers
in control charts under a univariate setup, detecting and screening outliers in multivariate control
charts pose serious challenges. In this study, we propose a robust multivariate control chart based on
the Stahel-Donoho robust estimator (SDRE), whilst the process parameters are estimated from phase-I.
Through intensive Monte-Carlo simulation, the study presents how the estimation of parameters
and presence of outliers affect the efficacy of the Hotelling T2 chart, and then how the proposed
outlier detector brings the chart back to normalcy by restoring its efficacy and sensitivity. Run-
length properties are used as the performance measures. The run length properties establish the
superiority of the proposed scheme over the default multivariate Shewhart control charting scheme.
The applicability of the study includes but is not limited to manufacturing and health industries. The
study concludes with a real-life application of the proposed chart on a dataset extracted from the
manufacturing process of carbon fiber tubes.

Keywords: multivariate control charts; Mahalanobis distance; control chart; Hotelling T2; Stahel-
Donoho robust estimators; outlier detection

1. Introduction

Outliers are those observations at both extremes, which do not follow the majority
of observations pattern in a dataset. Outlier detection is of concern in data analysis and
scientific areas, of which statistical process control (SPC) is not an exemption [1]. This is
because outliers have a major influence on any statistical analysis as they increase the error
variance, reduce the power of statistical tests, and cause bias in estimation, hence leading
to incorrect inferences and conclusions, and sometimes, ending with deadly decisions, take
the health sector as an example. With little percentage and magnitude present in data (big
or small), outliers will grossly distort the performance and analysis of the data. Therefore,
the art of outlier detection is a prominent and important aspect of data analysis, even
more so now that more and more data are being analyzed simultaneously, such as with
multivariate control charting.

Control charts are the most widely used tool amongst the seven tools of SPC [2]. Their
vast applicability in different fields and sectors give them an edge over other tools of SPC
for process monitoring. Control charts, however, can have a univariate or multivariate
setup, a memory or memory-less type, and/or monitoring location or dispersion in an
ongoing process. Readers are referred to [2] for more information about control charts
and their types. Furthermore, control charts are of two stages: phase-I (the prospective
stage) and phase-II (the retrospective stage). The process parameters are used to set the
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chart’s control limits in phase-I. Moreover, if the process parameters are unknown, they
are estimated with some preliminary samples, whereas the monitoring and correction of
unnatural causes of variation occur in the retrospective stage. The choice and amount
of preliminary sample employed in estimating the unknown parameters in phase-I vary
among practitioners and as result affect the performance of the chart in the monitoring
stage. These samples often contain some unusual observations and outliers, which exert
a disproportionate pull on the parameter estimated, making the chart less efficient in
detecting anomalies. The multivariate Shewhart chart that has been studied in this paper
is a memory-less type for monitoring location parameters, while the process parameters
are known and estimated from phase-I samples. Over the years, SPC researchers have
investigated the effect of parameter estimation on control charts in both univariate and
multivariate setups. To mention a few, reference [3] gave an up-to-date review on parameter
estimation effects on control charts. Saleh et al. [4] evaluated the parameter estimation’s
effect on an exponentially weighted moving average (EWMA) control chart with its run
length properties. A similar study was conducted by Jones [5].

Many research works in the literature have studied outlier detection in the univariate
setup, some of which are applied to control charts in the univariate setup. References [6–8]
have independently proposed outlier detection models in the univariate setup of control
charts either for location or dispersion monitoring. They found that the control charts based
on detection models require fewer phase-I samples to detect anomalies, as these charts
are quicker and more sensitive to contamination. Guarnieri et al. [9] developed control
charts for individual observation and exponentially weighted moving averages based on
residues to detect outliers in autoregressive models. Bakar et al. [10] also conducted a
comparative study for outlier detection techniques in control charts with application in
data mining. As Vidmar and Blagus [11] applied different outlier detection approaches to
healthcare quality monitoring. Zhang and Albin [12] employed a chi-square chart method
for detecting outliers in complex profiles. Other research in this direction include, among
others, [13,14]. While there are models for detecting multivariate outliers, few of them have
been applied to SPC. Examples include the robust multivariate control chart for outlier
detection by Fan et al. [15] and robust estimates, residuals, and outlier detection with
multi-response data by Gnanadesikan and Kettenring [16]. The authors of [17] considered
minimum volume ellipsoid (MVE) and/or weighted mean vector and mean square suc-
cessive differences (WD) to decrease the impact of outliers on multivariate control charts.
Hubert et al. [18] reviewed the minimum covariance determinant (MCD) methods and
their extension as competent tools for outlier detection. Other researchers have approached
the outlier detection problem with robust multivariate estimators. The pioneer of this idea
was Stahel [19] where he studied the breakdown of covariance estimators; Maronna and
Yohai [20] further extended the research of Stahel. Rousseeuw and Hubert [21] also studied
the robust multivariate location and scatter estimators. Similar studies include but are not
limited to [22–24].

In the aforementioned references, none of the studies that applied multivariate robust
estimators to control charts have focused on detecting and screening outliers of the phase-I
samples. Therefore, this paper focuses on detecting multivariate outliers in the multivariate
Shewhart control chart. It employs a Stahel-Donoho robust estimator incorporated with
the Mahalanobis distance for detecting and screening out the outlying observations in
the preliminary samples, from which the process parameters are estimated. This paper
reports the effect of parameter estimations on a multivariate Shewhart chart’s control limits
and performance. Reporting parameter estimations’ effect is not the main goal of this
study; however, it helps readers to better understand the positive impact of the outlier
detection process.

The remainder of this article is organized as follows. Section 2 entails the methodology
with an insight to the multivariate Shewhart control chart when the process parameters
are known and estimated, the presence of outliers in the preliminary samples, and the
proposed multivariate outlier detection process. Results and discussion appear in Section 3,
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while Section 4 gives an illustrative example with a real-life dataset extracted from the
manufacturing process of carbon fiber tubes. Section 5 concludes the study with a summary
of the findings and future recommendations.

2. Methodology

The aim of this study is to detect and screen outliers of the m preliminary samples
employed for parameter estimation, especially when the samples are outlier prone. This
section explains in detail the multivariate Shewhart control chart for location monitoring,
both when the parameters are known and estimated from phase-I preliminary samples.
Then it demonstrates the effect of practitioners’ variability in the samples employed for
estimation, and its effect on the chart’s performance. In addition, this section presents
how outliers in those samples distort the chart’s efficacy and become less sensitive, then
concludes the section with the proposed outlier detection-based multivariate Shewhart
chart, and its application on a real-life data set extracted from the carbon fiber tubes
manufacturing industry.

2.1. Multivariate Shewhart Control Chart

Let X = (X1, X2, X3 . . . , Xp), a vector of p-correlated quality characteristics, each
of size n subgroups, drawn from a p-variate normal distribution be the characteristic of
interest for monitoring in a multivariate process. The probability distribution function of X
is given as follows:

f (X) =
1

(2π)p/2 |Σ|1/2 e(−
1
2 (X−µ)TΣ−1(X−µ));−∞ < Xi < ∞, i = 1, 2, . . . , p. (1)

The resulting multivariate Shewhart chart statistic termed Hotelling T2, for monitoring
the location parameter of the random process X ∼ Np(µ, Σ) X, is given as follows:

T2
i = n

(
Xi − µ

)′
Σ−1(Xi − µ

)
. (2)

where Xi is the mean vector of the ith observation, n is the sample size, µ′ =
(
µ1, µ2, . . . , µp

)
and

Σ =


σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

...
...

σp1 σp2 · · · σpp


is the mean vector and variance-covariance matrix of the process. The chart signals
an alarm when the T2

i statistic is plotted beyond the upper control limit (UCL) of the
chart, i.e., (T2

i > UCL = χ2
α,p). This is the case when the process parameters (µ, Σ) are

known. However, when the parameters are unknown, they are estimated from m phase-I
preliminary samples. The Hotelling T2 statistics then become

T2
i = n

(
Xi − µ̂

)′S−1(Xi − µ̂
)
, (3)

where µ̂ = ∑m
i=1 ∑n

j=1 Xi,j/mn and S = ∑m
i=1 ∑n

j=1
(
Xi,j −Xi

)(
Xi,j −Xi

)T/m(n− 1) are the
estimates of the in-control mean vector and variance-covariance matrix emerging from
the phase-I samples. It is important to note that the amount of m phase-I sample and the
choice of estimators employed for estimating the parameters vary amongst practitioners,
hence the variability in the efficacy and performance of their charts. Subsequently, the
corresponding UCL of the T2

i statistic in (3), for the monitoring stage, phase-II, is given
as follows:

UCL =
p(m + 1)(n− 1)
mn−m− p + 1

Fα,p,mn−m−p+1 (4)
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Again, if T2 > UCL, the chart sends a signal, so the practitioner tends to the unnatural
cause of variation. The ith observation on which a signal was sent is the run length. The
run length is simply the number of observations plotted within the limit before recording
the first out-of-control (OoC). With many iterations, run length becomes a variable whose
properties will be used for evaluating the chart.

All this explains the traditional method for constructing the multivariate Shewhart
chart for location monitoring. The next section establishes parameter estimation effects
on the multivariate Shewhart chart. Section 2.3, on the other hand, reveals how the
outliers emanating from the phase-I sample negatively affect the chart’s performance,
while Section 2.4 highlights the need for incorporating multivariate robust estimators for
outlier detection.

2.2. Effect of Practitioners’ Variabilities on the Multivariate Shewhart Chart

In this section, the study reveals how the practitioners’ variability in the choice of m
samples affects the multivariate Shewhart chart’s performance. Through intensive Monte-
Carlo simulation, we demonstrate how different m phase-I samples for estimating the
unknown parameters play a vital role in the performance of the multivariate Shewhart
chart as compared to the known parameter case. This study considers m of 25, 100, and 500
to represent small, medium, and large samples, respectively. An algorithm was developed
in R language to simulate the multivariate Shewhart chart defined in (2) for the known
parameter case and in (3) for the unknown case. For the known case, it was assumed that
the mean vector was zero, variances were unity, and the covariance was 50% (i.e., σii = 1
and σij = 0.5). With p = 2, 3, α = 0.0027, the in-control (IC) average run length (ARL0)
corresponded to 370. While for the unknown cases, the process parameters were estimated
from m = 25, 100, 500 samples with sample mean vector µ̂ and covariance matrix S. The
algorithm also considered the OoC situations, when the mean vector increased over a
range of shift δ ∈ [0, 5]. The first effect of estimation began with the UCL; the UCL varied
as the m sample varied, to yield the nominal ARL0 of 370 as in the known case. The
simulation results are presented in Tables 1 and 2. The detailed discussion of these results
is in Section 3.

Table 1. ARL and SDRL values of the multivariate Shewhart control chart with p = 2.

Unknown Case: Parameters Estimated
Known Case

m = 25 m = 100 m = 500

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 369.38 529.24 369.101 392.986 370.2419 392.7475 370.50 370.19
0.50 230.28 338.60 207.208 228.794 207.52 210.96 201.90 202.24
1.00 85.73 128.35 72.408 79.334 68.79 69.71 67.28 66.57
1.50 29.91 42.31 25.617 27.083 23.58 23.57 23.28 22.94
2.00 11.82 15.50 9.918 10.088 9.63 9.37 9.45 8.92
2.50 5.20 5.84 4.733 4.482 4.66 4.12 4.59 4.12
3.00 2.87 2.72 2.653 2.124 2.57 2.01 2.57 1.97
3.50 1.86 1.42 1.756 1.173 1.71 1.13 1.70 1.09
4.00 1.39 0.80 1.351 0.693 1.33 0.66 1.32 0.65
4.50 1.16 0.45 1.143 0.412 1.14 0.40 1.13 0.38
5.00 1.06 0.27 1.053 0.239 1.05 0.23 1.05 0.22

UCL = 12.27 UCL = 11.96 UCL = 11.87 UCL = 11.83

Note: p is the number of charactrsitics, δ is the shift, m is the phase-I sample, UCL is the upper control limit, ARL is the average run length,
and SDRL is the standard deviation run length.
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Table 2. ARL and SDRL values of the multivariate Shewhart control chart with p = 3.

Unknown Case: Parameters Estimated
Known Case

m = 25 m = 100 m = 500

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 369.71 511.73 370.28 404.67 370.85 375.25 370.35 368.60
0.50 252.41 354.01 237.52 264.45 233.12 236.52 229.50 229.21
1.00 108.87 158.98 89.98 96.39 87.09 89.19 86.11 85.38
1.50 40.93 57.93 33.15 36.22 31.57 32.24 30.98 30.38
2.00 16.28 21.76 13.38 13.94 12.52 12.29 12.37 11.90
2.50 7.20 8.63 6.12 5.94 5.80 5.29 5.71 5.21
3.00 3.71 3.81 3.23 2.76 3.10 2.58 3.10 2.55
3.50 2.25 1.94 2.06 1.53 2.02 1.42 1.98 1.39
4.00 1.57 1.05 1.49 0.86 1.46 0.83 1.45 0.81
4.50 1.26 0.60 1.21 0.50 1.21 0.49 1.19 0.48
5.00 1.11 0.36 1.08 0.30 1.08 0.29 1.08 0.29

UCL = 15.16 UCL = 14.43 UCL = 14.22 UCL = 14.16

Note: p is the number of charactrsitics, δ is the shift, m is the phase-I sample, UCL is the upper control limit, ARL is the average run length,
and SDRL is the standard deviation run length.

2.3. Effect of Outliers on the Multivariate Shewhart Control Chart with Estimated Parameters

Having noticed the estimation effect on the multivariate Shewhart chart’s performance
in the previous section, we demonstrate how outliers in the m phase-I samples worsen the
chart’s performance in the monitoring stage. To achieve this aim, we generated m phase-I
samples from a mixed distribution, a(1 − θ)100% from the normal distribution and the
remaining θ100% from a chi-square distribution with v degrees of freedom as follows:

X ∼ (1− θ)Np(µ, Σ) + θ
[

Np(µ, Σ) + ωχ2
(v)

]
(5)

where θ > 0 represents the percentage of outliers present in the data, ω ≥ 1 is the magnitude
of the outliers, and χ2

(v) represents the outlier added to the normal distribution. The study

estimated the parameters µ̂ and S from the m sample, and then computed the Hotelling T2

statistic as in (3). The same algorithm, process parameters, and control limits employed in
Section 2.2 were used to compute the IC run length properties alone to observe the outliers’
effect. The results are presented in Tables 3 and 4 for magnitudes ω = 1,2, respectively.
With just 10% of outliers (θ = 0.10), the ARL0 increased by more than 600% of its expected
value when ω = 1 and close to 3000% when ω = 2.

Table 3. ALR0 and SDRL0 values of the multivariate Shewhart control chart with outliers (ω = 1).

ω = 1 m = 25 m = 100 m = 500

θ ARL SDRL ARL SDRL ARL SDRL

0.00 370.22 506.49 369.05 406.10 370.39 376.06
0.01 479.59 824.67 486.10 549.93 494.51 503.12
0.02 630.37 1301.69 648.14 775.72 653.54 677.66
0.03 780.66 1614.26 816.27 1045.23 832.28 866.55
0.04 959.31 2445.42 1041.62 1316.05 1041.87 1111.20
0.05 1167.80 2772.21 1267.57 1754.63 1312.05 1400.20
0.06 1492.42 3676.36 1526.53 1987.07 1591.60 1692.19
0.07 1844.59 5011.12 1778.28 2371.01 1841.32 1978.55
0.08 2053.30 4823.31 2098.60 2889.33 2169.25 2256.39
0.09 2349.65 5314.44 2523.52 3514.10 2476.13 2649.50
0.10 2766.19 6210.28 2736.63 3800.61 2749.25 2914.35

UCL = 15.16 UCL = 14.43 UCL = 14.22

Note: ω and θ are the magnitude and percentage of outliers, respectively; m is the phase-I sample; ARL is the average run length; and
SDRL is the standard deviation run length.
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Table 4. ALR0 and SDRL0 values of the multivariate Shewhart control chart with outliers (ω = 2).

ω = 2 m = 25 m = 100 m = 500

θ ARL SDRL ARL SDRL ARL SDRL

0.00 373.15 528.37 370.30 407.83 376.98 382.58
0.01 810.48 1994.63 945.97 1420.80 1084.37 1246.99
0.02 1600.06 4562.27 2142.58 4030.07 2449.51 2999.48
0.03 2772.41 7427.22 4021.04 7220.47 4876.12 6078.31
0.04 3957.63 9442.19 6533.33 10,703.47 7752.17 9110.05
0.05 5523.83 11,857.39 9510.68 14,211.41 11,506.65 13,324.94
0.06 6896.48 13,435.25 11,889.15 16,306.08 15,134.80 16,454.69
0.07 8376.87 15,180.61 14,364.71 18,529.89 18,707.26 19,675.92
0.08 9705.77 16,708.27 16,011.60 19,649.58 21,367.60 21,353.52
0.09 10,826.71 18,000.62 17,978.87 21,409.00 23,325.17 22,914.61
0.10 11,452.42 18,314.76 19,179.15 22,606.24 25,097.16 24,509.93

UCL = 15.16 UCL = 14.43 UCL = 14.22

Note: ω and θ are the magnitude and percentage of outliers, respectively; m is the phase-I sample; ARL is the average run length; and
SDRL is the standard deviation run length.

The findings from the results in this section and the previous section suggest the
following options:

• The m phase-I sample should be sufficiently increased until results similar to those of
the known case are achieved.

• The process should prevent the occurrence of unnatural variations and outliers with
smaller m phase-I samples

These options are practically impossible in real life scenarios, because increasing
samples is typically uneconomical. More so, a process cannot be freed from variations with
a natural or assignable cause. Hence, there is the need to incorporate robust multivariate
estimators for better estimation and screening of the outliers.

2.4. Proposed Multivariate Shewhart Chart Based on Stahel-Donoho Robust Estimators (SDRE)

From the results in Tables 3 and 4, it is apparent that increasing the m samples cannot
suppress the negative impact of the outliers on the chart. Hence, there is a need to employ
robust location and dispersion estimators as substitutes to the default µ̂ and S that are not
sensitive to outliers. Therefore, this study proposes a multivariate Shewhart chart based on
the Stahel-Donoho robust estimator. Like any robust estimator, the SDRE estimators were
able to retain their efficiency in the presence of outliers. This feature makes them able to
detect the presence of outliers no matter how small or large the m samples are. Readers are
referred to [25–27] for more information about the merits of robust estimators.

Stahel [19] and Donoho [22] were the first to develop a robust equivariant estimator
of multivariate location and dispersion with a considerable high breakdown point of any
p-variate multivariate data. However, it became well known with the analysis of Maronna
and Yohai [20]. Maronna and Yohai [20] assumed X = {x1, x2, . . . , xn} to be a set of n data
points in <p, and defined the “outlyingness” r for any y ∈ <p as r(y, X) = sup

a
r1(y, a, X),

where r1(y, a, X) = |a′y− µ(a′X)|/σ(a′X) and µ() and σ() are the robust univariate loca-
tion and dispersion statistics. The Stahel-Donoho robust estimators (SDRE), denoted as
(t,V), are defined as weighted mean and weighted covariance matrix, each with weights
of the form w(r), where wi is the weight function of each observation and inverse propor-
tional to the “outlyingness” of the observation, r, obtained by considering all univariate
projections of the data. Mathematically, SDRE is written as follows:
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t(X) =
∑n

i=1 wiXi

∑n
i=1 wi

and V(X) =
∑n

i=1 wi(Xi − t)(Xi − t)T

∑n
i=1 wi

(6)

where wi = w(r(xi, X)). The SDRE is then used to estimate the process parameters from
the m phase-I samples instead of µ̂ and S. Furthermore, (t,V) estimators are employed in
the Mahalanobis distance to screen out the potential outliers present in the m samples as
in (7).

D(X, t) = n ∗
√
(X− t)TV−1(X− t) (7)

2.5. The Algorithm

This section explains in detail the algorithm and performance evaluation adopted in
this study. The major performance measure of a control chart is the run length properties:
average run length (ARL) and the standard deviation of the run length (SDRL). Through
the Monte-Carlo simulation approach, the run length properties of both the IC (ARL0 and
SDRL0) and OoC (ARL1 and SDRL1) of the scheme were computed. The following is the
algorithm developed in R language to achieve this aim:

1. Generate 106 random variables of p-variate quality characteristics, each of sample size
n = 5 from a multivariate normal distribution to be monitored in the phase-II stage.

2. (a) Known case: Define the mean vectors and covariance matrix, then proceed to step 3.
(b) Unknown case: Generate some m phase-I samples from the same distributions to
compute the default mean vector and covariance matrix estimators (µ̂ and S), then
proceed to step 3 (see Section 2.2).
(c) Unknown case with outliers: Generate some m phase-I samples from a mixed
distribution as defined in (5), then compute the default mean vector and covariance
matrix estimators (µ̂ and S) and then proceed to step 3 (see Section 2.3).
(d) Unknown case with outliers screened: Generate some m phase-I samples from a
mixed distribution as defined in (5), compute the SDRE (t,V) in (6), employ the SDRE
to screen the outliers as explained in (7), and then compute µ̂ and S of the remaining
dataset after screening. Then, proceed to step 3 (see Section 2.4).

3. Calculate the T2
i statistic in (2) for the known parameter case and (3) for the unknown

cases, as the case may be.
4. Plot the T2

i statistic against the control limit, UCL, until the first ith observation plots
beyond UCL. For known cases, UCL = χ2

a,p, while for the unknown cases, use the UCL
defined in (4).

5. Record the ith observation where the signal occurred as the run length.
6. Repeat the steps from 1–5 for 105 iterations. Record the run length for each iteration.

Then, calculate the average and standard deviation of the run length as ARL0 and
SDRL0, respectively. The algorithm is summarized with a flowchart presented in
Figure 1 for easy readability.
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3. Results and Discussions

This section presents and discusses the results and findings of the methodologies
explained in Section 2, in three categories: (a) the effect of practitioners’ variabilities on the
chart, (b) the effect of outliers on the chart’s performance, and (c) the improvement of the
proposed SDRE-based multivariate chart. The performance measure of this study was the
run-length properties. The IC ARL0 and SDRL0 were expected to be sufficiently large as
the nominal ARL0 = 370, while the OoC ARL1 and SDRL1 were expected to be significantly
small, implying the chart’s ability to quickly detect anomalies in the process.

3.1. Practitioners’ Variability Effect on Multivariate Shewhart Chart

Following the algorithm in Section 2.5, Tables 1 and 2 contain the ARLs of the multi-
variate Shewhart chart for the known parameter case and the estimated parameters with
p = 2 and 3, respectively. The parameter estimation effect on the chart’s performance is
evident from the ARL and SDRL values. The different m phase-I samples represent the
variabilities in practitioners’ choice, ranging from small to medium to large. The larger the
m samples, the better the chart’s performance as compared to the known case. When δ = 0,
both the ARL0 and SDRL0 were expected to cluster around the nominal value 370. The ARL
values did so, but the SDRLs of the estimated parameter scenarios did not. They dispersed
from 370, and the disparity became even wider as the m samples got smaller. Another
major effect was how the charts with the estimated parameters were less sensitive to shift
as their ARL1 and SDRL1 imply. This effect also worsened as the m samples reduced
(see Tables 1 and 2).

3.2. Effect of Outliers on the Multivariate Shewhart Chart’s Performance

Tables 3 and 4 depict the in-control ARL0 and SDRL0 of the multivariate Shewhart
chart from the mixed distribution in (5), with p = 3, some percentages of outliers
θ = [0%, 10%], and the magnitude ω = 1, 2. Here, all values should be approximate
to the nominal ARL of 370, since the environment was IC. When θ = 0%, it implies the
absence of outliers in the process, so the ARL values for all different m samples clustered
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around 370, while their SDRL values did not. It can be easily observed from the two tables
that the outliers’ effect on the chart worsened as the percentage and magnitude of outliers
increased. Also, the effect on the ARL values was more obvious as the m sample increased,
and vice-versa for the SDRL values. In general, there was more than a 600% increment in
the ARL and SDRL values when ω = 1 and a more than 3000% increment when ω = 2. All
of these were due to less than 10% outliers in the data.

3.3. Improvement of the Proposed SDRE-Based Multivariate Shewhart Chart

Here, we present and discuss the results of the proposed multivariate Shewhart chart
based on SDRE and Mahalanobis distance for detecting and screening out the multivariate
outliers, as described in Section 2.4. Tables 5 and 6 contain the IC ARL and SDRL as
a remedy to the results in Tables 3 and 4, respectively. These results were obtained by
applying the algorithm given in Section 2.5 (with part (d) of step 2). The improvement
in the multivariate Shewhart chart’s performance is easily noticeable. When magnitude
ω = 1, there was a more than a 25% decrement in comparison with when the outliers were
not screened, while a decrement of more than 70% was achieved when ω = 2 for the ARL
values; the recoveries in the SDRL were even better. The SDRE-based multivariate She-
whart could not restore the chart’s performance clustering around the nominal ARL = 370;
however, the recorded improvements are remarkable.

Table 5. ARL0 and SDRL0 values of the proposed SDRE multivariate Shewhart control chart (ω = 1).

ω = 1 m = 25 m = 100 m = 500

θ ARL SDRL ARL SDRL ARL SDRL

0.00 361.92 495.73 375.75 406.13 369.15 372.24
0.01 449.23 701.48 457.44 506.28 458.50 464.16
0.02 517.30 786.42 566.53 646.91 559.66 569.57
0.03 652.16 1304.65 648.51 751.88 689.62 714.77
0.04 769.83 1581.16 803.33 948.51 802.49 821.11
0.05 899.75 1853.83 943.29 1110.27 950.73 991.70
0.06 1079.96 2177.20 1126.66 1421.11 1124.37 1179.38
0.07 1260.20 2722.94 1285.69 1573.09 1325.64 1377.60
0.08 1375.70 2832.76 1463.11 1810.17 1532.29 1626.18
0.09 1638.25 3739.77 1686.52 2192.34 1690.58 1752.70
0.10 1858.54 4088.50 1856.54 2425.25 1889.24 1968.77

UCL = 15.16 UCL = 14.43 UCL = 14.22
Note: ω and θ are the magnitude and percentage of outliers, respectively; m is the phase-I sample; ARL is the
average run length; and SDRL is the standard deviation run length.

Table 6. ARL0 and SDRL0 values of the proposed SDRE multivariate Shewhart control chart (ω = 2).

ω = 2 m = 25 m = 100 m = 500

θ ARL SDRL ARL SDRL ARL SDRL

0.00 361.78 499.51 370.12 400.86 375.70 384.66
0.01 549.31 1196.01 568.50 655.42 565.91 573.83
0.02 751.84 1868.04 815.21 1003.31 840.93 887.36
0.03 1066.50 2371.92 1147.92 1560.90 1204.67 1248.53
0.04 1461.44 3778.42 1584.77 2122.19 1652.91 1775.20
0.05 1933.98 4755.13 2115.68 3075.28 2239.99 2431.66
0.06 2457.79 6024.81 2795.44 3957.07 2837.89 2999.14
0.07 2997.34 7025.49 3539.72 5263.74 3533.50 3838.51
0.08 3645.17 8120.49 4207.78 6211.58 4222.54 4591.99
0.09 4499.18 9722.21 4962.75 7126.19 4958.27 5442.69
0.10 5206.90 10,638.48 5948.82 8550.87 5682.24 6336.62

UCL = 15.16 UCL = 14.43 UCL = 14.22
Note: ω and θ are the magnitude and percentage of outliers, respectively; m is the phase-I sample; ARL is the
average run length; and SDRL is the standard deviation run length.
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Furthermore, the rate of improvements appreciated as the percentage and magnitude
of outliers increased. Figures 2–5 depict the results in Tables 3 and 4 (outliers without
screening) side-by-side with Tables 5 and 6 (SDRE outliers screening) to closely observe the
improvements. Tables 3 and 4 depict the IC ARL0 and SDRL0 of the multivariate Shewhart
chart from the mixed distribution in (5), with some percentages of outliers, θ = [0%, 10%]
and the magnitude ω = 1, 2. Here, all values should approximate to the nominal ARL
of 370, since the environment was IC. When θ = 0%, it implies the absence of outliers
in the process, so the ARL values for all the different m samples clustered around 370,
although their SDRL values did not. It can be easily observed from the two tables that
the outliers’ effect on the chart worsened as the percentage and magnitude of the outliers
increased. Also, the effect on the ARL values was more obvious as the m sample increased,
and vice-versa for the SDRL values. In general, there was more than a 600% increment in
the ARL and SDRL values when ω = 1 and a more than 3000% increment when ω = 2. All
of these were due to less than 10% outliers in the data.
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The standard errors of the run length properties results reported in Tables 1–6 were
between 0.066% and 0.506%. These values validate the precision of the ARL and SDRL
values. In addition, in Tables 1 and 2, the results of the known cases are the best and the
ideal results. However, the unknown case results improved and converged to those of
the known cases as the m phase-I sample increased. For the results of the outlier cases in
Tables 3–6, the outliers’ effect was more pronounced as the percentage, θ, and magnitude, ω,
of outliers increased. These points further justify and validate the precision and consistency
reported results.

4. Illustrative Example with Real-Life Dataset

In the manufacturing industry, carbon fiber tubes are a crucial and widely used
material in numerous applications. They are preferred over many traditional materials such
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as aluminum, titanium, and steel, because of their unique features: resistance to fatigue,
high strength and fitness to weight, resistance to corrosion, dimensional stability, and many
more. This has resulted in carbon fiber gaining vast application in the manufacturing
industry. The manufacturing process of carbon fibers is partly chemical and mechanical.
They are mostly made of carbon atoms which bound together in microscopic crystals. The
manufacturing process goes through spinning, stabilizing, carbonizing, surface treating,
and sizing. The tubes are thin strands of material which are long in diameter. The minute
size of carbon fibers requires close monitoring of the manufacturing process. In this study,
we monitored three quality characteristics in the manufacturing process of a specific carbon
fiber tubing. The characteristics are the inner diameter, thickness, and length of the tubes
in inches.

The data were of two stages: in phase-I, each quality characteristic consisted of m = 25
sample points each with a size of n = 5. Phase-II consisted of 20 observations each of size
n = 5 for every quality characteristic. Without any loss of generality, and for conformity
with the aim of the study, the illustrative example was categorized into three cases:

• Case 1-Parameter estimation: Here, we employed the phase-I data to compute the
default mean vector and covariance matrix (µ̂ and S), assuming the process parameters
were unknown, and then used the estimates to compute the plotting statistics T2

i for
monitoring the phase-II data as explained in (3) and plotted it against the UCL.

• Case 2-Parameter estimation with outliers: We infused θ = 7% of outliers with a
magnitude ω = 3 and degrees of freedom v = 5 in the phase-I data, to simulate the
mixed distribution described in (5), obtained the default parameter estimates (µ̂ and
S), and then used the estimates to compute the plotting statistics T2

i for monitoring
the phase-II dataset and plotted it against the UCL.

• Case 3-Parameter estimation with outliers and screening: The third case was similar to
the second case, but we used the SDRE (t,V) as in (6) to estimate the process parameters
from 25 phase-I samples, and to employ the SDRE in the Mahalanobis distance to
detect and screen out the outliers. Then, we computed the default parameter estimates
(µ̂ and S) from the remaining screened data, and then computed the plotting T2

i for
monitoring the phase-II dataset and plotted it against the same UCL.

The summaries of the estimations of the parameters for these three cases are given in
Table 7, while their plotting statistics T2

i and corresponding decisions are given in Table 8.
In case 1, all observations are IC as they are all below the UCL = 15.16, except the fourth
observation 19.4183, which plots beyond the UCL. This case represents when the process
parameters are estimated from some preliminary samples without outliers. For case 2,
all the plotting T2

i s were below the control limit despite the presence of outliers. The
fourth observation that was plotted beyond the UCL in case 1 was masked due to the
outliers’ effect. Case 2 reveals the effect of outliers in the preliminary samples. It also
shows the inferiority of using the default mean vector and covariance matrix for estimating
parameters, especially when the samples are prone to outliers. In case 3, the OoC fourth
observation in case 1 is was detected OoC in this case. With the same magnitude and
percentage of outliers as in case 2, case 3 was as efficient as case 1 when there were no
outliers. This substantiates the improvement of the proposed SDRE and Mahalanobis
distance’s procedures of estimating parameters and detecting outliers as claimed by the
simulation results. Figure 6 depicts a visual representation of Table 8.

Table 7. µ̂ and S estimates from the phase-I sample for the three cases under study.

Case 1 Case 2 Case 3

µ̂ 0.9927 1.0357 50.0120 1.0000 1.0412 50.0844 0.9946 1.0406 50.0172
0.0022 0.0026 0.0040 0.0034 0.0029 0.0045 0.0027 0.0040 0.0053

S 0.0026 0.0128 0.0038 0.0029 0.0140 0.0023 0.0040 0.0165 0.0079
0.0040 0.0038 0.0495 0.0045 0.0023 0.2391 0.0053 0.0079 0.0507
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Table 8. T2
i values and decisions of the three cases with θ = 0.07, ω = 3, and v = 5.

i
Case 1 Case 2 Case 3

T2
i Decision T2

i Decision T2
i Decision

1 4.6350 IC 3.1616 IC 4.4034 IC
2 2.7626 IC 2.8659 IC 2.6736 OoC
3 6.5246 IC 3.2198 IC 6.0763 IC
4 19.4183 OoC 12.2758 IC 15.9676 OoC
5 2.8439 IC 0.8071 IC 2.6362 IC
6 2.7068 IC 0.6549 IC 2.4079 IC
7 4.8002 IC 0.9782 IC 4.1318 IC
8 0.8486 IC 0.5265 IC 0.8318 IC
9 1.0873 IC 1.1708 IC 1.1421 IC

10 1.1025 IC 1.5938 IC 1.0298 IC
11 0.3968 IC 0.2688 IC 0.2967 IC
12 1.9768 IC 0.9525 IC 1.9403 IC
13 7.4164 IC 2.8188 IC 6.8404 IC
14 12.0136 IC 5.5007 IC 9.4973 IC
15 3.7087 IC 1.9715 IC 2.8400 IC
16 2.7188 IC 1.3448 IC 2.2457 IC
17 5.7081 IC 1.4230 IC 4.6036 IC
18 3.4934 IC 3.5898 IC 3.6257 IC
19 10.6969 IC 10.1956 IC 10.5667 OoC
20 8.1595 IC 2.7431 IC 7.4650 IC
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5. Conclusions

This research paper evaluated the in-control performance of the multivariate Shewhart
control chart when the parameters were estimated from phase-I samples that were prone
to outliers. The study observed the negative effect of estimation and outliers on the chart’s
performance. Hence, we proposed a more efficient and robust multivariate Shewhart chart
based on the Stahel-Donoho robust estimators and Mahalanobis distance to detect and
screen outliers from the phase-I samples. Through the Monte-Carlo simulation approach,
the ARL and SDRL for a different number of phase-I samples from small to medium to
large were computed. The findings show that with the presence of outliers, even with large
phase-I samples, the effect on the chart’s performance was severe. The results further show
that the proposed chart based on SDRE and Mahalanobis distance restored the efficiency of
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the multivariate Shewhart chart with smaller phase-I samples. Therefore, it is rational to
incorporate the SDRE and Mahalanobis distance in default multivariate Shewhart struc-
tures, especially when the process parameters are estimated from phase-I samples prone
to outliers. The findings of this study were substantiated with real-life application in the
manufacturing industry, where three qualities of carbon fiber tubes were monitored. The
scope of this study was limited to monitoring the location parameter in a multivariate She-
whart chart. However, the study can be extended to monitoring dispersion parameters in
multivariate Shewhart charts and other charting schemes, such as multivariate cumulative
sum (MCUSM) and exponentially weighted moving average (MEWMA).
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