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1. Introduction

The approximation theory might be considered as a numerical approach to mathemat-
ical analysis problems with wide theoretical methods (see [1,2]). The basic idea behind the
approximation theory is to obtain a representation of any arbitrary function in terms of
simple fundamental functions (usually polynomials) with the known properties. One of
the most fundamental polynomials, the celebrated one of this theory, is the so-called Bern-
stein polynomials, which can be used to uniformly approximate any continuous function
f € C[0,1] defined on the interval [0, 1] (see [3]). Moreover, the first asymptotic formula-
tion of the pointwise approximation of continuous functions whose second derivatives
exist at a point x on [0, 1] was presented by Voronovskaja (see [4]). Determination of the
convergence rate of the sequences of linear positive operators converging to the function f
is a key point in the approximation theory. Thus, the following limit, which is known as
Voronovskaja formula:

Lim m(Ly(f;x) — f(x)),

m—o0

helps us get information about the convergence rate, where (L;,),,>1 is a sequence of linear
positive operators. Until today, the generalized cases of Voronovskaja theorems have been
widely studied for many operators, which represent various versions of classical Bernstein
operators. All of these theorems, are called Voronovskaja-type theorems (see [5-7]). Here,
motivated from the Voronovskaja formula, our purpose is to obtain a Voronovskaja-type
result in the space of bicomplex numbers using bicomplex Bernstein operators mentioned
in Section 3.

Let us start with the complex Bernstein polynomials for f of order n, which are defined
as follows (see [8]): if f :[0,1]—C is a function, n is a positive integer, k = 0,1,2,...,n, and
then for z € C:

Bu(f)(z) = kzo (})Fa-2 (%), zec )
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n!
where (}) denotes Kin— R

The approximation properties of complex Bernstein polynomials were primarily
studied by Lorentz [3]. Recently, Gal [9] contributed to the estimates for the convergence
results of Equation (1) to an analytic function f in closed disks in [9,10]. Other Bernstein-
type operators of complex variables have been widely studied in [11].

Although the growing interest for such operators (see, e.g., [11] and the references
therein), bicomplex Bernstein-type operators have not yet been deeply investigated.

Some approximation results for the bicomplex beta operators for holomorphic func-
tions in strips of a compact disk were given in [12]. However, in general, the literature
containing the approximation results of bicomplex versions of these kinds of operators is
still very limited. At this point, we want to bridge a gap in the literature by using our study
as a benchmark. Nevertheless, there are some recent developments of the bicomplex theory
in some applications such as the solution of differential equations, quantum mechanics,
biomathematics, Hopefield neural networks and signal theory (see, e.g., [13,14]).

The concept of a bicomplex number was given by Segre [15] in 1892, with the aim of
describing physical problems in a four-dimensional space. The set of bicomplex numbers is
a suitable generalization of complex numbers and hyperbolic numbers, and extensive study
may be found in [16,17]. Bicomplex algebra is a two-dimensional Clifford algebra also
satisfying the commutative rule of multiplication on C and, it has important applications
in numerous fields, such as digital image processing, geometry and theoretical physics
(see [17-23]). As a matter of fact, bicomplex theory and bicomplex algebra are developing
very rapidly.

The definition of holomorphic functions of a bicomplex variable was given by Fu-
tagawa in 1928 [24,25]. Bicomplex polynomials enjoy some interesting properties. For
instance, a bicomplex polynomial of degree n does not necessarily have n zeros. Thus, it
can have a finite number of zeros, as well as an infinite number of zeros [26].

In this paper, our main contribution is to give some novel results about the bicomplex
Bernstein polynomials in the approximation theory. Some important inequalities fulfilled by
bicomplex Bernstein polynomials and a Voronovskaja type-theorem for analytic functions
by these polynomials has been proven.

This article is divided into the following sections: Section 2 contains some introductory
material on the bicomplex algebra and bicomplex analysis. Section 3 delves into the heart
of this study, defining first the bicomplex form of Bernstein polynomials. Then, we provide
a quantitative upper estimate for the bicomplex Bernstein operators and their derivatives
on the compact C,-disk and establish the qualitative Voronovskaja-type result for these
operators. In Section 4, we address some of our recent discussions and upcoming endeavors.
Finally, Appendix is divided into three parts labeled Appendices A—C. The proofs of some
theorems in Section 3 are included here to facilitate the reader’s comprehension.

2. Preliminaries on Bicomplex Numbers and Bicomplex Polynomials

In this section, we recall some basic notations R, C and C, for the spaces of real,
complex and bicomplex numbers, respectively. As it is well known, an element from the
space C is represented as xq + i1xp, such that x1, xp € R, i12 = —1. On the other hand,
an element from the space C, is written by the basis 1, iy, iy, i17; as follows:

X1+ i1x2 + ipx3 + i1inXg, X1,..,X4 € R, (2)

where i1, i and 711 satisfy the properties 2 = =1, ix? = —1, i1iy = ipiy with (i1ip)? =

Note that we can see that i1ip € C;, but i1i; ¢ C. From Equation (2), we can also see that
since C is of dimension two over R, the space of bicomplex numbers C, is an algebra over
R with dimension four.

Let z; = x1 +i1xy and zp = x3 + i1x4 be complex numbers in C. In this case, the
element in Equation (2) can be represented as z; + ipzp, where z1, zo € C, i = —1.In
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addition, an element which is equal to its square is called as idempotent element. There are
four idempotent elements in C;; they are:

1+ iqip 1—1i1ip
€y = .

0/1161: 2 s €2 2

®)

The idempotent elements ej, e; in Equation (3) have the following properties:

(i) ere2 =0,

(ii) [lex || = [leal| = ?

(iii) (e1)* = €1, (e2)* = €2,

and every element { : (z1 + ipzp) in C; has the idempotent representation:
= (z1 —i1zp)e1 + (z1 +i122)e2
(see [17]), i.e., for every { : (z1 +i2z2) € Cy,
21 + ipzp = (21 — i122)e1 + (21 + 1122)en. 4)

Furthermore, if ||.|| denotes the norm of elements in C,, then:

1
. 2 . 2\ 2
. Z1 —1122|” + |z1 + 1122
lz1 + i2zo|| = <| | > | | ) . (5)

There is an important difference between C and C,: the complex numbers form a field,
but the bicomplex numbers do not since they contain divisors of zero.

So far we have given a basic knowledge of bicomplex numbers and a brief overview of
the literature of bicomplex analyses. We should also point the reader to [17,27-29], where
fundamental work about the bicomplex numbers, bicomplex analyses and more have been
reported.

Let us give the following basic definitions and theorem used throughout this article.

Definition 1 (see [17]). A cartesian set U in C, is determined by sets Uy in A1 and Uy in Ap
as follows:

U= {Z] +irzo € Cy i 21 + 120 Z(Zl — ilzz)el + (21 + i122)€2}, 6)

for (z1 —i12z,21 +i12z2) € Uy x U,. Here, the complex spaces Ay, Ay are given as Ay =
{z1 —i1z0: 21,20 € C}and Ay = {z1 +i122 : 21,20 € C}. Let a = (a + ipB) for o, p € C.

If,

Uy ={z1 —i1z2 € Ayt |z1 —i1z0 — (@ — 1 B)| <71}
and,
U, = {21 +i1zy € Ay : |Z1 + 1120 — (0c+i1/3)| < 7’2}

then U in (6) is called the open discus with center a and radii r1 and r, and denoted by D(a; r1,12).

If

U1 = {Zl —ilzz S A1 : |21 —i122 — ((X—ﬁﬁ)l < 7‘1}

and,
Uy = {z1 +1i120 € Ayt |z1 + 1120 — (a +i1B)| < 12}
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then U in (6) is called the closed discus with center a and radii r and ry and denoted by D(a;r1,17).
Thus,

D(u;r1,rz) = {Zl +irzy € (Cz :
71 +ipzp = (21 — 122)e1 + (z1 +i122)ea,
|Z] —i1zp — (0( — il,B)‘ <71, |Z1 + 1120 — (06 + ilﬁ)| < 7’2}

and,

D(a;r,12) = {z1+izeCy:
71+ irzp = (Zl — i122)€1 + (Zl + i122)62,
|z1 — i1z — (& — ilﬁ)| <r, |z1+i1z2 — (DC +i1B)| < 1’2}.

Let D be an open discus in C,. If taking the C;-cartesian product of two disks with
center at z1 + ipzp and radii r; and r; in C, then it is defined by the following:

D(a;r,72) = B(a —i1;71) x B(a 4+ i15;12)

and,

D(a;ry,r2) = B(a —i1f;11) X B(a +i1B;12) C D(a;11,72).
For a = 0, we can write:
D(O;Tl,i’z) = B(O,‘Tl) X B(O;T’z)

= {21 +irzp € Cy: z1 +izy = (21 — i122)61 + (21 + i122)€2,
|z1 — f1220] < 11, |21 +1122] < 12}

(see [17,30]).

Theorem 1 (see [17]). The idempotent component series of the bicomplex power series for all
keN, ay, by, z1, 20 € C, Y12 (ax + inby) (z1 + izzz)k are the complex power series:

Z (ag + ixby)(z1 + izZz)k = Z(Qk —i1bg)(z1 — ilzz)k‘| eq
k=0 k=0
+ Z (ag + i1bg) (z1 + i1Zz)k] er. (7)
k=0

Furthermore, let f be a function defined by a power series as follows:

(e )

fz1+iz2) = Y (g + iaby) (z1 + i222)F, 8)
k=0

for (z1 +ipz2) € D(0;71,12), 1 > 0, 12 > 0. Define two complex-valued functions f1(z1 — i1z2),
f2(z1 +i122) € Con the circles of convergence of the idempotent component power series as follows:

[e9)

filz1 —i1za) = ) (ax — i) (21 — hz)*, |z —ihz| <1y,
k=0

foz +i1z2) = Y (a5 +inbe) (z1 +122)", |z +irza] < 7.
k=0

In that case,
f(z1 +i2z0) = fi(z1 — i122)e1 + fo(z1 +i122)er. )
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3. Some Approximation Properties of Bicomplex Bernstein Polynomials

In this section, we define bicomplex Bernstein polynomials and obtain a quantitative
upper estimate for the bicomplex Bernstein polynomials and its derivatives on a compact
C,-disk. Later, we prove the qualitative Voronovskaja-type result for these polynomials.

Here, our goal is to introduce Bernstein polynomials for bicomplex numbers inspired
by Equation (1).

Definition 2. If f:D(0;ry,r2)—Cy is a function, n is a positive integer, k = 0,1,2,...,n, and
then for zy + ixzp € Cy, bicomplex Bernstein polynomials By, (.) of f are defined as follows:

. n n . k . n—k k
(Buf)(z1 +2z2) = ) { | | (71 +222) [1 = (2 +220)]" " ). (10)

k=0

Before giving some approximation theorems for the bicomplex Bernstein polynomials
defined in Equation (10), we first need the following auxiliary results.

Lemma 1. If we denote e;(z1 +ipzp) = (21 + izzz)k, T n (21 +i222) = (Buex) (21 + ipzp) then
the recurrence formula:

(Zl + izzz)(l — (Z1 + iZZZ))
n
+ (Z] + izZz)?Tk,n (21 + izZz),

Ty1n(z1 +i222) = D, tiyz, (T ) (21 + i222)

holds for all n € N, (z1 + ipz2) € Coand k =0,1,2....

Proof. Clearly, fork =0,1,2, we have 00,1 (21 + izZz) =1, T (21 + izZz) = z1 4 ipzp and

2 | (z14ixz)—(z1+inz))*
)2 4 Ltz nl 222)"

T (21 +1222) = (21 + 1222
Moreover, for any k, we get:

Tn (21 + i222) = (Bnex) (21 +i222)
" n o . ik
= (2 < ) (z1 —ih1z2)[1 = (21 — 122)]" ]]k>€1
=0 \J "
" n ] j ] n—j ]'k
+ Z i (z1 +i122) [1 = (21 + i122)] F e
Therefore, forn € Nand k = 0,1, ..., we can write:

) " n N
D21+i222(7-[k,n)(21 + 1222) = DZ1*1'122 [(Z (]) (z1 — 1122)]
j=0
. nfjk
x[1—(z1 —i122)] ]ﬁ e1

+ D21+i122

and by a simple calculation, we obtain the following relationship:
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n
Z1 — ilzz)(l — (Zl — i1Z2))
Tathn) - + )

( " T (21 — 122)e
N7 1—122)eq
1—(z1 — 1z0) *"

n

Dy, tiyzy (T ) (21 + 1222) = (( Te1,0(21 — 1122)e€1

Ttet1,0 (21 + i122)€2)

+—T zZ +1 Zy)e
1— (Zl +1122) k,ﬂ( 1 1 2) 2)
n

- j : T z1 + iz
(Zl +1222)(] _ (Zl +1222)) k+1,n( 1 222)

. n
1-— (Z1 + izZz)

Ttkn (21 + i222).

Therefore, we get:

(Zl + izzz)(l — (Z1 + i222))
n
+ (21 + i222) T n (21 + 1222),

1,0 (21 +i222) = D, tiyz, (Tt ) (21 + i222)

for all (z1 +ipzp) € Cp, k=0,1,..andn e N. O

Lemma 2. Let ey and my, be defined as in Lemma 1 for all n € N, (z1 + ipzp) € Cp and
k=0,1,2....

If,
Egn(z1 +i222) = T (21 + i222) — ex(z1 + i222)
(21 +1222) (1 = (21 + i22z2) )k (k — 1)
- , (11)
2n
then,
z1 +irzo||||1 — (21 +ipz
HEk,nH < HEkfl,nH+ llz1 +i2 2||||2 (z1 +i22)||
n
x {2(k = 1) || 7tk—1,n — ex—1]|
. ”H (=12 i), =162
2n n
holds for alln € N, (z1 +ipzp) € Coand k > 2.
Proof. From Equation (11), by replacing k with k — 1, we can write:
Ex—1,(2z1 +i222) = Tp_1,4(21 + i222) — €x_1(21 + i222)
i (Zl + iZZZ)k_Z(l — (Zl + iZZZ))(k — 1)(k — 2) (12)

2n

If the reduction relation, which is used in the previous Lemma 1, then for all (z1 + ipzy) €
Cy, n € N, and k > 2 the following equation is provided:
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(z1 +i222) (1 — (21 + i222))
n
X Dy, yiyzy (M1, (21 +1222) — €x_1(z1 + i222))

(k—1)(z1 + ipzp)* !
n

Epn(z1 +i20) =

+ (1— (21 +i222))

+ (21 + i220) [TT—1,n (21 + 1222) — €x_1(21 + i222)]
(z:1+022) (1 (21 + iaz) k(K — 1)
2n
21 +i222) (1 — (21 +irz .
- ( ! 2 2)( " ( ! 2 2))Dzl+i2z2Ek—1,n(zl +1222)
+ (21 + i222) Ex—1,4 (21 + i222)
(21 +1222) 72 (1 = (21 + i222) ) (k — 1) (k — 2)
+
2n?
x [(k—2) = (z1 +i2z2) (k = 1)].

4

According to the Bernstein’s inequality ||D, tiyzEx—14| < (k—1)|Ex_1
for all ||z1 + ipz2]| <1,k > 2 and n € N (see [10,11]), we have:

l|z1 + iaza|||1 — (21 + i2z2) ||

HEk,nH < " [ZHDzlJrizzzEk—Ln H
121 + i22z2||[|1 — (21 + i220) |
. k-3
o llz1 + ixz2| n(k*l)(k*Z) (2k— 3)
21 + 1222 ||[|1 — (21 + i220) |
< B 1l + =

1)(k—2)(ex—2 — ex—1)
2n

x {Z(k —1)|| e — || + 20k — 1)H (k—

| 2k(k=1)(k=2) }

n

O

Our first main result is the following theorem on the existence of a finite upper bound.

Theorem 2. Suppose that Ry, Ry > 1and f : D(0; Ry, Rp) — Cy is analytic in D(0; Ry, Ry), ie.,

o)

fz1+ixz2) = Y (g + iaby) (z1 + inza)"
k=0

forall (z1 +ipz2) € D(0; Ry, Rp).
i) Let r1, rp be arbitrary constants satisfying the inequalities 1 < r; < Riand 1 < ry < Ry.
Y 8 q
Forall |z1 — irzal|,, <71, [lz1 +i122]l,, < r2and n € N, we get:

Calf) , Cnlf)

n n

1(Buf) = £l <

7

where: ( )
3ri(l+rn) & .. . i—2
O<Cr1(f):%Z](]—l)]aj—zlbj]rjl < o0
j=2
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and:
3rp(1+1m) & .. . i—
0<Cr2(f):72(2 2) Z](]—l){ll]—i-llb]{i’é 2<OO.
=2

(i) If1 < r <rf < Ryand1l < rp < ry < Ry are arbitrary constants, then for all
21 —i1z2|l,, <71, l|z1 +iaz2|l,, S raandn,p €N,

HDZﬁizZz(B”f)_D§1+izz2(f)HS;:{ Cn (Hri + Cr(f)r3 }

(ri=r)"" (5—m)"
where Cy, (f) and Cr, (f) are given as in (i).

Proof. See Appendix A. [

Now, we are ready to consider the following Voronovskaja-type result for bicomplex
Bernstein polynomials.

Theorem 3. Suppose that Ry, Ry > 1and f : D(0; Ry, Rp) — Cy is analytic in D(0; R1, Ry), ie.,

o)

fz1+ixz2) = Y (cx + iady) (21 + inza)"
k=0

for all (z1 +ipz3) € D(0; Ry, Rp). Forall (z1 +ipzp) € D(0;1,1) and n € N, the following
Voronouvskaja-type result in the closed unit disk holds as:

(z1 +i222) (1 — (21 +1222))

(Buf)(z1 +i2z2) — f(z1 + i2z2) — o D2 iz, (f)
||Zl + izZzH ||1 — (Z1 + izZz)” 18

< M

- 2n n (),

where 0 < M(f) = Y52 ek + indy|k(k — 1) (k — 2)* < oco.
Proof. From the proof of Theorem 2 (i), for every n € N, we evidently have:

(Zl + izZz)(l - (21 + i222>)

(B +i2z2) = fer -+ ) = = D2 i)
= i(ck + ipdy) (Bnex)(z1 + i222) — i(ck + ipd)ex(z1 + ia22)

k=0 k=0

(Zl + izZz)(l — (Zl + izZz))

- o Y (cx + iadi)k(k — 1) (z1 + izzz)kz‘
k=2

o0
< Y ek + indk| | Exn (21 + i222)
k=3

7
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Furthermore, if r{ = r, = 11is taken in the inequality obtained in the proof of Theorem 2 (i),
we get ||, — ex|| < Sk(k — 1). As a consequence, from Lemma 2, we can write:

|21 + iaza|||1 — (21 + i2z0) ||

| Eknll < [|Ex—1a +

2n
v {2(k—1)6(k—1)(k—2)
+2(k —1H 1(1k 2)(€k72—€k71)
| 2K(k— n)(k 2)}

and |lex o —ex 1| < 21 +1) + 15 2(14+ 1) < 4, forr < 1,1, < 1, which immedi-
ately implies:

21 + i2z2[ |11 — (21 +i222) ||
2n

1Exall < 1 Be-rnll +

18k(k — 1) (k — 2)
X " .

Equation (11), yields Eon (21 + iZZZ) = Eq <21 + iZZZ) =Ey; (21 + iZZZ) =0,fork=0,1,2.
Therefore, by writing the above last inequality for k = 3,4, ..., we clearly obtain, step by
step the following:

l|z1 + iaza|||1 — (21 + i2z0) ||
2n

k
< LG~
£

Bkl <

l[z1 + 222[[[|1 — (21 + i222) | 18 2
< Zk(k—1)(k—2)%
< 5 ” k(k—1)(k—2)
Thus, we get:
‘(an) (z1 +i2z2) — f(z1 +i2z2) — (@t 1222)(12; &+ b)) D2 s, (f)
< ’ (z1+ lzZz)(12; (z1 + i222)) H18 Y lek + indg [k (k — 1) (k — 2)?
k=3
< ’ (Zl + 1222)(12; (Z] + 1222)) 1778M(f)
Since:
D} 1o, f(21 4 i222) lz ¢ — idie)k(k —1)(k —2)(k = 3)(z1 — ilzz)k4l e
Z o + indi)k(k — 1) (k —2)(k —3)(z1 + ilzz)k4] e

and both series are absolutely convergent, we have:
M(f) = Y (ex +indi)k(k — 1) (k — 2)* < oo

k=3

Therefore, Theorem 3 has been proved. O
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Theorem 4. Suppose that Ry, Ry > 1and f : D(0; Ry, Ry) — Cy is analytic in D(0; Ry, Rp),
ie.,

[ee]
f z1 + 12Z2 Z Ccr + lzdk 21 + 1222)k
k=0

for all (z1 +ipzp) € D(0;Ry,Ry). Let1 < ry < Ryand1 < rp < Ry. Foralln € N,
‘Zl — i122| < ryand ‘Zl +i122| <17,

21 z1—i122

‘(an) (z1 —1122) — f(z21 —1122) — (1 —hz2)(1~ (@ —hz2)) b (f)‘

_ 501 +71)" My (f)

- 2n n
and,
. . z1+1i122)(1 — (z1 + 112
(Buf) (e + vze) = far 4 inz) - ELEADOZEERRD i)
_ 5(1+12)> My, (f)
- 2n n
where,
My, (f) = L2 slex — indglk(k — 1) (k — 2)°5 2 < o0
and,

Mrz(f) = 2]2023|Ck +i1dk|k(k )(k 2)2 k—2 < oo,
Proof. See Appendix B. O

Theorem 5. Suppose that r1, o > 1and f : D(0;r1,1r2) — Cy is analytic in D(0;r1,12). If f
is not a polynomial of degree < 1, then for every r; € [1,r1] and r3 € [1,17] the following are
satisfied, for every n € N,

> S g g g = Y

1Buf = £l

where | f|. = max{f(z1 — i122) : |21 — i1z <77}, (If[l,; = max{f(z1 + 122) : |21 + ia 22
<ry}and Dy, = {|z1 —i122| <11 :21,20 € C}, Dy, = {|z1 +1122| <72 : 21,20 € C}. The
constant Cy: (f) depends on function f and ry, while again the constant Cy; (f) depends on function
fandr;.

Proof. See Appendix C. O

Now, combining Theorem 5 with Theorem 2 (i), we immediately get the following
Corollary 1.

Corollary 1. Suppose that r1,rp > land f : D(0;r1,12) — Cy is analytic in D(0;r1,12). If f
is not a polynomial of degree < 1, then for every r{ € [1,r1) and r; € [1,r;) the following are
satisfied. For every n € N, we have:

1 1
Han_er; - and Han—er; _—

4. Conclusions

In recent years, mostly the authors of mathematics and physics research have fo-
cused on bicomplex numbers and bicomplex analyses (see [13,31-33]). This trend will
continue thanks to possible applications of bicomplex algebra in engineering and good
results in approximation theory. In this paper, considering the advantages of this field,
we have tried to carry relevant theoretical background and some generalizations to ap-
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proximation theory by means of operators in the sense of Bernstein polynomials with a
similar manner to complex Bernstein polynomials. As further work, in addition to get-
ting better approximation results, similar studies may be integrated into frames of other
convenient polynomials or operators; application possibilities and much more links to the
engineering like Hopfield neural networks, signal processing, etc., may be investigated
(see [34-36]).

See the appendix below to examine the details of proofs of Theorems 2-5.
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Appendix A. Proof of Theorem 2

(l) Denoting ¢ (Zl + izZz) = (21 + izZz)k, T, n (21 + izZz) = (Bnek) (21 + izzz) for
k=0,1...and D(O,‘ Rl,Rz) = {21 +irz0 € Cp i 21 +ipzp = (Zl — i122)€1 + (Z1 + i122)82,
|z1 —i122| < Ry, |z1 +i122] < R2}. Now, as in (6) by using the idempotent representa-
tion of f(z1 +ixzp), we get following inequality. If we use the iteration relation (cited
in [10]), then;

(o]

(Buf)(z1 +i2z2) = ) (ag + iaby) 7 (21 + 1222)
k=0

and we can write:

7

I(Buf) = fIl < V2 Y |l + iabi|| || 7t — ex
k=0

for all (z1 + ipz2) € D(0; Ry, Ry). So that we need an estimate for ||7r; , — ex||. Firstly, by
replacing k with k — 1 in Lemma 1, then with simple calculation we get:

(z1 +i222)(1 — (21 + i222))

, k-1
X Dy, 4iyzy (ﬂk—l,n(zl +i222) — (21 +1222) )

k _ 1 : k_1
L ( )(Zln+ i22)

+ (21 + ixz2) {ﬂk—l,n(zl +i2z0) — (21 + izzz)kil]

T (21 +i222) — (21 + i222)" =

(1= (z1 +i222))

Let ﬁ(o; r,t2) = {Zl +iyzy € Cy : 21 +ipzp = (21 — i122)81 + (z1 + i1z0)ep, |Zl —
i1zp| < rq,|z1 +i122| <1}, forry > 1,1, > 1. According to Bernstein’s inequality (see [11])
in the closed unit disk, by a linear transformation, if Py represents an algebraic polynomial
with a degree less than or equal to k and also considering the Formula (7), we can write
| Dzyiyz, Pr|| < %HPkHr1 + %HP;(H,2 and from the above inequality, we obtain:
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21 —i1z2| (1 + |21 — i12zo]) (K — 1)
n r

Ien = el < {

X ||7Tk71,n _ek71||rl
+ (k — 1)|Zl — i122|(1 + |Z1 — i122|)
n
X| 71,0 (21 — i122) — ex—1 (21 — 1122) | } |l en |
n 21 +i122| (1 + |21 + iaz2|) (k—1)
n T2

+ ‘21 — i122|

X H7Tk—1,n - €k—1||,2

(k—1)|z1 + i122|(1 4 |21 + i122])
n

X| 1,0 (21 +1122) — k1 (21 + 122) | } ez,

+ + ‘Zl +i1Z2|

Since, |Zl - i122| <r,n=>1, |Z1 + i122| <1y, 1y > 1, wehave ‘nkrn(zl — i122)’ < 1”1(
and |y, (21 +i122)| < 1’72‘, for every k, n € N, (see [3]). Thus, by using the last inequality,
we easily obtain:

|7t — ex|| < r1|mern(z1 —i122) — €1 (21 — i122))|

+3(1 +r1)r’1<*17(k;1)

+ 12| 1 0 (21 + 1122) — €1 (21 + 1122) |
k—1
+3(1+ rz)ré_l 7( " )

Again, by using the reduction relation, we get:

r’l‘_l + 2r’1‘_1 + ot (k— 1)r’1‘_1}

3(1+
It —exl] < 2T

3(1+r _ _ _
+%[1’§ Yyt i (k=1 1}

3(1 k—1Dk 3(1 k—1)k
< ( :71)711%1( . ) n ( :Vz)rgq( . )
_3n(+r), . k2 3+, ko
= k(k—1)r; =+ oy k(k —1)ry=.

For all (z1 +ipzp) € D(0;R1,R2),k=0,1,...and n € N.

Note that from hypothesis, f(z; + i2z;) is absolutely and uniformly convergent in
|z —i122| < rand |z1 +i122| < 1y, respectively. Then, for1 <rj < Rjand1 <1, <Ry,
the power series on the right hand side can be differentiated twice:

[e9)

D2 ;. filz1 —ivz) = ) k(k —1)(ag — inby) x (21 — i129)F 2
k=2
and,
D? i falzi +i1z2) = Y k(k —1)(ax + iabg) (z1 + i125)k 2
k=2

are also absolutely convergent.
Thus, Y52, k(k — 1) |ag — inbe|r¥ 2 < coand Y52, k(k — 1) |ag + i b |1k 2 < co.

(ii) By using Cauchy integral formula and Cauchy derivation formula for bicomplex
functions (see [17]), we prove desired results as follows:
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Let v = D(0;7},75) be an open ball with zero center and 7, v} radii (r; > 1,75 > 1)
and zq1 + ipzp = (21 —i1z2)e1 + (21 + i122)en, where |z1 — i12p| < 11 and |z1 + i1z2] < 77.
For (71 +1i272) € 7,

71 +i272 — (21 +222) || = |lv1 — i1y2 — (21 — 11z2) || — [|71 + 1172 — (21 +i122) ||
> (rf —r1)—(r; —12)

is obtained. Now, a simple calculation leads us to the following result:

p P
|58 ey (Baf) = DF i, (£

P IBufi)(r1 —ir2) — Al —i172)] i

< 27 / (1 —i172) — (21 — ilzz)]p+] d(v1 —i172)
P [(Buf)(r+i172) = falm1 +i172)] i

" 27 / [(’71 +i1’)/2) — (Zl + ilzz)]erl d(’)/l + 1’)/2)

:m{omm +c4mz}
(r

L) ()"

and the proof is completed.

Appendix B. Proof of Theorem 4
Using Theorem 3, we obtain that for every n € Nand k > 2,

. 21 —1122)(1 — (z1 — 112 .
En(z1 +i220) = (( 1~ hz)( p” (1= 2>)DzlfilzzEk—1,n(Zl —i122)

+ (21 — 122) Ex—1,u(21 — 1122)
+ [(k=2) = (z1 —i1z2) (k= 1)]

X<m—4ugk%1—@1—a@»w—4xk—m>ﬁ

2n?

z1 +1122)(1 — (21 + 112 .
(( )( " ( >) D21+i122Ek—1,n (Zl _|_ 1122)

+
+ (21 +i122) Ex—1,u(21 + 1122)
+ [(k =2) = (z1 +i122) (k — 1)]

[
(1 022) (1= (4 hz)) (k= 1) (k- 2))62'

2n?

So, forallk,n € N, |z1 —i1zp| < r and |21 + i1z2| < 1y, 11, 12 > 1, we can write:

. r1(1+r .
|Exn(z1 +i220)| < <l(nl)\DzlilzzEk1,n(Z1 —i122)]|

+71|Ex—1,0(21 — 1122) |

+(1+r1) 2(;12 Dk = 2)[(k2)+r1(k1)]>

rp(141p .
+ <(n) |D, iy 2 Ex—1,0 (21 4+ 122)|
+72|Ex—1,n(21 + i122) |

k 201 —
(Lt 2(:2 Dk 2)[(k—2)+r2(k—1)]>.
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Now, we calculate the following for k > 3,

Dz, 4iyzy Ek—1n(21 + 1222) | < |Dzyiyzp Ex—1,0(21 — 1122) |

+ |Dzl+l‘122Ek71,n (Zl + Z.1ZZ)|
k—1

<55,
k—1

+ T HEk*lJ/I ||7'2'

and from Equation (12), we have:

Ex_1u(z1 +i222) = Tj_1,(21 + i222) — €x_1(21 + i222)

_ W(‘fhz(zl +i2z2) = e1(21 + 1222)).

If we employe the following relation which is used in Theorem 3 for allk,n € N, rq,
rp>1,|z1 — 1'1ZZHT1 <riand |z1 + 1122, <712,

3r1(1+
[E— %ﬂrl)

o 3rp(141p)
1) k-2 2 2
k(k—1)r; =+ o

Then, for every n € N, k > 2, we clearly obtain the following inequality,

y

_ W(J;f?’(l 1)+ (1 4r)).

k(k —1)rk=2.

. k—1 k—1)(k—2 €f—1 — €k—2
D, +iyz Ex—1,0(21 +1222)| < rl{Hﬂk—l,n - ﬁ’k—lHr1 + H ( I 2)75 )

ko1 k—1)(k—2)(ep1 — e
+ ) {Hﬂk—l,n—ek_1|‘r2+H( )( )(ek 1 —ex 2)

7 2n

This implies:

nid+r . 2rq 1+1’12kk—1)k_21,k73
DU DB — )| < 2R D= 2

and,

ra(1+7 ' 21y (1 + 1) 2k (k — 1) (k — 2)7k 3
%‘Dzl-i-ilzzEkfl,n(zl+llzz)| < ( ) k( )( )y ‘

n2

Thus, from the last two inequalities above, we can write:

2r1(1+r)*k(k = 1) (k —2)r{ >
1’12
+ 11| Ex—1,0(21 — 1122)|
B ovke2
L )k 22(k 2)ry [(k—2) +r1(k —1)]
= 11| Ex_10(21 — 122) |
k—2
n (1+r1)(k —ziz)(k —2)n
X [4k(14r1) + (k—2) +r1(k—1)]
< 11| Excin(z1 — i122))|
5(1+r1)*k(k — 1) (k —2)r}
+ 2n2 ’

|Egn(z1 — i122)| <
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With a similar way,

|Ejen(z1 + i122) | < 12| Exo1,0(21 + i122))|
5(1+ r2)%k(k — 1) (k — 2)rk—2
+ 2
2n

is found. Since E (21 + i2z2) = E1 (21 + i2z2) = Eg (21 +ip2z2) = 0, for all (zq + ipzp) €
Cyand k =0,1,2, then we can write, fork = 3,4, ...,

, 5(1+r)% k2 & .
|Ein(z1 —122)| < =—— 7—— ) j(i-1)(—2)
j=3
_sa +rp) k2

o k(k—1)(k —2)* (A1)

and,
5(147)7h 2 &

o Y =1 ~2)
j=3

|Exn(z1 +i120)| <

< Wk(k 1) (k—2)2 (A2)
As a result, by using (A1) inequality:
(Baf)(z1 —inz2) — fla — hz) - RSB mm)
< i|ck||Ek,n(Zl —i1zp)|
k=3
< Sl

and a similar way, from (A2), the following inequality:

(z1 +1122)(1 = (z1 + 1122)) 2

(Buf)(z1 +i122) — f(z1 +1122) — 7 Dz 4iyz, (f)
5(1 4 r;)?
< L )

is found. Furthermore, M, (f) and M,,(f) are finite as in Theorem 3. Therefore, the
theorem has been proved.

Appendix C. Proof of Theorem 5
For all (zq —i1z2) € D;, and n € N, we can write:

(an)(zl _ ilzz) _f(zl _ ilzz) _ %{ (Zl - i1zz)(1 - (Zl — ilzz)) DZ ) (f)

2 21—1122

(z1 —i1z2) (1 — (21 — 122))

- D2 ()]}

I (Buf) (a1 — ivz2) — a1 — inza) -

If D?

-z (f) is not equal to zero identically on D;, then there exists My = inf|; _; .|

=70

‘Dz (f )‘ > 0 such that 0 < ry < 1. Now, let r; > 1 be arbitrary. Clearly, we have

z1—i12)
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|Bnf — f”’i‘ > [|Buf — |, there exists a point (zg — i1zy) € C depending on f, n and g

with ‘ZO — ilzé‘ = 1y, such that:

”B”f—eri‘ 2> ”B”f_f”ro
> |(Buf)(zo — inzo) — f(z0 — ir2))
1
"
= [ (| a0 - izy) — flzo — nzo)

n

(z —iz’)(l—(z —iz/))
g )

Zo*ilzo

(zo — i12y) (1 — (20 — 1)) D2
2 zOfile,

0

Now, we consider the first term and second term on the right side of the last inequality.
We have:

My >0

(20 — i120) (1 = (20 — %)) o (f’Zmﬂ—m)

2 Zo*ilz(/) 2
and by Theorem 4:

(z0 — i12;))(1 — (20 — ilzb)) D2 f

L L
n?|(Buf)(20 — i120) — f(20 — i120) — m —

< a0+

Therefore, for every n > ng there exists 19 depending on f and r; so that the following
inequality is satisfied:

(20 — i129) (1 — (20 — i12y)) D2 (f)‘ 1 [HZ‘ (Buf)(z0 — i1zg)

2n Zo*ﬁza

_f(ZO _ ilzlj) _ (ZO - 1120)(12; (ZO — ilzo)) DZ ,(f)H

> 70(14— rO)MO.

which implies ||B;, f _f”VT > MMO, for all n > ng. Forn € {1,2,...,n9 — 1}, one

M,x (f)
obtain HB”f_f”ﬁ* > —4— and M| (f) = nHB"f_fHTT > 0. Therefore, for every
Cx(f)
1

n

7

is satisfied, where:

neN, HB”f_eri‘ 2

Cri(f) = min{Mr;l () My, (F)r e My, (), ol —1o) Mo}

The other case can be shown in a similar manner.
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